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Abstract: The primary objective of this paper is to propose the two new combined 
approaches based on Feed-Forward and Long Short-Term Memory Neural Network 
models for Power System State Estimation. First, the Weighted Least Square method and 
the Generalized Maximum-Likelihood Estimator using the Projection statistics method are 
used to estimate the voltage magnitude and phase angle. Secondly, the Feed-Forward 
Neural Network model is proposed to combine the obtained voltages and angles.  
The optimal structure of the proposed Feed-Forward Neural Network model is defined 
based on the Akaike Information Criterion. Thirdly, the Long Short-Term Neural Network 
model is proposed as an alternative hybrid power system state estimation approach. 
Finally, the different case studies including IEEE 9-bus system and IEEE 14-bus system are 
used to validate the effectiveness of the proposed approaches. The final results imply that 
the proposed approaches can provide more effective solutions than the existing approaches 
according to Mean Absolute Percentage Error and Weighted Average Percentage Error 
criteria. 

Keywords: Power System State Estimation; Weighted Least Square; Feed-Forward Neural 
Network; Long Short-Term Neural Network 

1 Introduction 

State Estimation (SE) of power systems or Power System State Estimation (PSSE) 
is an important tool of the Energy Management System to provide a reliable 
estimation of the states of the electrical power systems. The phasor voltages 
(voltage magnitude and angle) for all system buses are estimated based on a set of 
available measurements. In real-time power systems monitoring, the Supervisory 
Control and Data Acquisition (SCADA) system is responsible for gathering and 
preprocessing information such as the values of active and reactive power flows, 
power injections, bus voltage magnitude, and status of the circuit breaker 
switches. However, the SCADA system is not capable of performing a convenient 
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treatment of inconsistent information because of gross errors in the measurements, 
telemetered values, communication noise, etc. [1]. In addition, the collected 
measurement data may not directly extract the parameters of interest. Besides that 
telemetering all the data of interest may require large numbers of sensors which 
are not feasible economically or practically [2]. To handle these issues, PSSE is 
used to detect and eliminate unreliable data from SCADA to identify the optimal 
estimate of the operating states consisting of voltage magnitude and angle. SE was 
first introduced by Gauss and Legendre (around 1800). The main purpose of the 
SE issue is to identify the voltage magnitude and angle from the various input 
factors. In engineering modeling, various approaches are proposed for modular 
robotics and human reasoning [3], cognition processes [4], photovoltaic model [5], 
biomonitoring studies data [6], tower crane systems modeling [7], and 
opportunities model [8]. Then, the SE was first applied to electric power systems 
by Fred Schweppe [9]-[11]. Traditionally, the Weighted Least Square (WLS) 
method is used to solve the SE. However, several works prove that the 
conventional WLS method has many disadvantages. The WLS technique is less 
robust as a single outlier can severely distort the estimation results. Further, the 
technique has a problem of sluggishness and the likelihood of convergence to 
local optima [12], [13]. To improve the WLS method, several methods are 
proposed as Iteratively ReWLS SE through givens rotations [14], robust WLS 
estimator using Reweighting techniques [15], robust linear-WLS method [16], and 
linear WLS based Singular Value Decomposition approach [17]. Other methods 
are also provided to improve the estimate of operating states in comparison with 
the WLS method, such as Least Absolute Value (LAV) [18], weighted LAV [19], 
and weighted LAV using Interior Point methods [20]. Recently, the Kalman filter 
(KF) technique is used in several works to provide efficient results of SE [2]. To 
increase the efficiency of this method, several improved KF variants are 
introduced as linear KF [21], the extended KF [22]-[24], the unscented KF [25], 
[26], the cubature KF [27], the Correntropy KF [28], and the ensemble KF [29]. 
Other works seek to provide the estimator robustness such as M-estimators [30], 
the Generalized Maximum-Likelihood (GM) Estimation [31], the H-infinite [32], 
the Robust Cubature KF [33], and the GM-estimator using Projection statistics 
[34]-[36]. Another research direction in PSSE is to apply Artificial Intelligence 
methods, such as the Neural Network (NN) models [37]-[39], Deep Learning [40], 
[41], Fuzzy Logic [42], [43], and Support Vector Machine [44], [45]. All of these 
works in the literature show the efficiency of the applied method in a case study. 
In addition, the optimal estimates of the operating states are normally identified 
using a single method. Unfortunately, none of the existing works try to combine 
the advantages of these methods to provide better PSSE solutions. 

Therefore, the main contribution of this paper is to combine these single methods 
using Feed-Forward NN (FFNN) and Long Short-Term Memory NN (LSTM) 
models to provide better PSSE results. The obtained PSSE results (voltage 
magnitude and phase angle) using the WLS method and the GM-estimator using 
Projection statistics are considered from the inputs of FFNN and LSTM models. 
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These NN models are trained to achieve the optimal solutions. Case studies are 
conducted to verify the proposed combined approaches in PSSE. To the best of 
our knowledge, this is the first attempt to provide the combined approaches in this 
area. The proposed combined approaches for PSSE are represented in Figure 1. 

The remainder of this paper is organized as follows. In Section 2, the proposed 
approaches including the WLS method, the GM-estimator using Projection 
statistics, the FFNN and LSTM models are presented. In Section 3, the case 
studies of the IEEE 9-bus system and IEEE 14-bus system are conducted.  
The conclusions are given in Section 4. 

SYSTEM MEASUREMENTS
P, Q, V, θ

The WLS method The GM-estimator using 
projection statistics

The estimated V and θ by using 
the WLS method 

The estimated V and θ by using 
the GM-estimator

FFNN model LSTM model

MAPE and WAPE criteria

Better PSSE results
 

Figure 1 
Proposed combined approaches for PSSE 

2 Proposed Combined Approaches 

2.1 WLS Method 

The WLS method in [46] can be described as follows: 

The measurement model of the SE is represented as a set of non-linear equations 
h  relating measurements z  to state variables x : 

( )= +z h x e  (1) 
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where vector x  comprises all nodal voltage magnitudes and angles. Vector 
z includes active and reactive power injections, active and reactive power flows, 
and voltage magnitudes. Vector e  is the measurement error that is usually 
assumed to be independent identically distributed Gaussian with zero mean and 
diagonal covariance matrix 2 2

1{ ,..., }mdiag σ σ=R . 

The WLS method minimizes the objective function to determine the optimal 
estimate of x : 

[ ] [ ]1( ) ( ) ( )T −= − −J x z h x R z h x .  (2) 

At the minimum, these can be expressed as follows: 

[ ]1( )( ) ( ) ( ) 0T −∂
= = − − =

∂
J xg x H x R z h x

x
  (3) 

where ( ) ( ) /= ∂ ∂H x h x x . 

Using the Gauss-Newton method, the estimated values of x  can be calculated by 
the following iterative solution 

1( )( ) ( ) ( )k k k k T k+  − = − G x x x H x W z h x   (4) 

where k  is the iteration index. The measurement weight matrix 1−=W R  is the 
inverse of the measurement covariance matrix. 

2.2 GM-estimator using Projection Statistics 

This method is represented in [34], [35]. Instead of using Equation (2), the 
objective function in this method is: 

2

1
( ) ( )

i

m

i S
i

rω ρ
=

= ∑J x   (5) 

where iω  is the weight used to bound the influence of the leverage point. The 
Huber function can be defined as: 
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where /
iS i ir r sω=  is the standardized residual; ir  is the normalized residual; the 

parameter β  is a fixed value; s is the robust scale estimation. 
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1.4826 ( )m i i j js b median r median r= −   (7) 

where mb  is a correction factor for unbiasedness at the Gaussian distribution. 

To solve Equation (5), one takes its partial derivative and sets it equal to zero, 
yielding 

2
1

( ) 0
i

m
i i

S
i i

r
s

ω ψ
=

∂
= − =

∂ ∑ aJ
x

  (8) 

where ( ) ( ) /
i i iS S Sr r rψ ρ= ∂ ∂ ; ia  is the ith row of the Jacobian matrix /= ∂ ∂H h x . 

This set of equations can be solved by using iterated re-WLS algorithm [47]. 

2.3 Proposed FFNN-based Approach 

In recent decades, NNs have become a hot topic of research; NNs are now widely 
used in various fields, including speech recognition, multi-objective optimization, 
function estimation, and classification. NNs can model linear and nonlinear 
relationships between inputs and outputs without any assumptions based on the 
activation function’s generalization capacity [48]. A NN comprises one input 
layer, one output layer, and one or more hidden layers. Among the NNs, the 
FFNN models are the most popular type for function approximation and multi-
objective optimization [49]. In this paper, the proposed FFNN-based approach 
with one hidden layer is illustrated in Figure 2. 

The two different FFNN models, i.e., one for voltage magnitude and one for 
voltage angle, are used to provide the optimal estimate of the power states.  
The transfer functions for the hidden layer in the FFNN model are Hyperbolic 
Tangent Sigmoid (i.e., tansig) and Log-Sigmoid (i.e., logsig). The number of 
neurons in the hidden layer must be identified carefully since the improper 
number may lead to overfitting or underfitting. A review that discusses how to fix 
the number of hidden neurons in NNs was presented in [50]. In this paper, the 
Akaike Information Criterion (AIC) is used to determine the number of hidden 
neurons. This criterion is defined as 

ln 2SSEAIC n k
n

 = + 
 

  (9) 

where n  is the number of data points (observations), p  is the number of 
estimated parameters, and SSE is the Residual Sum of Squares. 
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The estimated V/θ 
using the WLS method

The estimated V/θ 
using the GM-estimator

Input layer Hidden layer Output layer

Number of hidden neurons

The estimated V/θ 
by using FFNN model

 
Figure 2 

Proposed FFNN-based approach for PSSE 

Among several learning algorithms such as Error Correction, Perception Learning, 
Boltzmann Learning, Hebbian rules, or Back-Propagation (BP), BP is one of the 
most popular network training algorithms since it is both simple and generally 
applicable [51]. The difference between actual output and the desired value of the 
FFNN model is minimized as much as possible by finding the optimal learning 
rate. The optimization methods for finding the local minimum are Conjugate 
Gradient such as Gradient Descent with Adaptive Learning Rate (i.e., traingda) 
and Gradient Descent with Momentum and Adaptive Learning Rate (i.e., 
traingdx), Steepest Descent such as Resilient BP (i.e., trainrp), and Newton’s 
method such as Levenberg-Marquardt (i.e., trainlm). 

Another problem in training NN models is the choice of the number of epochs. 
The number of epochs determines the number of times that the learning algorithm 
will work through the entire training dataset. Too many epochs or too few epochs 
may lead to overfitting or underfitting of the training dataset, respectively. In this 
case, the early stopping method is often used to solve the generalization issue. 

2.4 Proposed LSTM-based Approach 

LSTM is a deep learning method proposed in [52]. LSTM can be used as a 
complex nonlinear unit to construct a larger deep NN, which can reflect the effect 
of long-term memory and has the ability of deep learning [53]. The LSTM model 
consists of an input layer, an output layer, and several hidden layers. The basic 
principle of LSTM is shown in Figure 3. 

In Figure 3, tx t . 1th −  and 1tC −

1t − , respectively. f , 
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i , g , and o  are the forgetting gate, input gate, memory cell, and output gate at 
time t , respectively. tC  and th  are the updated historical information and the 
output of the hidden layer at time t , respectively. 

σ σ tanh σ 

tanh

xt

ht

Ct–1

ht–1

Ct

ht

f i

g

o

 
Figure 3 

The basic principle of LSTM [52] 

The weights and biases to the input gate, forget gate, and output gate control the 
extent in the cell to compute the output activation of the LSTM block, 
respectively. Their calculation methods are shown in Equations (10)-(13) as 
follows: 

( )1f t f t ff x hσ −= + +W U b ,  (10) 

( )1i t i t ii x hσ −= + +W U b ,  (11) 

( )1o t o t oo x hσ −= + +W U b ,  (12) 

( )1g t g t gg x hσ −= + +W U b   (13) 

where W , U , b , and σ  are the parameter matrix from the input layer to the 
hidden layer, self-recurrent parameter matrix from the hidden layer to the hidden 
layer, bias parameter vector, and sigmoid function, respectively. 

Then, the internal memory cell state tC  is updated. Finally, the output information 
of the memory cell th  is obtained. The calculation methods are shown as follows: 
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1f t tC f C i e−= ⊗ ⊗ ∗ ,  (14) 

tanh( )t th o C= ⊗   (15) 

where e  is the saved new information. 

Similar to the FFNN models, two different LSTM models, i.e., one for voltage 
magnitude and one for voltage angle, are used to provide the optimal estimate of 
the power states. The estimated voltage magnitudes and angles using the WLS 
method and GM-estimator are the inputs of the LSTM models. 

2.5 Evaluation Criteria 

To evaluate the performance of the estimation methods, several criteria were 
proposed. In this paper, two primary evaluation criteria are used as: 

Mean Absolute Percentage Error (MAPE) is used to measure the percentage error 
of the estimate in relation to the actual values. It is represented as 

 


1

1 100
n

i

A AMAPE
n A=

−
= ∑    (16) 

where n  is the number of observations. A  and A  are the actual and estimated 
values, respectively. 

Weighted Average Percentage Error (WAPE) is similar to MAPE. However, it 
weighs the estimated error. 

 



1

1

100

n

i
n

i

A A
WAPE

A

=

=

−
=

∑

∑
. (17) 

3 Case Studies 

3.1 IEEE 9-bus System 

The proposed approaches along with the conventional WLS method and GM-
estimator using Projection statistics have been applied on IEEE 9-bus system.  
The simulation results of voltage magnitudes and angles are tabulated in Tables 1 
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and 2, respectively. The proposed FFNN and LSTM models are coded and trained 
in Matlab. Information about the trained FFNN model for estimating the voltage 
magnitudes including the transfer function, training function, number of hidden 
neurons, and number of epochs, is tansig, trainlm, 87, and 4, respectively. 
Information about the trained FFNN model for estimating the voltage angles 
including the transfer function, training function, number of hidden neurons, and 
number of epochs, is logsig, trainlm, 30, and 5, respectively. 

Information about the trained LSTM model for estimating the voltage magnitudes 
including the solver, maximum epochs, gradient threshold, initial learn rate, 
number of hidden neurons, and dropoutlayer is adam optimizer, 10000, 0.01, 
0.001, 6, and 0.1, respectively. Information about the trained LSTM model for 
estimating the voltage angles including the solver, maximum epochs, gradient 
threshold, initial learn rate, number of hidden neurons, and dropoutlayer is adam 
optimizer, 10000, 0.01, 0.001, 35, and 0.1, respectively. 

Table 1 
Comparison of true and estimated voltage magnitudes for IEEE 9-bus system 

Bus no True voltage 
magnitude (p.u) 

Estimated voltage magnitude 
WLS GM FFNN LSTM 

1 1.04000 0.98871 0.99927 1.03863 1.03529 
2 1.02500 1.00340 1.01731 1.02508 1.03016 
3 1.02500 1.02414 1.03592 1.02500 1.02393 
4 1.02579 0.97384 0.98454 1.02579 1.01423 
5 0.99563 0.95003 0.96177 0.99563 1.00710 
6 1.01265 1.04889 1.06516 1.01265 1.01544 
7 1.02577 1.00357 1.01808 1.02577 1.01884 
8 1.01588 1.00153 1.01468 1.01588 1.02322 
9 1.03235 1.03242 1.04327 1.03235 1.03157 

Table 2 
Comparison of true and estimated voltage angles for IEEE 9-bus system 

Bus no True voltage angle 
(degree) 

Estimated voltage angle 
WLS GM FFNN LSTM 

1 0.00000 0.00000 0.00000 -0.00752 0.00894 
2 9.28001 11.17367 10.97289 9.28386 9.28298 
3 4.66475 7.14438 6.99829 4.62074 4.50812 
4 -2.21679 -2.45629 -2.40388 -1.72290 -2.26689 
5 -3.98881 -3.93075 -3.88208 -3.98727 -4.00079 
6 -3.68740 0.11674 0.22492 -3.68426 -3.70708 
7 3.71970 5.34103 5.32414 3.72129 3.66028 
8 0.72754 2.58574 2.58591 0.74213 0.66242 
9 1.96672 4.47395 4.36141 1.96860 1.82292 
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The true and estimated values of voltage magnitudes and angles in this case study 
are shown in Figures 4 and 5, respectively. In these figures, the true values, 
estimated values by using WLS, estimated values by using GM, estimated values 
by using FFNN, and estimated values by using LSTM are demonstrated by the 
solid line (black color), dash line with * marker (red color), dash-dot line with 
square marker (yellow color), dash-dot line with + marker (blue color), and dash-
dot line with pentagram marker (green color), respectively. 

1 2 3 4 5 6 7 8 9

Bus

0.94

0.96

0.98

1

1.02

1.04

1.06

1.08

V
ol

ta
ge

 m
ag

ni
tu

de
 (p

.u
)

True and estimated values of voltage magnitude for IEEE 9-bus system

True value
Estimated value using WLS
Estimated value using GM
Estimated value using FFNN
Estimated value using LSTM

 
Figure 4 

True and estimated values of voltage magnitudes for IEEE 9-bus system 
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Figure 5 

True and estimated values of voltage angles for IEEE 9-bus system 
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The MAPE and WAPE criteria of the WLS, GM, FFNN, and LSTM methods for 
estimating voltage magnitudes and angles in this case study are represented in 
Tables 3 and 4, respectively. 

Table 3 
Evaluation criteria of the proposed approaches in voltage magnitude estimation for IEEE 9-bus system 

Evaluation criteria WLS GM FFNN LSTM 
MAPE (%) 2.65879 2.25172 0.01566 0.56536 
WAPE (%) 2.65441 2.24802 0.01592 0.56320 

Table 4 
Evaluation criteria of the proposed approaches in voltage angle estimation for IEEE 9-bus system 

Evaluation criteria WLS GM FFNN LSTM 
MAPE (%) 68.38519 67.31203 2.83688 2.70489 
WAPE (%) 47.80473 46.57606 1.89083 1.71443 

As shown in Table 3, the GM-estimator (MAPE = 2.25172%, WAPE = 
2.24802%) can provide better-estimated results compared to the conventional 
WLS method (MAPE = 2.65879%, WAPE = 2.65441%). Moreover, the proposed 
FFNN (MAPE = 0.01566%, WAPE = 0.01592%) and LSTM (MAPE = 
0.56536%, WAPE = 0.56320%) approaches can provide more accurate estimated 
voltage magnitudes compared to the two above methods. The proposed FFNN 
approach is the best estimation method in this case study. 

As shown in Table 4, the GM-estimator (MAPE = 67.31203%, WAPE = 
46.57606%) can provide better-estimated results compared to the conventional 
WLS method (MAPE = 68.38519%, WAPE = 47.80473%). Moreover, the 
proposed FFNN (MAPE = 2.83688%, WAPE = 1.89083%) and LSTM (MAPE = 
2.70489%, WAPE = 1.71443%) approaches can provide more accurate estimated 
voltage angles compared to the two above methods. The proposed FFNN 
approach is the best estimation method in this case study. 

3.2 IEEE 14-bus System 

Similarly, the estimated results of voltage magnitudes and angles in this case study 
are tabulated in Tables 5 and 6, respectively. Information about the trained FFNN 
model for estimating the voltage magnitudes including the transfer function, 
training function, number of hidden neurons, and number of epochs, is logsig, 
trainlm, 32, and 6, respectively. Information about the trained FFNN model for 
estimating the voltage angles including the transfer function, training function, 
number of hidden neurons, and number of epochs, is tansig, trainlm, 34, and 14, 
respectively. Information about the trained LSTM model for estimating the 
voltage magnitudes including the solver, maximum epochs, gradient threshold, 
initial learn rate, number of hidden neurons, and dropoutlayer is adam optimizer, 
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10000, 0.01, 0.001, 5, and 0.1, respectively. Information about the trained LSTM 
model for estimating the voltage angles including the solver, maximum epochs, 
gradient threshold, initial learn rate, number of hidden neurons, and dropoutlayer 
is adam optimizer, 10000, 0.01, 0.001, 19, and 0.1, respectively. 

Table 5 
Comparison of true and estimated voltage magnitudes for IEEE 14-bus system 

Bus no True voltage 
magnitude (p.u) 

Estimated voltage magnitude 
WLS GM FFNN LSTM 

1 1.06000 1.04531 1.06873 1.06071 1.06275 
2 1.04500 1.02799 1.04954 1.04529 1.03994 
3 1.01000 0.98940 1.01203 1.00970 1.01431 
4 1.01767 0.99053 1.01540 1.01780 1.00976 
5 1.01951 0.99448 1.01947 1.01975 1.02871 
6 1.07000 1.02631 1.05667 1.07012 1.05692 
7 1.06152 1.01274 1.04099 1.06155 1.07290 
8 1.09000 1.04244 1.07030 1.09009 1.07310 
9 1.05593 0.99548 1.02508 1.05594 1.06250 
10 1.05098 0.99302 1.02325 1.05096 1.05392 
11 1.05691 1.00564 1.03635 1.05335 1.05157 
12 1.05519 1.00915 1.04072 1.05955 1.05139 
13 1.05038 1.00312 1.03457 1.04940 1.04836 
14 1.03553 0.97970 1.01116 1.03543 1.04097 

Table 6 
Comparison of true and estimated voltage angles for IEEE 14-bus system 

Bus no True voltage angle 
(degree) 

Estimated voltage angle 
WLS GM FFNN LSTM 

1 0.00000 0.00000 0.00002 0.00000 -0.06214 
2 -4.98259 -5.12756 -4.84083 -4.98258 -5.02083 
3 -12.72510 -13.16706 -12.50966 -12.72502 -12.87459 
4 -10.31290 -10.51851 -10.01290 -10.31285 -9.99912 
5 -8.77385 -8.96567 -8.53965 -8.77382 -8.69088 
6 -14.22095 -14.93620 -14.17390 -14.22541 -14.12077 
7 -13.35963 -13.73609 -13.04024 -13.35019 -13.07401 
8 -13.35963 -13.73477 -13.03726 -13.35929 -13.13985 
9 -14.93852 -15.45928 -14.65665 -14.93769 -14.71624 
10 -15.09729 -15.67465 -14.86375 -15.09144 -14.73552 
11 -14.79062 -15.43579 -14.64498 -14.82734 -14.53140 
12 -15.07558 -15.85483 -15.04993 -15.07530 -14.93506 
13 -15.15628 -15.91313 -15.09867 -15.17020 -14.98227 
14 -16.03364 -16.76849 -15.89944 -16.03184 -15.53161 
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The true and estimated values of voltage magnitudes and angles in this case study 
are shown in Figures 6 and 7, respectively. In these figures, the true values, 
estimated values by using WLS, estimated values by using GM, estimated values 
by using FFNN, and estimated values by using LSTM are demonstrated by the 
solid line (black color), dash line with * marker (red color), dash-dot line with 
square marker (yellow color), dash-dot line with + marker (blue color), and dash-
dot line with pentagram marker (green color), respectively. 
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Figure 6 

True and estimated values of voltage magnitudes for IEEE 14-bus system 
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Figure 7 

True and estimated values of voltage angles for IEEE 14-bus system 



T-H. Le Feed-Forward and Long Short-Term Neural Network Models for Power System State Estimation 

 – 236 – 

The MAPE and WAPE criteria of the WLS, GM, FFNN, and LSTM approaches 
for estimating voltage magnitudes and angles in this case study are represented in 
Tables 7 and 8, respectively. 

Table 7 
Evaluation criteria of the proposed approaches in voltage magnitude estimation for IEEE 14-bus 

system 

Evaluation criteria WLS GM FFNN LSTM 
MAPE (%) 3.82581 1.38623 0.07419 0.65567 
WAPE (%) 3.83760 1.39623 0.07452 0.65874 

Table 8 
Evaluation criteria of the proposed approaches in voltage angle estimation for IEEE 14-bus system 

Evaluation criteria WLS GM FFNN LSTM 
MAPE (%) 3.40259 1.50406 0.03599 1.51901 
WAPE (%) 3.82964 1.45638 0.04373 1.72487 

As shown in Table 7, the GM-estimator (MAPE = 1.38623%, WAPE = 
1.39623%) can provide better-estimated results compared to the conventional 
WLS method (MAPE = 3.82581%, WAPE = 3.83760%). Moreover, the proposed 
FFNN (MAPE = 0.07419%, WAPE = 0.07452%) and LSTM (MAPE = 
0.65567%, WAPE = 0.65874%) approaches can provide more accurate estimated 
voltage magnitudes compared to the two above methods. The proposed FFNN 
approach is the best estimation method in this case study. 

As shown in Table 8, the GM-estimator (MAPE = 1.50406%, WAPE = 
1.45638%) can provide better-estimated results compared to the conventional 
WLS method (MAPE = 3.40259%, WAPE = 3.82964%). Moreover, the proposed 
FFNN (MAPE = 0.03599%, WAPE = 0.04373%) and LSTM (MAPE = 
1.51901%, WAPE = 1.72487%) approaches can provide more accurate estimated 
voltage angles compared to the two above methods. The proposed FFNN 
approach is the best estimation method in this case study. 

Conclusions 

The two combined approaches, based on FFNN and LSTM models, for PSSE are 
proposed. The two proposed approaches are trained to identify the optimal 
structures. The IEEE 9-bus system and IEEE 14-bus system are used to approve 
the effectiveness of the proposed approaches in finding the optimal estimate of the 
states. Two evaluation criteria consisting of MAPE and WAPE are used to specify 
the better methods. The simulation results indicate that the two proposed 
combined approaches can provide better solutions compared to the conventional 
WLS method and the GM-estimator using Projection statistics. For further studies, 
the weighted Tchebycheff optimization technique and Genetic Algorithm can be 
applied to solve the PSSE. 
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