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Abstract: Model-based development methods are increasingly being applied in the 

production of software artifacts. The processing of visual models, within these frameworks, 

is an essential issue that can be addressed using graph rewriting techniques. The precise 

definition of graph rewriting-based model transformation requires that beyond the 

topology of the rules, further textual constraints be added. These constraints often appear 

repetitively in a transformation; therefore, constraint concerns crosscut the transformation. 

It is useful to define often applied constraints as physically separated modules and indicate 

the places where to use them. This effort provides solutions to structuring, modularizing 

and propagating repetitively occurring and crosscutting constraints. We propose an 

aspect-oriented approach that allows for consistent constraint management, in which 

repetitive and crosscutting constraints can be semi-automatically identified. 

Keywords: Aspect-oriented constraints; Constraint aspects; Constraint modularization; 

Graph rewriting 

1 Introduction 

Model-based software development [13] [18] applies different software models 

during system development. Model-based approaches highlight the relevance of 

model-driven methods in the software industry. They facilitate defining the 

applications with software models and automatically transform them into 

executable artifacts. 

Model transformations appear in various situations in application development 

[2]. Graph rewriting is a widely utilized technique for model transformation [8] 

[9] [19]. Model transformations, like all software, must be validated to ensure 

their usefulness for each intended application. In [10] [11], an approach has been 

introduced for validating model transformation that applies Object Constraint 

Language (OCL) [14]. Constraints are the pre- and post-conditions of 
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transformation rules. OCL as a constraint and query language in software 

modeling is an effective way to define textual constraints [3] [5]. We have already 

demonstrated that it can also be utilized in model transformation definitions [15]. 

Often we require the validation of several rules or whole transformations, which 

may cause the same constraint concerns to appear numerous times in a 

transformation. Regarding this recurrence of constraint concerns, it is beneficial to 

distinguish between the classical constraint repetition and the crosscutting 

constraints. According to [17], the definition for the term concern is "any matter 

of interest in a software system". 

The classical constraint repetition is similar to the frequently appearing lines of 

program code in a source file (also known as code clones). In the source code 

domain, this problem is handled with program segmentation. In most cases, it is 

implemented with functions; the recurring lines of source code are placed into a 

function and the function is then called from the appropriate position. This method 

can be applied to model transformation constraints as well. This can be achieved 

by extracting the repetitive constraints into separated components and, similarly to 

function calls, manually designating the points in the model transformation in 

which they will be applied. 

Regarding crosscutting concerns, the situation is significantly different. As 

opposed to repetitions, crosscutting concerns of a design cannot be modularly 

separated. If a concern attempts to decompose, according to a specified design 

principle, other concerns will crosscut this decomposition. This implies that 

crosscutting is relative to each particular decomposition. 

To summarize crosscutting concerns, there is no way to achieve a modular design. 

In the case of repetitive constraints, consistent constraint management is difficult. 

In order to mitigate these issues, our aim is to physically separate the different 

concerns, namely the structure of the transformation rules and constraints, and 

design them separately. Next, using a weaving mechanism, we generate the 

executable artifact that combines the two concerns. This generated representation, 

containing both repetitive and crosscutting constraints, is similar to a binary file 

compiled from source code and is not edited by the transformation engineer. 

Therefore, no problems arise, despite the generated artifact concerns not being 

separated. 

The approach presented in this paper provides solutions for both repetitive and 

crosscutting constraints. Our previous works [10] [12] have already introduced the 

problem of crosscutting constraints in model transformations. In order for this 

paper to be self-contained, we briefly summarize the constructs and methods we 

have developed for crosscutting constraint management in model transformations. 

The novel results provided by this paper are: (i) the distinction of repetitive and 

crosscutting constraints in model transformations, (ii) the mechanism that handles 

the repetitive constraints and (iii) a generalized, semi-automatic identification of 

repetitive and crosscutting constraints. 
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With the help of a case study, the next section introduces the problem of repetitive 

and crosscutting constraints in model transformations. Section 3 gives background 

information about our model transformation framework and introduces the 

approach developed for managing crosscutting constraints. In Section 4, we 

identify the difference between repetitive and crosscutting constraints and discuss 

the handling of repetitive constraints in model transformations. Section 5 provides 

a generalized method for semi-automatic detection of repetitive and crosscutting 

constraints. Finally, concluding remarks are elaborated. 

2 Constraint Management Problems in Model 

Transformations 

Graph rewriting [16] is a widely applied technique for graph transformation. The 

basic elements of graph transformations are graph rewriting rules. Each rule 

consists of a left-hand side graph (LHS) and right-hand side graph (RHS). 

Initially, performing a rule requires locating an occurrence (match) in which the 

rule is applied on the LHS of a graph and replacing this pattern with the RHS. In 

most model transformation tools, the LHS and RHS of the rules are defined via 

pattern language [1] [8] [9]. In this case, the structure defined by the pattern 

language must be found, not an isomorphic occurrence. 

A precondition assigned to a transformation rule is a Boolean expression that must 

hold at the moment the rule is fired. A postcondition assigned to a transformation 

rule is a Boolean expression that must hold after the completion of the rule. If a 

precondition of a transformation rule is invalid, then the rule fails without being 

fired. If a postcondition of a transformation rule is invalid after the execution of 

the rule, then the transformation rule fails. OCL expressions in model 

transformation rules correlate with it: in the LHS of a transformation rule they 

represent preconditions, and in the RHS, OCL expressions are postconditions [10]. 

The dominant decomposition of model transformations provides the functional 

behavior. The additional constraints ensure the correctness of certain 

transformation properties. These constraints are responsible for correctness, but 

often they are treated with secondary importance. They are applied repetitively 

and in several cases crosscut the transformation. Therefore, it is difficult for the 

designer to perform the intuitive activities required to verify the transformation. 

In order to illustrate the issue of repetitive and crosscutting constraints, a case 

study is introduced. In [12], a variation of the "class model to relational database 

management system (RDBMS)” model transformation (also referred to as object-

relational mapping) [19] is presented. In Figure 1, using the concrete syntax of our 

model transformation environment (VMTS, Section 3.1), the control flow model 

of the transformation is presented. 
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Figure 1 

The control flow model of the transformation ClassToRDBMS 

This model is a stereotypical activity diagram, in which each activity represents a 

rule. According to the goal of the units, the model can be divided into four parts: 

(i) The rules CheckEdges, MatchDirectParent, CompareClassAndParent, 

MatchNextParent, CheckMultipleInheritance, CheckInternalClasses, 

CheckSealedClasses verify the input model. (ii) The rule CreateSchemas and the 

substantial loop in the middle (CreateTable, CreateParentClassHelper, 

AddParentAssociation, ShiftParentClassHelper, DeleteParentClassHelper) are 

responsible for the schema and table creation as well as inheritance-related issues. 

(iii) The rule ProcessAssociations processes the associations. (iv) Finally, the last 

three rules remove the helper nodes and temporary associations. 

In the control flow model, some rules have two outgoing edges. If a rule is 

successful, then the control is passed via the solid line; otherwise, the dashed line 

is used. For example, the first rule (CheckEdges) is successful if there is at least 

one dangling edge in the input model. Therefore, the solid outgoing line goes to 

the end node, because dangling edges are not permitted. If the rule CheckEdges 

was unsuccessful, then the control is passed to rule MatchDirectParent. 

The first seven transformation rules verify five class diagram-related conditions. 

We differentiate between class diagram-related conditions that are general 

language-independent conditions (Conditions 1 and 2), and specific programming 
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language (Conditions 3, 4 and 5). These condition groups form our well-

formedness concerns. 

Condition 1. Each association and inheritance edge should connect two nodes 

because no dangling edges are allowed in class diagrams. This condition is 

checked by rule CheckEdges. The constraints related to this condition are as 

follows: 

          context Association inv DanglingEdges1: 

          self.LeftNodeID is NULL or self.RightNodeID is NULL 

 

          context Inheritance inv DanglingEdges2: 

          self.LeftNodeID is NULL or self.RightNodeID is NULL 

Condition 2. The 'no directed inheritance loop is allowed' condition is checked 

by rules MatchDirectParent, CompareClassAndParent, and MatchNextParent. 

The rule MatchDirectParent selects a class yet to be processed, marks it, then 

matches its direct parent class. Rule CompareClassAndParent verifies that the 

class marked by a previous rule and actual parent class are not the same. The rule 

MatchNextParent matches the direct parent of the actual class. If the rule has 

successfully found the next parent, the control is passed to the rule 

CompareClassAndParent, where the originally marked class, the recently found 

parent, and the actual parent are compared. Otherwise, if there is no next parent, 

then the transformation continues with rule MatchDirectParent in conjunction 

with the next unprocessed class. If all of the classes have been checked, then the 

control is passed to rule CheckMultipleInheritance. If rule 

CompareClassAndParent finds that a class and its parent (direct indirect) are the 

same, then the transformation ends with error. The related constraint: 

          context Class inv ClassAndItsParentAreTheSame: 

          self = self.parentHelper.parent 

Condition 3. No multiple direct parents are allowed. The condition is checked by 

rule CheckMultipleInheritance. If the rule finds a match where a class has more 

than one direct parent, then the transformation terminates with error. 

Condition 4. The building blocks of software applications are components. They 

form the fundamental unit of deployment, version control, reuse, activation 

scoping and security permissions. A component is a collection of types and 

resources that are built to work in unison to form a logical unit of functionality. If 

the visibility of the class is set to 'internal', the type it defines is accessible only to 

types within the same component. The condition is checked by the rule 

CheckInternalClasses. The constraint related to this rule is: 

          context Class inv CheckInternalCondition: 

          self.Internal = true and self.neighborClasses-> 

          exists(neighborClass | neighborClass.package <> self.package) 
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Condition 5. If the 'sealed' attribute of a class is set to true, then other classes 

cannot be inherited from it. The condition is checked by rule CheckSealedClasses. 

The constraint related to this rule is: 

          context Class inv CheckSealedCondition: 

          self.Sealed = true and self.childClasses->size() > 0 

As was mentioned earlier, these conditions are aggregated into condition groups. 

The groups representing the well-formedness concerns are the syntactic well-

formedness and the semantic well-formedness groups. Syntactic well-formedness 

conditions represent the general class diagram-related conditions. However, 

semantic well-formedness conditions are related to a specific programming 

language. Unfortunately, these concerns are logically scattered across several 

transformation rules. The syntactic well-formedness concern affects the rules 

CheckEdges and CompareClassAndParent. Furthermore, the semantic well-

formedness concern affects the rules CheckMultipleInheritance, 

CheckInternalClasses and CheckSealedClasses. In the current case, these rules are 

developed based on their functional requirement, meaning they are designed 

around the functional concern. We could have designed the transformation around 

the well-formedness concerns, but in that case the rules would have crosscut the 

well-formedness conditions. In order to achieve the same functionality, 

transformation rules within a loop should be combined (e.g., with Concurrency 

Theorem [6]), and other rules should be designed in an unintuitive way. 

In conclusion, the transformation cannot be refactored into a modular design in 

which both transformation rules and well-formedness conditions are elegantly 

expressed. Therefore, within these rules we can observe valid crosscutting. 

The transformation rule CreateTable is shown in Figure 2. CreateTable works on 

the non-abstract classes and, based on them, defines tables for the resulting 

software model. The created table gets the same name based on the class. The 

table has an additional primary key column and a separate column for each class 

attribute. The rule matches the package of the class and the schema created for 

that package. Thus, the rule ensures that the table is created and inserted into the 

corresponding schema. In addition to these, CreateTable creates an edge between 

the class and its table. With the help of this edge, the subsequent rules can reach 

the right table from the class. 

In order to ensure certain properties and provide validation for the rule 

CreateTable, six different constraints are propagated to it. Because we cannot 

discuss all transformation rules, we provide statistical data. The transformation 

ClassToRDBMS contains seventeen rules. The constraint NonAbstract appears 30 

times and the constraint Abstract appears 16 times. Furthermore, the constraints 

PrimaryKey and PrimaryAndForeignKey are utilized 6 times. The constraints 

responsible for processing the associations between classes 

(OneToOneOrOneToMany and ManyToMany) are used 4 times. Gathering from 

this, the actual open issue is the repetitively appearing constraints. Further details 

of the transformation can be found in [12]. 
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Figure 2 

Transformation rule CreateTable 

The problems of crosscutting and repetitive constraints make understanding both 

the constraints and model transformation more difficult. Therefore, our goal is to 

achieve a consistent constraint management by separating constraints and weaving 

them automatically. 

3 Backgrounds 

This section introduces the Visual Modeling and Transformation System (VMTS) 

[20], which is our modeling and model transformation framework. The aspect-

oriented constructs provided by the VMTS are also discussed. These aspect-

oriented constructs are used in later sections, during the discussion of the novel 

constraint identification and weaving algorithms. 

3.1 The Visual Modeling and Transformation System 

Visual Modeling and Transformation System (VMTS) supports domain-specific 

modeling via metamodeling. Visual metamodel definitions can be extended 

through textual constraints, defined in OCL. 
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Furthermore, VMTS is a model transformation system which applies template-

based text generation and graph rewriting-based [16] model transformation. 

Templates are used to produce textual output from model definitions in an 

efficient way, while graph transformation describes transformations in a visual 

way. A set of rewriting rules define a graph transformation system. The 

applications of these rules are the elementary operations of graphs. In our 

framework, a model transformation defines the algorithm of a model processing. 

We use graph rewriting rules and a control flow graph, which specifies the 

execution order of the rules. Furthermore, VMTS makes possible the 

verification/validation of the constraints of the transformation rules. 

The results discussed in this paper, handling repetitive constraints (Section 4) and 

semi-automatic modularization of transformation constraints (Section 5), have 

been validated in VMTS as a proof-of-concept implementation. 

3.2 Managing Constraints in an Aspect-oriented Way 

This section provides an overview of aspect-oriented constraint management that 

was developed to address the problem of the crosscutting constraints in graph 

rewriting-based model transformations. Depending on the parameterization 

settings, VMTS provides certain aspect-oriented constraint notions: aspect-

oriented constraints and constraint aspects. In order to turn crosscutting 

constraints into a coherent module, they are separated from the transformation 

rules. If a separated constraint can be parameterized by types only in the constraint 

expression, it is called an aspect-oriented constraint. If a separated constraint is 

parameterized by a model structure, it is referred to as a constraint aspect. 

Subsequent sections introduce the concept of aspect-oriented constraints and 

discuss the advantages of their use in visual model transformations. 

The approach presented highlights the different role of the transformation rule 

constraints and the model constraints. Model constraints, defined in metamodels, 

should always hold for each instance of a certain metatype. However, in model 

transformation, preconditions should hold only at the beginning of the rule 

execution and postconditions at the end of the rule execution. Of course, 

metamodel constraints hold because the input and output models should be valid 

instances of the input and output metamodels; this is ensured by the tool during 

the modeling and can also be checked by the transformation. 

3.2.1 Aspect-oriented Constraints 

In VMTS, aspect-oriented constraints are OCL constraints; we separate them 

physically from transformation rules. Weaver algorithms weave them into the 

rules. The context information of the aspect-oriented constraints is used as a type-

based pointcut. This pointcut, based on the metatype information, selects the 

appropriate rule nodes. This weaving process is referred to as type-based weaving 

[12]. 
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In order to further develop the weaving procedure, we apply weaving constraints. 

A weaving constraint is similar to a property-based pointcut [7]. This is also an 

OCL constraint, which restricts the type-based weaving. Obviously, weaving 

constraint is not added to. Weaving constraints allow for the verification of 

optional conditions during the weaving process. We refer to it as constraint-based 

weaving [12]. 

The physically separated constraints require a weaver that applies type-based and 

constraint-based weaving mechanisms and facilitates the assignment of constraints 

to transformation rules. Our approach addresses the challenge of aspect-oriented 

constraint propagation with the Global Constraint Weaver (GCW) algorithm. The 

GCW algorithm is presented in Section 3.2.3. 

3.2.2 Constraint Aspects 

In order to make both the constraint weaving process and the constraint evaluation 

more efficient, we have developed the concept of Constraint Aspects. A constraint 

aspect is a model structure (pattern) to which we assign textual OCL constraints. 

This means that a constraint aspect, besides the textual conditions, also contains 

structure information, metatype, and multiplicity conditions, as well as weaving 

constraints. The structure, metatype conditions and weaving constraints are 

checked at propagation time, while the OCL constraints are validated during the 

model transformation. 

During the constraint aspect propagation, we search for topological matches 

throughout transformation rules. These matches must satisfy metatype 

requirements. Next, the weaving constraints are verified. 

In comparison, constraint aspects and aspect-oriented constraints can express the 

same conditions, but the structure of the constraint aspects makes their 

propagation to transformation rules more efficient. 

3.2.3 Constraint Weaving 

The constraint weaving is an offline method that is performed once for a 

constraint set and once for a transformation. Because of the two different notations 

of the aspectified constraints, there are also two weaver algorithms in VMTS: the 

Global Constraint Weaver (GCW) and the Constraint Aspect Weaver (CAW). The 

GCW algorithm receives the transformation rule, the aspect-oriented constraints 

and the weaving constraints as input parameters. The CAW receives the 

transformation rule and the constraint aspects as input parameters. The output of 

both weavers is the transformation rule with the propagated constraints. 

The GCW algorithm, using type-based weaving and applying weaving constraints, 

weaves the aspect-oriented constraints to the appropriate rule nodes of the 

transformation rules. The CAW algorithm, using similar methods to GCW, 

weaves constraint aspects into model transformations. 
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4 Managing Repetitive Constraints 

In our approach, model transformation-related problems concerning validation 

constraint management are separated into two groups: namely, the management of 

repetitively appearing constraints and the management of crosscutting constraints. 

This section clarifies the differences between these two types of constraints and 

discusses the methods applied for the handling of repetitive constraints. 

In software engineering, it is advisable to follow the separation of concerns [4] 

(SoC) principle. In essence, this indicates that, in dealing with complex problems, 

the only possible solution is to divide the problem into sub-problems, and then to 

solve them separately. Next, combine the partial solutions to create a complete 

solution. One type of concerns, such as rewriting rules, may smoothly be 

encapsulated within building blocks by means of conventional techniques of 

modularization and decomposition, whereas the same is not possible for other 

types. More specifically, these types crosscut the design and are therefore called 

crosscutting concerns. Because of their specialty, crosscutting concerns raise two 

significant problems: 

- The scattering problem: the design of certain concerns is scattered over many 

building blocks. 

- The tangling problem: a building block can include the design of more than 

one concern. 

Recall that in the validation of model transformations there are two concerns: the 

functionality of the transformation and the constraints ensuring the validation. 

Sometimes modularizing one of the two concerns implies that the other concern 

will crosscut the transformation, and vice versa. 

Both scattering and tangling have several negative consequences for the 

transformations they affect. However, the aim of aspect-oriented methods is to 

alleviate these problems by modularizing crosscutting concerns. Therefore, in the 

case of crosscutting constraints, aspect-oriented methods should be applied in 

order to achieve consistent constraint management. Both logically coherent 

constraints (crosscutting constraints) and repetitively appearing constraints should 

be physically maintained in a modularized manner. 

For the problem of crosscutting constraint management, a solution has been 

provided in [10] and this solution has been summarized in Section 3. Current 

section provides a novel approach for handling repetitive constraints in model 

transformations. 
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4.1 The Constraint Management Process 

As we previously stated, consistent constraint management requires a mechanism 

that supports the handling of repetitive constraints. Our approach provides the 

following methods for their management: 

- Constraints are defined independently from transformation rules. This allows 

us to maintain the constraints in a physically separated place. 

- Constraint calls are defined, along with the designation where the constraints 

should be applied. Using the generalized version of the Global Constraint 

Weaver, the approach automatically assigns the constraints to the indicated 

points of the transformation. 

In this approach, the selection of the rules, where the aspect should be propagated 

(constraint calls), is performed manually by the transformation designer. This 

method is supported by the weaver tool: the potential transformation rule nodes 

are offered for the transformation designer, who can manually select those which 

are required. 

 

Figure 3 

The process of repetitive constraint handling 
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The whole process of repetitive constraint handling, and its role in the model 

transformation, is illustrated in Figure 3. Related to this process, we have 

identified four steps: 

1 Defining and maintaining constraints and transformations. This step is 

performed by the transformation designer. 

2 Selecting the appropriate rewriting rules. This step is also completed by the 

transformation designer. The result of this step is the constraint calls that 

designate the rewriting rules where to propagate the constraints (from where 

the constraints should be called during the transformation). 

3 Propagating the constraints to the rules. This step is executed by the weaver 

component. The weaving method receives the transformation, the constraints, 

and the constraint calls. The result of the weaving process is the 

transformation definition with the assigned constraints. 

4 Executing the transformation. This step is performed by the model 

transformation engine. The inputs are the transformation definition that 

contains the constraints and the input model. The output of the model 

transformation is the generated artifact that can also be a model or optional 

text, e.g. source code. 

4.2 Generalizing the Constraint Weaving 

Based on the Global Constraint Weaver (GCW), presented in Section 3, a 

generalized constraint weaving mechanism has been developed. This Generalized 

GCW (GCW2) method supports the weaving of the following constraint 

constructs: 

- Aspect-oriented constraints driven by weaving constraints (introduced in 

Section 3). 

- Repetitive constraints driven by their constraint calls. 

In this approach, aspect-oriented constraints and repetitive constraints both 

represent constraints which are defined separately from model transformations. 

They are handled separately, because their weaving is driven by different 

constructs. The weaving of aspect-oriented constraints is supported by the 

weaving constraints, and the weaving of repetitive constraints is driven by 

constraint calls. Therefore, these two types of constraints are not mixed. 

The inputs of the GCW2 algorithm include the transformation definition, the 

aspect-oriented constraints with their weaving constraints, and the repetitive 

constraints with their constraint calls. The output of the weaver is the constrained 

transformation. Algorithm 1 depicts the pseudo code of the GCW2 algorithm. 
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Algorithm 1. Pseudo code of the GLOBALCONSTRAINTWEAVER2 algorithm 

1:   GLOBALCONSTRAINTWEAVER2 (Transformation T, ConstraintList AOCs, ConstraintList 

      weavingCs, ConstraintList repetitiveCs, ConstraintCallList constraintCalls) 

2:   for all Constraint AOC in AOCs do 

3:       for all TransformationRule R in T do 

4:          nodesWithProperMetaT ype = GETNODESBYMETATYPE (context type of AOC, R) 

5:          nodesWithProperStructure = CHECKSTRUCTURE (nodesWithProperMetaT ype, R, 

             AOC) 

6:          checkedNodes = CHECKWEAVINGCONSTRAINTS (nodesWithProperStructure, 

             weavingCs) 

7:          WEAVECONSTRAINT (AOC, checkedNodes) 

8:      end for 

9:   end for 

10: for all Constraint RC in repetitiveCs do 

11:    for all ConstraintCall CC in constraintCalls do 

12:        nodesToWeave = EVALUATECONSTRAINTCALL (CC, RC) 

13:        WEAVECONSTRAINT (RC, nodesToWeave) 

14:    end for 

15: end for 

The GCW2 algorithm is passed through a model transformation, a list of aspect-

oriented constraints, a list of weaving constraints, a list of repetitive constraints 

and a list of constraint calls. The algorithm, using type-based weaving and 

applying weaving constraints, weaves the aspect-oriented constraints to the 

appropriate nodes of the rules. Furthermore, the algorithm weaves the repetitive 

constraints to the rules designated by the constraint calls. 

The GCW2 algorithm uses a different block to manage the aspect-oriented 

constraint weaving (line 1-8) and the repetitive constraint weaving (line 9-14). In 

the first block, for each aspect-oriented constraint and transformation rule pair, the 

algorithm identifies the possible places where the constraint can be woven. It then 

checks the surrounding structures of these locations and evaluates the weaving 

constraint for the appropriate places. Finally, the constraint is woven to the correct 

rules. In the second block, for each repetitive constraint and constraint call pair, 

the algorithm decides where to weave the actual repetitive constraint, then 

performs the weaving. 

An example of a constraint that repetitively occurs in transformation 

ClassToRDBMS is the PrimaryKey constraint: 

          context Table inv PrimaryKey: 

          self.columns->exists(c | c.datatype = 'int' and c.is_primary_key) 
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The constraint call used to propagate the constraint PrimaryKey is the following: 

          ConstraintCall_PrimaryKey {constraint: PrimaryKey, rules:  

          CreateTable (Table), CreateParentClassHelper (Table), AddParentAssociation (Table), 

          ProcessAssociations (Table1, Table2)} 

The constraint call definition is named and contains a constraint reference 

(PrimaryKey) and an optional number of rule references. The enlisted rule names 

indicate from where the repetitive constraint should be called. The node names, 

following the rule names, are the parameters of the constraint calls. They 

designate where the exact rule nodes call the constraints. 

The proposed method for handling repetitive constraints facilitates the definition 

of constraints independent of transformation rules and designates the rewriting 

rules, i.e., where to apply them. The approach automatically weaves the 

constraints to the designated points in the transformation. The benefit of this 

approach is that the constraints are maintained in one place and in one copy. 

Furthermore, our method supports a better understanding of both the 

transformations and constraints. 

This section introduced the GCW2 algorithm, which facilitates the constraint 

weaving driven by both weaving constraints and manually defined constraint calls. 

The next section discusses the method to modularize transformation constraints if 

they already exist in model transformations. 

5 Semi-Automatic Modularization of Transformation 

Constraints 

In [12], a mechanism is introduced for systematically identifying crosscutting 

constraints. This section provides a generalized, semi-automatic method for 

modularizing both repetitive and crosscutting constraints. 

In model transformations, some validation or other concerns can be expressed by 

several constraints. These concerns (expressed by more than one constraint) are 

the source of the crosscutting. In our approach, transformation designers can 

aggregate constraints into groups, in which each group represents a concern. The 

examples provided are the syntactic well-formedness and the semantic well-

formedness groups. 

          Group_SyntacticWellFormedness {DanglingEdges1, DanglingEdges2, 

          ClassAndItsParentAreTheSame} 

          Group_SemanticWellFormedness {MultipleInheritance, CheckInternalCondition, 

          CheckSealedCondition} 
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The inputs of the modularization method are the transformation itself and the 

grouping definitions. The expected outputs are the modularized constraints and the 

constraint calls that support the weaving process. The tasks required by the 

modularization method are as follows: 

1. Collect the constraints from the transformation. 

2. Identify the crosscutting constraints. 

3. Identify the repetitive constraints. 

4. Extract the crosscutting constraints as aspects, and generate the constraint 

calls to support their weaving. 

5. Extract the repetitive constraints as aspects, and generate the constraint calls 

to support their weaving. 

In Step 2, the identification of crosscutting concerns is supported by the grouping 

definition. The algorithm checks whether the semantically coherent concerns are, 

physically, in the same rule or scattered across several rules. Concerns represented 

by single constraints cannot crosscut the transformations, but if they appear 

several times they are classified as repetitive constraints. 

The crosscutting constraint identification method, presented in [12], provides the 

coloring and extracting algorithms. These algorithms have been updated to 

support both the repetitive and crosscutting constraint modularization in a general 

way. Based on the groups and the identified concerns, the reworked coloring 

algorithm assigns different colors to the constraints of the transformation. The 

automatic concern identification also accounts for the constraints not appearing in 

any of the user defined groups. In the output of the coloring algorithm, each color 

represents a concern. These concerns should be modularized. After the coloring, 

the extracting algorithm creates aspects from crosscutting and repetitive 

constraints, as well as generates the constraint call definitions. 

The subsequent sections elaborate upon the algorithms, and their operation is 

illustrated with the help of our case study. 

5.1 Generalized Coloring Algorithm 

The algorithm receives the transformation with its constraints and the grouping 

definitions. The expected result is a concern list and a coloring table which 

provides the transformation rule and affected concern relations. 

A concern is represented by a color and can be an optional condition or property 

expressed by one (simple) or several constraints. Examples of this include: the 

well-formedness concerns of our case study, as well as more simplified versions, 

namely, those including an attribute value or the existence of adjacent nodes of a 

specific type. 
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Algorithm 2 shows the pseudo code of the COLORING algorithm. The model 

transformation T and its corresponding groups are passed to the algorithm. The 

algorithm creates a list of rule-constraint pairs. These contain each transformation 

rule-constraint pair assignment, defined in transformation T. Based on their rule 

constraint pair assignment, the algorithm identifies the crosscutting concerns for 

each group (line 4). Next, the coloring table is updated with the actual group 

information, even if there exists no crosscutting related to the actual group. Then, 

the algorithm creates a concern (constraint) list (line 7) in which each member of 

the list represents a separated concern. This means that, if a constraint in the 

transformation contains more than one concern, the constraint is decomposed into 

several constraints. Therefore, more than one list member is created from such 

constraints. Groups are also added to the constraint list. Based on the list of 

constraint, the algorithm identifies repetitive constraints (line 9) and updates the 

coloring table accordingly. 

Algorithm 2. Pseudo code of the COLORING algorithm 

1:   COLORING (Transformation T, GroupList groups) 

2:   ColoringTable coloringTable = new ColoringTable(); 

3:   RuleConstraintPairList ruleConstraintPairs = COLLECTRULECONSTRAINTPAIRS (T) 

4:   for all Group G in groups do 

5:       CrosscuttingList crosscuttings = IDENTIFYCROSSCUTTING (G, ruleConstraintPairs) 

6:       UPDATECOLORINGTABLE (G, ruleConstraintPairs, crosscuttings) 

7:   end for 

8:   ConcernList concerns = COLLECTSEPARATEDCONCERNCONSTRAINTS (T) 

9:   for all Constraint C in constraints do 

10:     ConstraintList repetitives = IDENTIFYREPETITIVECONSTRAINTS (C, concerns) 

11:     UPDATECOLORINGTABLE (C, constraints, repetitives) 

12: end for 

5.2 Generalized Constraint Extracting Algorithm 

The algorithm receives the model transformation and the results of the coloring 

algorithm. The results of the algorithm are the modularized constraints and the 

constraint calls supporting the weaving. 

The algorithm creates the modularized constraints based on the provided concern 

list. The group concerns are handled in a different way from simple constraints or 

constraint part concerns: each member of the group concern is modularized into a 

different constraint. The second part of the extracting algorithm creates the 

constraint calls both for crosscutting and repetitive constraints. These constraint 

calls contain the exact list of the rules from which they should be called. In 
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general, for modularized crosscutting constraints (aspects) we prefer to use 

weaving constraints instead of the constraint calls. This is because with weaving 

constraints more complex conditions can be defined, and this type of weaving 

definition is used when defining these artifacts manually. In the current case, the 

artifacts are created by the extracting algorithm. Our aim is to provide a simple 

method that modularizes the concerns and creates such weaving artifacts that can 

reproduce the original transformation, exactly. Therefore, creating constraint calls 

for crosscutting constraints is the correct decision. 

Algorithm 3. Pseudo code of the EXTRACTING algorithm 

1:   EXTRACTING (Transformation T, ConcernList concerns, ColoringTable coloringTable) 

2:   ConstraintList modularizedConstraints = new ConstraintList () 

3:   for all Concern groupConcern in concerns.GroupConcerns do 

4:       for all Constraint C in groupConcern do 

5:           modularizedConstraints.Add (C) 

6:       end for 

7:   end for 

8:   for all Concern nonGroupConcern in concerns.NonGroupConcerns do 

9:       modularizedConstraints.Add (nonGroupConcern.Constraint) 

10: end for 

11: ConstraintCallList constraintCalls = new ConstraintCallList() 

12: for all ColoringItem coloringItem in coloringTable do 

13:     ConstraintCall constraintCall = CreateConstraintCall(coloringItem, T) 

14:     constraintCalls.Add (constraintCall) 

15: end for 

The EXTRACTING algorithm receives transformation T, the concerns identified by 

the COLORING algorithm and the coloringTable. The algorithm processes the 

concerns in two blocks. In the first block, the group concerns 

(SyntacticWellFormedness and SemanticWellFormedness) are processed; each 

constraint, although related to the group, is independent and is added to the 

modularized constraint list (line 2-6). In the second block, the constraints of the 

non-group concerns are processed: simple constraints and constraint parts (line 7-

9). Next, using the coloring table (transformation rule - constraint mappings), the 

algorithm creates the constraint calls for each constraint. 

Conclusions 

We have discussed that in graph rewriting-based model transformations, the two 

main concerns are functionality, defined by the transformation rules, and the 

validation properties, expressed through constraints. Concerning model 

transformations, we have introduced the problem of repetitive and crosscutting 
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constraints. We have identified the difference between repetitive and crosscutting 

constraints. We have shown that, in certain cases, crosscutting cannot be 

eliminated, but it can be solved by applying aspect-oriented mechanisms. We have 

briefly summarized our previous results related to aspect-oriented constraint 

management in model transformations. As a novel contribution, we have provided 

a mechanism for handling repetitive constraints. Unifying their treatment, we have 

developed a generalized method with its algorithms for semi-automatic 

modularization of repetitive and crosscutting constraints in model transformations. 

The disadvantage of the repetitive constraint management approach regard is its 

being based on manual decisions: the transformation designer should designate the 

points where a constraint call should be applied. Therefore, the designer can miss 

some constraint call definitions, which would result in unexpected behavior of the 

transformation execution, especially in the case of complex transformations. The 

introduced approach has an UML-compliant notation that is easy to use and 

simple to understand. 
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