
Acta Polytechnica Hungarica Vol. 10, No. 1, 2013

 – 101 –

Modularized Constraint Management in Model

Transformation Frameworks

László Lengyel

Department of Automation and Applied Informatics

Budapest University of Technology and Economics

Magyar tudósok körútja 2, H-1117 Budapest, Hungary

lengyel@aut.bme.com

Abstract: Model-based development methods are increasingly being applied in the

production of software artifacts. The processing of visual models, within these frameworks,

is an essential issue that can be addressed using graph rewriting techniques. The precise

definition of graph rewriting-based model transformation requires that beyond the

topology of the rules, further textual constraints be added. These constraints often appear

repetitively in a transformation; therefore, constraint concerns crosscut the transformation.

It is useful to define often applied constraints as physically separated modules and indicate

the places where to use them. This effort provides solutions to structuring, modularizing

and propagating repetitively occurring and crosscutting constraints. We propose an

aspect-oriented approach that allows for consistent constraint management, in which

repetitive and crosscutting constraints can be semi-automatically identified.

Keywords: Aspect-oriented constraints; Constraint aspects; Constraint modularization;

Graph rewriting

1 Introduction

Model-based software development [13] [18] applies different software models

during system development. Model-based approaches highlight the relevance of

model-driven methods in the software industry. They facilitate defining the

applications with software models and automatically transform them into

executable artifacts.

Model transformations appear in various situations in application development

[2]. Graph rewriting is a widely utilized technique for model transformation [8]

[9] [19]. Model transformations, like all software, must be validated to ensure

their usefulness for each intended application. In [10] [11], an approach has been

introduced for validating model transformation that applies Object Constraint

Language (OCL) [14]. Constraints are the pre- and post-conditions of

L. Lengyel Modularized Constraint Management in Model Transformation Frameworks

 – 102 –

transformation rules. OCL as a constraint and query language in software

modeling is an effective way to define textual constraints [3] [5]. We have already

demonstrated that it can also be utilized in model transformation definitions [15].

Often we require the validation of several rules or whole transformations, which

may cause the same constraint concerns to appear numerous times in a

transformation. Regarding this recurrence of constraint concerns, it is beneficial to

distinguish between the classical constraint repetition and the crosscutting

constraints. According to [17], the definition for the term concern is "any matter

of interest in a software system".

The classical constraint repetition is similar to the frequently appearing lines of

program code in a source file (also known as code clones). In the source code

domain, this problem is handled with program segmentation. In most cases, it is

implemented with functions; the recurring lines of source code are placed into a

function and the function is then called from the appropriate position. This method

can be applied to model transformation constraints as well. This can be achieved

by extracting the repetitive constraints into separated components and, similarly to

function calls, manually designating the points in the model transformation in

which they will be applied.

Regarding crosscutting concerns, the situation is significantly different. As

opposed to repetitions, crosscutting concerns of a design cannot be modularly

separated. If a concern attempts to decompose, according to a specified design

principle, other concerns will crosscut this decomposition. This implies that

crosscutting is relative to each particular decomposition.

To summarize crosscutting concerns, there is no way to achieve a modular design.

In the case of repetitive constraints, consistent constraint management is difficult.

In order to mitigate these issues, our aim is to physically separate the different

concerns, namely the structure of the transformation rules and constraints, and

design them separately. Next, using a weaving mechanism, we generate the

executable artifact that combines the two concerns. This generated representation,

containing both repetitive and crosscutting constraints, is similar to a binary file

compiled from source code and is not edited by the transformation engineer.

Therefore, no problems arise, despite the generated artifact concerns not being

separated.

The approach presented in this paper provides solutions for both repetitive and

crosscutting constraints. Our previous works [10] [12] have already introduced the

problem of crosscutting constraints in model transformations. In order for this

paper to be self-contained, we briefly summarize the constructs and methods we

have developed for crosscutting constraint management in model transformations.

The novel results provided by this paper are: (i) the distinction of repetitive and

crosscutting constraints in model transformations, (ii) the mechanism that handles

the repetitive constraints and (iii) a generalized, semi-automatic identification of

repetitive and crosscutting constraints.

Acta Polytechnica Hungarica Vol. 10, No. 1, 2013

 – 103 –

With the help of a case study, the next section introduces the problem of repetitive

and crosscutting constraints in model transformations. Section 3 gives background

information about our model transformation framework and introduces the

approach developed for managing crosscutting constraints. In Section 4, we

identify the difference between repetitive and crosscutting constraints and discuss

the handling of repetitive constraints in model transformations. Section 5 provides

a generalized method for semi-automatic detection of repetitive and crosscutting

constraints. Finally, concluding remarks are elaborated.

2 Constraint Management Problems in Model

Transformations

Graph rewriting [16] is a widely applied technique for graph transformation. The

basic elements of graph transformations are graph rewriting rules. Each rule

consists of a left-hand side graph (LHS) and right-hand side graph (RHS).

Initially, performing a rule requires locating an occurrence (match) in which the

rule is applied on the LHS of a graph and replacing this pattern with the RHS. In

most model transformation tools, the LHS and RHS of the rules are defined via

pattern language [1] [8] [9]. In this case, the structure defined by the pattern

language must be found, not an isomorphic occurrence.

A precondition assigned to a transformation rule is a Boolean expression that must

hold at the moment the rule is fired. A postcondition assigned to a transformation

rule is a Boolean expression that must hold after the completion of the rule. If a

precondition of a transformation rule is invalid, then the rule fails without being

fired. If a postcondition of a transformation rule is invalid after the execution of

the rule, then the transformation rule fails. OCL expressions in model

transformation rules correlate with it: in the LHS of a transformation rule they

represent preconditions, and in the RHS, OCL expressions are postconditions [10].

The dominant decomposition of model transformations provides the functional

behavior. The additional constraints ensure the correctness of certain

transformation properties. These constraints are responsible for correctness, but

often they are treated with secondary importance. They are applied repetitively

and in several cases crosscut the transformation. Therefore, it is difficult for the

designer to perform the intuitive activities required to verify the transformation.

In order to illustrate the issue of repetitive and crosscutting constraints, a case

study is introduced. In [12], a variation of the "class model to relational database

management system (RDBMS)” model transformation (also referred to as object-

relational mapping) [19] is presented. In Figure 1, using the concrete syntax of our

model transformation environment (VMTS, Section 3.1), the control flow model

of the transformation is presented.

L. Lengyel Modularized Constraint Management in Model Transformation Frameworks

 – 104 –

Figure 1

The control flow model of the transformation ClassToRDBMS

This model is a stereotypical activity diagram, in which each activity represents a

rule. According to the goal of the units, the model can be divided into four parts:

(i) The rules CheckEdges, MatchDirectParent, CompareClassAndParent,

MatchNextParent, CheckMultipleInheritance, CheckInternalClasses,

CheckSealedClasses verify the input model. (ii) The rule CreateSchemas and the

substantial loop in the middle (CreateTable, CreateParentClassHelper,

AddParentAssociation, ShiftParentClassHelper, DeleteParentClassHelper) are

responsible for the schema and table creation as well as inheritance-related issues.

(iii) The rule ProcessAssociations processes the associations. (iv) Finally, the last

three rules remove the helper nodes and temporary associations.

In the control flow model, some rules have two outgoing edges. If a rule is

successful, then the control is passed via the solid line; otherwise, the dashed line

is used. For example, the first rule (CheckEdges) is successful if there is at least

one dangling edge in the input model. Therefore, the solid outgoing line goes to

the end node, because dangling edges are not permitted. If the rule CheckEdges

was unsuccessful, then the control is passed to rule MatchDirectParent.

The first seven transformation rules verify five class diagram-related conditions.

We differentiate between class diagram-related conditions that are general

language-independent conditions (Conditions 1 and 2), and specific programming

Acta Polytechnica Hungarica Vol. 10, No. 1, 2013

 – 105 –

language (Conditions 3, 4 and 5). These condition groups form our well-

formedness concerns.

Condition 1. Each association and inheritance edge should connect two nodes

because no dangling edges are allowed in class diagrams. This condition is

checked by rule CheckEdges. The constraints related to this condition are as

follows:

 context Association inv DanglingEdges1:

 self.LeftNodeID is NULL or self.RightNodeID is NULL

 context Inheritance inv DanglingEdges2:

 self.LeftNodeID is NULL or self.RightNodeID is NULL

Condition 2. The 'no directed inheritance loop is allowed' condition is checked

by rules MatchDirectParent, CompareClassAndParent, and MatchNextParent.

The rule MatchDirectParent selects a class yet to be processed, marks it, then

matches its direct parent class. Rule CompareClassAndParent verifies that the

class marked by a previous rule and actual parent class are not the same. The rule

MatchNextParent matches the direct parent of the actual class. If the rule has

successfully found the next parent, the control is passed to the rule

CompareClassAndParent, where the originally marked class, the recently found

parent, and the actual parent are compared. Otherwise, if there is no next parent,

then the transformation continues with rule MatchDirectParent in conjunction

with the next unprocessed class. If all of the classes have been checked, then the

control is passed to rule CheckMultipleInheritance. If rule

CompareClassAndParent finds that a class and its parent (direct indirect) are the

same, then the transformation ends with error. The related constraint:

 context Class inv ClassAndItsParentAreTheSame:

 self = self.parentHelper.parent

Condition 3. No multiple direct parents are allowed. The condition is checked by

rule CheckMultipleInheritance. If the rule finds a match where a class has more

than one direct parent, then the transformation terminates with error.

Condition 4. The building blocks of software applications are components. They

form the fundamental unit of deployment, version control, reuse, activation

scoping and security permissions. A component is a collection of types and

resources that are built to work in unison to form a logical unit of functionality. If

the visibility of the class is set to 'internal', the type it defines is accessible only to

types within the same component. The condition is checked by the rule

CheckInternalClasses. The constraint related to this rule is:

 context Class inv CheckInternalCondition:

 self.Internal = true and self.neighborClasses->

 exists(neighborClass | neighborClass.package <> self.package)

L. Lengyel Modularized Constraint Management in Model Transformation Frameworks

 – 106 –

Condition 5. If the 'sealed' attribute of a class is set to true, then other classes

cannot be inherited from it. The condition is checked by rule CheckSealedClasses.

The constraint related to this rule is:

 context Class inv CheckSealedCondition:

 self.Sealed = true and self.childClasses->size() > 0

As was mentioned earlier, these conditions are aggregated into condition groups.

The groups representing the well-formedness concerns are the syntactic well-

formedness and the semantic well-formedness groups. Syntactic well-formedness

conditions represent the general class diagram-related conditions. However,

semantic well-formedness conditions are related to a specific programming

language. Unfortunately, these concerns are logically scattered across several

transformation rules. The syntactic well-formedness concern affects the rules

CheckEdges and CompareClassAndParent. Furthermore, the semantic well-

formedness concern affects the rules CheckMultipleInheritance,

CheckInternalClasses and CheckSealedClasses. In the current case, these rules are

developed based on their functional requirement, meaning they are designed

around the functional concern. We could have designed the transformation around

the well-formedness concerns, but in that case the rules would have crosscut the

well-formedness conditions. In order to achieve the same functionality,

transformation rules within a loop should be combined (e.g., with Concurrency

Theorem [6]), and other rules should be designed in an unintuitive way.

In conclusion, the transformation cannot be refactored into a modular design in

which both transformation rules and well-formedness conditions are elegantly

expressed. Therefore, within these rules we can observe valid crosscutting.

The transformation rule CreateTable is shown in Figure 2. CreateTable works on

the non-abstract classes and, based on them, defines tables for the resulting

software model. The created table gets the same name based on the class. The

table has an additional primary key column and a separate column for each class

attribute. The rule matches the package of the class and the schema created for

that package. Thus, the rule ensures that the table is created and inserted into the

corresponding schema. In addition to these, CreateTable creates an edge between

the class and its table. With the help of this edge, the subsequent rules can reach

the right table from the class.

In order to ensure certain properties and provide validation for the rule

CreateTable, six different constraints are propagated to it. Because we cannot

discuss all transformation rules, we provide statistical data. The transformation

ClassToRDBMS contains seventeen rules. The constraint NonAbstract appears 30

times and the constraint Abstract appears 16 times. Furthermore, the constraints

PrimaryKey and PrimaryAndForeignKey are utilized 6 times. The constraints

responsible for processing the associations between classes

(OneToOneOrOneToMany and ManyToMany) are used 4 times. Gathering from

this, the actual open issue is the repetitively appearing constraints. Further details

of the transformation can be found in [12].

Acta Polytechnica Hungarica Vol. 10, No. 1, 2013

 – 107 –

Figure 2

Transformation rule CreateTable

The problems of crosscutting and repetitive constraints make understanding both

the constraints and model transformation more difficult. Therefore, our goal is to

achieve a consistent constraint management by separating constraints and weaving

them automatically.

3 Backgrounds

This section introduces the Visual Modeling and Transformation System (VMTS)

[20], which is our modeling and model transformation framework. The aspect-

oriented constructs provided by the VMTS are also discussed. These aspect-

oriented constructs are used in later sections, during the discussion of the novel

constraint identification and weaving algorithms.

3.1 The Visual Modeling and Transformation System

Visual Modeling and Transformation System (VMTS) supports domain-specific

modeling via metamodeling. Visual metamodel definitions can be extended

through textual constraints, defined in OCL.

L. Lengyel Modularized Constraint Management in Model Transformation Frameworks

 – 108 –

Furthermore, VMTS is a model transformation system which applies template-

based text generation and graph rewriting-based [16] model transformation.

Templates are used to produce textual output from model definitions in an

efficient way, while graph transformation describes transformations in a visual

way. A set of rewriting rules define a graph transformation system. The

applications of these rules are the elementary operations of graphs. In our

framework, a model transformation defines the algorithm of a model processing.

We use graph rewriting rules and a control flow graph, which specifies the

execution order of the rules. Furthermore, VMTS makes possible the

verification/validation of the constraints of the transformation rules.

The results discussed in this paper, handling repetitive constraints (Section 4) and

semi-automatic modularization of transformation constraints (Section 5), have

been validated in VMTS as a proof-of-concept implementation.

3.2 Managing Constraints in an Aspect-oriented Way

This section provides an overview of aspect-oriented constraint management that

was developed to address the problem of the crosscutting constraints in graph

rewriting-based model transformations. Depending on the parameterization

settings, VMTS provides certain aspect-oriented constraint notions: aspect-

oriented constraints and constraint aspects. In order to turn crosscutting

constraints into a coherent module, they are separated from the transformation

rules. If a separated constraint can be parameterized by types only in the constraint

expression, it is called an aspect-oriented constraint. If a separated constraint is

parameterized by a model structure, it is referred to as a constraint aspect.

Subsequent sections introduce the concept of aspect-oriented constraints and

discuss the advantages of their use in visual model transformations.

The approach presented highlights the different role of the transformation rule

constraints and the model constraints. Model constraints, defined in metamodels,

should always hold for each instance of a certain metatype. However, in model

transformation, preconditions should hold only at the beginning of the rule

execution and postconditions at the end of the rule execution. Of course,

metamodel constraints hold because the input and output models should be valid

instances of the input and output metamodels; this is ensured by the tool during

the modeling and can also be checked by the transformation.

3.2.1 Aspect-oriented Constraints

In VMTS, aspect-oriented constraints are OCL constraints; we separate them

physically from transformation rules. Weaver algorithms weave them into the

rules. The context information of the aspect-oriented constraints is used as a type-

based pointcut. This pointcut, based on the metatype information, selects the

appropriate rule nodes. This weaving process is referred to as type-based weaving

[12].

Acta Polytechnica Hungarica Vol. 10, No. 1, 2013

 – 109 –

In order to further develop the weaving procedure, we apply weaving constraints.

A weaving constraint is similar to a property-based pointcut [7]. This is also an

OCL constraint, which restricts the type-based weaving. Obviously, weaving

constraint is not added to. Weaving constraints allow for the verification of

optional conditions during the weaving process. We refer to it as constraint-based

weaving [12].

The physically separated constraints require a weaver that applies type-based and

constraint-based weaving mechanisms and facilitates the assignment of constraints

to transformation rules. Our approach addresses the challenge of aspect-oriented

constraint propagation with the Global Constraint Weaver (GCW) algorithm. The

GCW algorithm is presented in Section 3.2.3.

3.2.2 Constraint Aspects

In order to make both the constraint weaving process and the constraint evaluation

more efficient, we have developed the concept of Constraint Aspects. A constraint

aspect is a model structure (pattern) to which we assign textual OCL constraints.

This means that a constraint aspect, besides the textual conditions, also contains

structure information, metatype, and multiplicity conditions, as well as weaving

constraints. The structure, metatype conditions and weaving constraints are

checked at propagation time, while the OCL constraints are validated during the

model transformation.

During the constraint aspect propagation, we search for topological matches

throughout transformation rules. These matches must satisfy metatype

requirements. Next, the weaving constraints are verified.

In comparison, constraint aspects and aspect-oriented constraints can express the

same conditions, but the structure of the constraint aspects makes their

propagation to transformation rules more efficient.

3.2.3 Constraint Weaving

The constraint weaving is an offline method that is performed once for a

constraint set and once for a transformation. Because of the two different notations

of the aspectified constraints, there are also two weaver algorithms in VMTS: the

Global Constraint Weaver (GCW) and the Constraint Aspect Weaver (CAW). The

GCW algorithm receives the transformation rule, the aspect-oriented constraints

and the weaving constraints as input parameters. The CAW receives the

transformation rule and the constraint aspects as input parameters. The output of

both weavers is the transformation rule with the propagated constraints.

The GCW algorithm, using type-based weaving and applying weaving constraints,

weaves the aspect-oriented constraints to the appropriate rule nodes of the

transformation rules. The CAW algorithm, using similar methods to GCW,

weaves constraint aspects into model transformations.

L. Lengyel Modularized Constraint Management in Model Transformation Frameworks

 – 110 –

4 Managing Repetitive Constraints

In our approach, model transformation-related problems concerning validation

constraint management are separated into two groups: namely, the management of

repetitively appearing constraints and the management of crosscutting constraints.

This section clarifies the differences between these two types of constraints and

discusses the methods applied for the handling of repetitive constraints.

In software engineering, it is advisable to follow the separation of concerns [4]

(SoC) principle. In essence, this indicates that, in dealing with complex problems,

the only possible solution is to divide the problem into sub-problems, and then to

solve them separately. Next, combine the partial solutions to create a complete

solution. One type of concerns, such as rewriting rules, may smoothly be

encapsulated within building blocks by means of conventional techniques of

modularization and decomposition, whereas the same is not possible for other

types. More specifically, these types crosscut the design and are therefore called

crosscutting concerns. Because of their specialty, crosscutting concerns raise two

significant problems:

- The scattering problem: the design of certain concerns is scattered over many

building blocks.

- The tangling problem: a building block can include the design of more than

one concern.

Recall that in the validation of model transformations there are two concerns: the

functionality of the transformation and the constraints ensuring the validation.

Sometimes modularizing one of the two concerns implies that the other concern

will crosscut the transformation, and vice versa.

Both scattering and tangling have several negative consequences for the

transformations they affect. However, the aim of aspect-oriented methods is to

alleviate these problems by modularizing crosscutting concerns. Therefore, in the

case of crosscutting constraints, aspect-oriented methods should be applied in

order to achieve consistent constraint management. Both logically coherent

constraints (crosscutting constraints) and repetitively appearing constraints should

be physically maintained in a modularized manner.

For the problem of crosscutting constraint management, a solution has been

provided in [10] and this solution has been summarized in Section 3. Current

section provides a novel approach for handling repetitive constraints in model

transformations.

Acta Polytechnica Hungarica Vol. 10, No. 1, 2013

 – 111 –

4.1 The Constraint Management Process

As we previously stated, consistent constraint management requires a mechanism

that supports the handling of repetitive constraints. Our approach provides the

following methods for their management:

- Constraints are defined independently from transformation rules. This allows

us to maintain the constraints in a physically separated place.

- Constraint calls are defined, along with the designation where the constraints

should be applied. Using the generalized version of the Global Constraint

Weaver, the approach automatically assigns the constraints to the indicated

points of the transformation.

In this approach, the selection of the rules, where the aspect should be propagated

(constraint calls), is performed manually by the transformation designer. This

method is supported by the weaver tool: the potential transformation rule nodes

are offered for the transformation designer, who can manually select those which

are required.

Figure 3

The process of repetitive constraint handling

L. Lengyel Modularized Constraint Management in Model Transformation Frameworks

 – 112 –

The whole process of repetitive constraint handling, and its role in the model

transformation, is illustrated in Figure 3. Related to this process, we have

identified four steps:

1 Defining and maintaining constraints and transformations. This step is

performed by the transformation designer.

2 Selecting the appropriate rewriting rules. This step is also completed by the

transformation designer. The result of this step is the constraint calls that

designate the rewriting rules where to propagate the constraints (from where

the constraints should be called during the transformation).

3 Propagating the constraints to the rules. This step is executed by the weaver

component. The weaving method receives the transformation, the constraints,

and the constraint calls. The result of the weaving process is the

transformation definition with the assigned constraints.

4 Executing the transformation. This step is performed by the model

transformation engine. The inputs are the transformation definition that

contains the constraints and the input model. The output of the model

transformation is the generated artifact that can also be a model or optional

text, e.g. source code.

4.2 Generalizing the Constraint Weaving

Based on the Global Constraint Weaver (GCW), presented in Section 3, a

generalized constraint weaving mechanism has been developed. This Generalized

GCW (GCW2) method supports the weaving of the following constraint

constructs:

- Aspect-oriented constraints driven by weaving constraints (introduced in

Section 3).

- Repetitive constraints driven by their constraint calls.

In this approach, aspect-oriented constraints and repetitive constraints both

represent constraints which are defined separately from model transformations.

They are handled separately, because their weaving is driven by different

constructs. The weaving of aspect-oriented constraints is supported by the

weaving constraints, and the weaving of repetitive constraints is driven by

constraint calls. Therefore, these two types of constraints are not mixed.

The inputs of the GCW2 algorithm include the transformation definition, the

aspect-oriented constraints with their weaving constraints, and the repetitive

constraints with their constraint calls. The output of the weaver is the constrained

transformation. Algorithm 1 depicts the pseudo code of the GCW2 algorithm.

Acta Polytechnica Hungarica Vol. 10, No. 1, 2013

 – 113 –

Algorithm 1. Pseudo code of the GLOBALCONSTRAINTWEAVER2 algorithm

1: GLOBALCONSTRAINTWEAVER2 (Transformation T, ConstraintList AOCs, ConstraintList

 weavingCs, ConstraintList repetitiveCs, ConstraintCallList constraintCalls)

2: for all Constraint AOC in AOCs do

3: for all TransformationRule R in T do

4: nodesWithProperMetaT ype = GETNODESBYMETATYPE (context type of AOC, R)

5: nodesWithProperStructure = CHECKSTRUCTURE (nodesWithProperMetaT ype, R,

 AOC)

6: checkedNodes = CHECKWEAVINGCONSTRAINTS (nodesWithProperStructure,

 weavingCs)

7: WEAVECONSTRAINT (AOC, checkedNodes)

8: end for

9: end for

10: for all Constraint RC in repetitiveCs do

11: for all ConstraintCall CC in constraintCalls do

12: nodesToWeave = EVALUATECONSTRAINTCALL (CC, RC)

13: WEAVECONSTRAINT (RC, nodesToWeave)

14: end for

15: end for

The GCW2 algorithm is passed through a model transformation, a list of aspect-

oriented constraints, a list of weaving constraints, a list of repetitive constraints

and a list of constraint calls. The algorithm, using type-based weaving and

applying weaving constraints, weaves the aspect-oriented constraints to the

appropriate nodes of the rules. Furthermore, the algorithm weaves the repetitive

constraints to the rules designated by the constraint calls.

The GCW2 algorithm uses a different block to manage the aspect-oriented

constraint weaving (line 1-8) and the repetitive constraint weaving (line 9-14). In

the first block, for each aspect-oriented constraint and transformation rule pair, the

algorithm identifies the possible places where the constraint can be woven. It then

checks the surrounding structures of these locations and evaluates the weaving

constraint for the appropriate places. Finally, the constraint is woven to the correct

rules. In the second block, for each repetitive constraint and constraint call pair,

the algorithm decides where to weave the actual repetitive constraint, then

performs the weaving.

An example of a constraint that repetitively occurs in transformation

ClassToRDBMS is the PrimaryKey constraint:

 context Table inv PrimaryKey:

 self.columns->exists(c | c.datatype = 'int' and c.is_primary_key)

L. Lengyel Modularized Constraint Management in Model Transformation Frameworks

 – 114 –

The constraint call used to propagate the constraint PrimaryKey is the following:

 ConstraintCall_PrimaryKey {constraint: PrimaryKey, rules:

 CreateTable (Table), CreateParentClassHelper (Table), AddParentAssociation (Table),

 ProcessAssociations (Table1, Table2)}

The constraint call definition is named and contains a constraint reference

(PrimaryKey) and an optional number of rule references. The enlisted rule names

indicate from where the repetitive constraint should be called. The node names,

following the rule names, are the parameters of the constraint calls. They

designate where the exact rule nodes call the constraints.

The proposed method for handling repetitive constraints facilitates the definition

of constraints independent of transformation rules and designates the rewriting

rules, i.e., where to apply them. The approach automatically weaves the

constraints to the designated points in the transformation. The benefit of this

approach is that the constraints are maintained in one place and in one copy.

Furthermore, our method supports a better understanding of both the

transformations and constraints.

This section introduced the GCW2 algorithm, which facilitates the constraint

weaving driven by both weaving constraints and manually defined constraint calls.

The next section discusses the method to modularize transformation constraints if

they already exist in model transformations.

5 Semi-Automatic Modularization of Transformation

Constraints

In [12], a mechanism is introduced for systematically identifying crosscutting

constraints. This section provides a generalized, semi-automatic method for

modularizing both repetitive and crosscutting constraints.

In model transformations, some validation or other concerns can be expressed by

several constraints. These concerns (expressed by more than one constraint) are

the source of the crosscutting. In our approach, transformation designers can

aggregate constraints into groups, in which each group represents a concern. The

examples provided are the syntactic well-formedness and the semantic well-

formedness groups.

 Group_SyntacticWellFormedness {DanglingEdges1, DanglingEdges2,

 ClassAndItsParentAreTheSame}

 Group_SemanticWellFormedness {MultipleInheritance, CheckInternalCondition,

 CheckSealedCondition}

Acta Polytechnica Hungarica Vol. 10, No. 1, 2013

 – 115 –

The inputs of the modularization method are the transformation itself and the

grouping definitions. The expected outputs are the modularized constraints and the

constraint calls that support the weaving process. The tasks required by the

modularization method are as follows:

1. Collect the constraints from the transformation.

2. Identify the crosscutting constraints.

3. Identify the repetitive constraints.

4. Extract the crosscutting constraints as aspects, and generate the constraint

calls to support their weaving.

5. Extract the repetitive constraints as aspects, and generate the constraint calls

to support their weaving.

In Step 2, the identification of crosscutting concerns is supported by the grouping

definition. The algorithm checks whether the semantically coherent concerns are,

physically, in the same rule or scattered across several rules. Concerns represented

by single constraints cannot crosscut the transformations, but if they appear

several times they are classified as repetitive constraints.

The crosscutting constraint identification method, presented in [12], provides the

coloring and extracting algorithms. These algorithms have been updated to

support both the repetitive and crosscutting constraint modularization in a general

way. Based on the groups and the identified concerns, the reworked coloring

algorithm assigns different colors to the constraints of the transformation. The

automatic concern identification also accounts for the constraints not appearing in

any of the user defined groups. In the output of the coloring algorithm, each color

represents a concern. These concerns should be modularized. After the coloring,

the extracting algorithm creates aspects from crosscutting and repetitive

constraints, as well as generates the constraint call definitions.

The subsequent sections elaborate upon the algorithms, and their operation is

illustrated with the help of our case study.

5.1 Generalized Coloring Algorithm

The algorithm receives the transformation with its constraints and the grouping

definitions. The expected result is a concern list and a coloring table which

provides the transformation rule and affected concern relations.

A concern is represented by a color and can be an optional condition or property

expressed by one (simple) or several constraints. Examples of this include: the

well-formedness concerns of our case study, as well as more simplified versions,

namely, those including an attribute value or the existence of adjacent nodes of a

specific type.

L. Lengyel Modularized Constraint Management in Model Transformation Frameworks

 – 116 –

Algorithm 2 shows the pseudo code of the COLORING algorithm. The model

transformation T and its corresponding groups are passed to the algorithm. The

algorithm creates a list of rule-constraint pairs. These contain each transformation

rule-constraint pair assignment, defined in transformation T. Based on their rule

constraint pair assignment, the algorithm identifies the crosscutting concerns for

each group (line 4). Next, the coloring table is updated with the actual group

information, even if there exists no crosscutting related to the actual group. Then,

the algorithm creates a concern (constraint) list (line 7) in which each member of

the list represents a separated concern. This means that, if a constraint in the

transformation contains more than one concern, the constraint is decomposed into

several constraints. Therefore, more than one list member is created from such

constraints. Groups are also added to the constraint list. Based on the list of

constraint, the algorithm identifies repetitive constraints (line 9) and updates the

coloring table accordingly.

Algorithm 2. Pseudo code of the COLORING algorithm

1: COLORING (Transformation T, GroupList groups)

2: ColoringTable coloringTable = new ColoringTable();

3: RuleConstraintPairList ruleConstraintPairs = COLLECTRULECONSTRAINTPAIRS (T)

4: for all Group G in groups do

5: CrosscuttingList crosscuttings = IDENTIFYCROSSCUTTING (G, ruleConstraintPairs)

6: UPDATECOLORINGTABLE (G, ruleConstraintPairs, crosscuttings)

7: end for

8: ConcernList concerns = COLLECTSEPARATEDCONCERNCONSTRAINTS (T)

9: for all Constraint C in constraints do

10: ConstraintList repetitives = IDENTIFYREPETITIVECONSTRAINTS (C, concerns)

11: UPDATECOLORINGTABLE (C, constraints, repetitives)

12: end for

5.2 Generalized Constraint Extracting Algorithm

The algorithm receives the model transformation and the results of the coloring

algorithm. The results of the algorithm are the modularized constraints and the

constraint calls supporting the weaving.

The algorithm creates the modularized constraints based on the provided concern

list. The group concerns are handled in a different way from simple constraints or

constraint part concerns: each member of the group concern is modularized into a

different constraint. The second part of the extracting algorithm creates the

constraint calls both for crosscutting and repetitive constraints. These constraint

calls contain the exact list of the rules from which they should be called. In

Acta Polytechnica Hungarica Vol. 10, No. 1, 2013

 – 117 –

general, for modularized crosscutting constraints (aspects) we prefer to use

weaving constraints instead of the constraint calls. This is because with weaving

constraints more complex conditions can be defined, and this type of weaving

definition is used when defining these artifacts manually. In the current case, the

artifacts are created by the extracting algorithm. Our aim is to provide a simple

method that modularizes the concerns and creates such weaving artifacts that can

reproduce the original transformation, exactly. Therefore, creating constraint calls

for crosscutting constraints is the correct decision.

Algorithm 3. Pseudo code of the EXTRACTING algorithm

1: EXTRACTING (Transformation T, ConcernList concerns, ColoringTable coloringTable)

2: ConstraintList modularizedConstraints = new ConstraintList ()

3: for all Concern groupConcern in concerns.GroupConcerns do

4: for all Constraint C in groupConcern do

5: modularizedConstraints.Add (C)

6: end for

7: end for

8: for all Concern nonGroupConcern in concerns.NonGroupConcerns do

9: modularizedConstraints.Add (nonGroupConcern.Constraint)

10: end for

11: ConstraintCallList constraintCalls = new ConstraintCallList()

12: for all ColoringItem coloringItem in coloringTable do

13: ConstraintCall constraintCall = CreateConstraintCall(coloringItem, T)

14: constraintCalls.Add (constraintCall)

15: end for

The EXTRACTING algorithm receives transformation T, the concerns identified by

the COLORING algorithm and the coloringTable. The algorithm processes the

concerns in two blocks. In the first block, the group concerns

(SyntacticWellFormedness and SemanticWellFormedness) are processed; each

constraint, although related to the group, is independent and is added to the

modularized constraint list (line 2-6). In the second block, the constraints of the

non-group concerns are processed: simple constraints and constraint parts (line 7-

9). Next, using the coloring table (transformation rule - constraint mappings), the

algorithm creates the constraint calls for each constraint.

Conclusions

We have discussed that in graph rewriting-based model transformations, the two

main concerns are functionality, defined by the transformation rules, and the

validation properties, expressed through constraints. Concerning model

transformations, we have introduced the problem of repetitive and crosscutting

L. Lengyel Modularized Constraint Management in Model Transformation Frameworks

 – 118 –

constraints. We have identified the difference between repetitive and crosscutting

constraints. We have shown that, in certain cases, crosscutting cannot be

eliminated, but it can be solved by applying aspect-oriented mechanisms. We have

briefly summarized our previous results related to aspect-oriented constraint

management in model transformations. As a novel contribution, we have provided

a mechanism for handling repetitive constraints. Unifying their treatment, we have

developed a generalized method with its algorithms for semi-automatic

modularization of repetitive and crosscutting constraints in model transformations.

The disadvantage of the repetitive constraint management approach regard is its

being based on manual decisions: the transformation designer should designate the

points where a constraint call should be applied. Therefore, the designer can miss

some constraint call definitions, which would result in unexpected behavior of the

transformation execution, especially in the case of complex transformations. The

introduced approach has an UML-compliant notation that is easy to use and

simple to understand.

Acknowledgement

The author would like to thank Tihamér Levendovszky for his valuable comments

and support. This work was partially supported by the European Union and the

European Social Fund through project FuturICT.hu (grant no.: TÁMOP-4.2.2.C-

11/1/KONV-2012-0013).

References

[1] AGG, The Attributed Graph Grammar System Website, http://tfs.cs.tu-

berlin.de/agg

[2] Assmann U., Ludwig, A.: Aspect Weaving by Graph Rewriting, Generative

Component-based Software Engineering, Springer (2000)

[3] Bottoni, P., Koch, M., Parisi-Presicce, F., Taentzer, G.: Consistency

Checking and Visualization of OCL Constraints, 294-308 (2000)

[4] Dijkstra, E. W.: A Discipline of Programming. Prentice Hall, Englewood

Cliffs, NJ (1976)

[5] Dresden OCL Toolkit Website, http://dresden-ocl.sourceforge.net

[6] Ehrig, H., Ehrig, K., Prange, U., Taenzer, G.: Fundamentals of Algebraic

Graph Transformation, Monographs in Theo. Comp. Sci., Springer (2006)

[7] Filman, R. E., Elrad, T., Clarke, S., Aksit, M.: Aspect-Oriented Software

Development, Addison-Wesley (2004)

[8] Karsai, G., Agrawal, A., Shi, F., Sprinkle, J.: On the Use of Graph

Transformation in the Formal Specification of Model Interpreters, Journal

of Universal Comp. Science, Special issue on Formal Spec. of CBS (2003)

Acta Polytechnica Hungarica Vol. 10, No. 1, 2013

 – 119 –

[9] Lara, J., Vangheluwe, H., Alfonseca, M.: Meta-Modelling and Graph

Grammars for Multi-Paradigm Modelling in AToM, Software and Systems

Modeling (SoSyM), Vol. 3(3), 194-209 (2004)

[10] Lengyel, L.: Online Validation of Visual Model Transformations, PhD

thesis, Budapest University of Technology and Economics, Department of

Automation and Applied Informatics (2006)

[11] Lengyel, L., Levendovszky, T., Charaf, H.: Validated Model

Transformation-Driven Software Development, International Journal of

Computer Applications in Technology, Vol. 31(1), 106-119 (2008)

[12] Lengyel, L., Levendovszky, T., Angyal, L.: Identification of Crosscutting

Constraints in Metamodel-Based Model Transformations, IEEE Eurocon

2009, St. Petersburg, Russia, 359-364 (2009)

[13] OMG MDA Specification, MOMG document ormsc/01-07-01, 2001,

http://www.omg.org/

[14] OMG OCL Specification, Version 2.2, OMG document formal/2010-02-01,

2010, http://www.omg.org/

[15] Pollet, D., Vojtisek, D., Jezequel, J. M.: OCL as a Core UML

Transformation Language, WITUML: Workshop on Integration and

Transformation of UML models, ECOOP 2002, Malaga, Spain (2002)

[16] Rozenberg, G. (ed.): Handbook on Graph Grammars and Computing by

Graph Transformation: Foundations, Vol. 1, World Sci., Singapore (1997)

[17] Sutton, S. M., Rouvellou, I.: Modeling of Software Concerns in Cosmos. In

Proceedings of the 1
st
 International Conference on Aspect-Oriented

Software Development, ACM Press, 127-133 (2002)

[18] Sztipanovits, J., Karsai, G.: Generative Programming for Embedded

Systems, In GPCE '02: ACM SIGPLAN/SIGSOFT Conf. on Generative

Programming and Component Eng., Springer, London, UK, 32-49 (2002)

[19] Taentzer, G., Ehrig, K., Guerra, E., de Lara, J., Lengyel, L., Levendovszky,

T., Prange, U., Varro D., Varro-Gyapay, Sz.: Model Transformation by

Graph Transformation: A Comparative Study, ACM/IEEE 8
th

 Int. Conf. on

Model Driven Engineering Languages and Systems, Jamaica (2005)

[20] VMTS Website, http://www.aut.bme.hu/vmts

