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Abstract: This paper covers an approach for fault residuals construction, when carrying 

out the data driven techniques. The method is based on the system input and output data 

and is built on a difference between data of a “normal” and a “faulty” system behavior. 

The research evaluates the performance of the structures, based on the subspace 

identification technique, to highlight the acceptable usefulness of the resulting data driven 

approach. Following the same lines, it delineates the connection to input/output data and 

provides an approach to computation of the parameterized data matrices. The principle is 

applied directly in analysis of the data generated by the wind turbine model. 
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1 Introduction 

Beginning in the 70s of the last century, the analytical redundancy approach, 

instead of hardware redundancy, forces the concept of fault detection filters, 

constructed on the observations derived from the system measurements using 

Kalman filters [1] and system state observers [2]. The principal focus points on 

the fault detection and diagnosis were oriented on the chemical and petrochemical 

processes [3], the first applications of the data-driven methods are also linked to 

this industry area [4]. Thus, in the main context, the fault detection and isolation 

(FDI) part of such diagnostic systems have to give an efficient solution with small 

fault detection time delays. 

Many models based FDI techniques have been proposed including the above 

mentioned Kalman filters [5], unknown input observers [6] and H∞/H2 observer-

based residual filter schemes [7]. The underlying idea behind the model based FDI 

is to use a mathematical model of the system as the source of redundant 

information and to produce the state estimate-based fault residuals by using the 
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systems measured outputs. For all representations based on system models the 

fundamental question is the system observability. The disadvantage of this 

approach is the need for an accurate model of the process. 

An alternative approach known as data driven FDI (DD FDI) uses a collection of 

measured data to discover patterns related to the normal and faulty system 

behavior. The data driven FDIs prevailingly reflect results in machine learning, 

computational intelligence and data mining. The most popular DD FDI techniques 

are data feature-based prediction techniques using the nonlinear time series based 

on the projection-based techniques [8], prediction principle [9], the correlation 

analysis and Bayesian inference principle [10] and the fault feature extraction and 

classification using computational intelligence principle [11]. The additive fault 

estimators can also be considered as data driven procedures, usually applicable in 

the case of poor analytical knowledge of the system dynamics and external 

disturbances [12] [13]. 

The wind turbine technology is one of the appropriate ways for increased use of 

renewable energy. Thus, in order to improve a wind turbine behavior and 

reliability, faults prevention in the parts of the wind turbine and fault tolerant 

control stay relevant objectives. A way to ensure these tasks consists in 

introducing advanced fault detection, isolation, and accommodation schemes [14-

15], where FDIs are designed to estimate the filter speed by using a bank of state 

observers and bank of unknown input observers, respectively. To improve 

diagnosis of faults the wind farm level can be applied, when a wind turbine is 

considered in comparison to another turbine of the wind farm [16]. 

The starting data-driven solution in the wind turbine diagnosis relies on Takagi–

Sugeno (T-S) fuzzy models that are derived from a clustering c-means algorithm, 

followed by an identification procedure [17]. To achieve maximization of the 

wind power extraction, T-S fuzzy models of reduced dimension are proposed [18]. 

The power of the approach can be amplified when combining the wind power 

extraction T-S models by DD FDI and the weighting two or more metrics related 

with analytical FDI [19] [20]. In all schemes, a properly large data set should be 

available as a-priori knowledge to train the structure in the fault-free case. 

In this paper a basic ground is taken on the data driven approaches, based on 

subspace identification methods, for additive fault detection of wind turbines. 

Since the system state-space description projects the system state into output 

variables, it is a natural way for constructive data driven approaches to suppress 

the system model description and to identify only the parameterized matrices of 

system data. This leads to formulas for the matrix pseudo inverse operations on 

the predetermined data matrices that seems to be basic. Of course, this application 

of the orthogonal complement of non-square data matrices for identification of 

parameterized matrices of the system is not new and the presented way seems to 

be only a new adaptation. 
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The paper is organized as follows. Ensuing introduction in Sect. 1 and continuing 

by the system description using lagged variables in Sect. 2, constructions of data 

matrix null spaces are given in Sect. 3. The fault residuals generation is analyzed 

in Sect. 4 and suppression of noise effects is explained in Sect. 5. In the task 

relation, Sect. 6 describes substantial details in a reference model of wind turbines 

and applicability of the proposed method using benchmark model parameters is in 

Sect. 7. Finally, in Sect. 8, some prioritized concluding remarks are presented. 

For sake of convenience, throughout this paper used notations reflect usual 

conventionality so that 
T

x , T
X mean transpose of the vector x  and the matrix X , 

the notation 1
X denotes the Moore-Penrose pseudo inverse of a non-square 

matrix, ⊥
X reflects the orthogonal complement of a non-square matrix X , nI is the 

nth order identity matrix and n r signifies the set nxr real matrices. 

2 Lagged Variables 

Considering that the task is focuses on developing the FDI method in the data-

driven fashion, the linear discrete-time model of the square system is used in the 

standard state space representation given by 

( 1) ( ) ( ) ( )i i i i+ = + +q Fq Gu v       (1) 

( ) ( ) ( )i i i= +y Cq w        (2) 

where ( ) ni q is the state vector, ( ) uri u , ( ) mi y  is the input and the 

output vector, respectively, while n nF , un r
G , m nC . The system is 

corrupted by the stochastic disturbances ( ) ni v , ( ) ni w , which are zero 

means and normally distributed white noise. 

Taking (1), (2) the following can be performed for the square system (
ur m= ) 

1 2

2

( ) ( ) ( )
( 1) ( ) ( ) ( ) ( )

( ) ( )
( 1)

( ) ( 1)

s s

o

s

o

i i i
i i i i i

i i
i s

i i s

− −

−

= +
+ = + + +

 + + + − =
 + + + − 

y Cq w
y CFq CGu Cv w

CF q CF G CG 0 u
y

CF C 0 v w
   (3) 

writing with 

( ) ( ) ( )
( ) , ( ) , ( )

( 1) ( 1) ( 1)
o o o

i i i
i i i

i s i s i s

     
     = = =
     + − + − + −     

u v w
u v w

u v w
  (4) 

which can be rewritten as: 

( ) ( ) ( ) ( ) ( )o o o oi i i i i= + + +y Pq Ru Sv w  (5) 

where, 
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2 3

( )
( ) ,

( 1)
o

s s

i
i

i s − −

 
   
 = =  
 + −   

 

0 0 0 0
u

CG 0 0 0
y R

u
CF G CF G CG 0

  (6) 

1 2 3

,

s s s− − −

   
   

= =   
   
   

C 0 0 0 0
CF C 0 0 0

P S

CF CF CF C 0

    (7) 

and ( ), ( ), ( ) sm

o o oi i i y u w , ( ) sn

o i v , sn nP , sm smR , sm snS . 

Thus, applying the input and output data sets, the related data structures can be 

investigated, defined as: 

( ) ( ) ( ) ( )
( ) , ( ) , ( ) , ( )

( ) ( )
( 1) ( 1)

g o
g g g o

g o

i r i r i i
i i i i

i i
i i

− −          = = = =         − −   

y u y y
y u z z

u u
y u

 (8) 

where 
2( ) rm

g i z , 2( ) sn

o i z  and s r n   

The structural relations (5) can be parameterized such that: 

, , , ,o p o p o p o p= + +Y PQ RU D  (9) 

where, 

   , ,( ) ( 1) , ( ) ( 1)o p o o o pi i p i i p= + − = + −Y y y Q q q  (10) 

   , ,( ) ( 1) , ( ) ( 1)o p o o o p o oi i p i i p= + − = + −U u u V v v  (11) 

 , , , ,, ( ) ( 1)o p o p o p o p o oi i p = = + − D SV W W w w  (12) 

and ,

sm p

o p

Q , , ,, sm pm

o p o p

Y U , 
2

,

sm p

o p

D , p s r n   

When the new samples ( )o iy  and ( )o iu  are available, updated matrices are 

formulated by  appending the new columns on the right and deleting the first 

columns in ,o pY , ,o pU  

Corollary 1 The subspace method aided data-driven fault detection can be detailed 

for systems with the additive faults, including the actuator faults. This application 

requests to alter the state equation (1) as: 

( 1) ( ) ( ) ( ) ( ), ( ) ,f fr n r
i i i i i i


+ = + + +  q Fq Gu Hf v f H               (13) 

2 3

( )
( ) ,

( 1)
o f

s s

i
f i

f i s − −

 
   
 = =  
 + −   

 

0 0 0 0
f

CH 0 0 0
R

CF H CF H CH 0

             (14) 

and modifies the matrix oD as follows, when applying in (9), 

, ( ) ( ) ( ) ( 1) ( 1) ( 1)o p f o o o f o o oi i i i p i p i p = + + + − + + − + + − D R f Sv w R f Sv w   

 (15) 
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3 Construction of Data Matrix Null Spaces 

The presented method is built on non-square matrices, which gives the possibility 

to eliminate the column redundance by principle of the matrix null space. 

Lemma 1 The orthogonal projector onto the kernel of a non-square matrix 

, ,a b b a L (an orthogonal complement of L ) takes the form: 

1

b

⊥ = − L I L L 0                   (16) 

Where, 

1 1( )T T −=L L LL                               (17) 

is the Moore-Penrose pseudo-inverse of L , where, 1 b aL  

Remark 1 Noting that for a non-square matrix it yields also that =L L , then 

multiplying this equality from the left-hand side by the identity matrix aI  it 

yields: 

1( )T T

a b

−= = =L I L LI LL LL L                             (18) 

which implies, 

1 1( )T T

b

−= =I L LL L L L                              (19) 

Rewriting the equality (19) as: 

1=L LL L                                (20) 

it can be derived that: 

1 1( ( ) ) ( )T T

b b

− ⊥− = − = L I L LL L L I L L LL 0                                       (21) 

which defines (16). 

Lemma 2 Singular value decomposition (SVD) of a non-square matrix 

, ,a b b a L  constructs the matrix relation: 

T =M LN Σ                                (22) 

where, 

   1 1, , ,a a b b

a b

 = =  M m m N n n M N                                  (23) 

are the ortthogonal matrices of the left and the right singular vectors of L and 

1

2
,a b a

a






−

 
 

=  
 
 

Σ 0                               (24) 

where 1, ,...,l al = are the singular variables of L , generally ordered in such a 

way that 1 2 0a      . 
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Remark 2 Since (22) can be rewritten as: 

  ( )

1 2 1 2, ,T b a b b a  −=  M L N N Σ N N                (25) 

the structure of Σ implies that: 

2 ,a b a−=LN 0                                (26) 

that is, the orthogonal complement of L is 2N  

Remark 3 To given L it can be constructed the square matrix T
LL and for the 

eigenvalue structure of T
LL it yields: 

, , 1, ,T T T T

l l l l l l l a = = =LL s s u LL u                 (27) 

where l it the lth eigenvalue of T
LL , ls it the lth right eigenvector of T

LL and T

lu  

it the lth left eigenvector of T
LL . Multiplying the left side of (27) by T

hu it has to 

be: 

T T T T

h l h h l l h l = =u LL s u s u s                             (28) 

which can be satisfied only if: 

 1, ,
, 1, ,

0, .
T

h l

h l
h l a

h l

=
= =


u s                             (29) 

that is the left and the right eigenvectors are orthonormal. Consequently (28) can 

be written as: 
T

lT T T T T T T

h h l h l h l h l l h l lT

l

  = = = =
L s

u s u LL s u LL s u Lv u Lv
L s

                     (30) 

which can be satisfied only if: 

1, ,
, 1, ,

0, ,

0, ,

T

h l

h l
h l a

h l

l a


= ==  

 

u s                             (31) 

and where, 

, ,
T

Tl

l l l l lT

l

  = = =
L s

v L s
L s

                                  (32) 

Then (30) defines (22). 

To find the fault residual filter construction and structure, the following section is 

especially offered. 
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4 Fault Residuals 

A general fault diagnosis can be performed using residual signal that represents a 

deviation from standard operating conditions and can be generated by comparing, 

for example, a model output with the actual system output. 

The data-driven fault residuals must be generated from the system input and 

output data using the lagged variables. 

Rewriting (9) as: 

, , , ,o p o p o p o p− = +Y RU PQ D  (33) 

and multiplying (33) from the left-hand side by ⊥
P (constructed by (16) to 

eliminate the effect of ,o pQ ), it yields: 

 , , ,( )o p o p o p

⊥ ⊥− =P Y RU P D  (34) 

and the fault residuals can be defined as: 

, , ,o p o p o p

⊥ ⊥ = −P Y P RU  (35) 

( ) ( ) ( )o o oi i i ⊥ ⊥= −P y P Ru  (36) 

Thus, the residual generation can be achieved if ⊥
P , ⊥

P R can be acquired from 

the system input and output data. 

To use the residual vector ( )o i  at the time instant step i, the statistic test has to 

be applied, based on the following covariance matrix computed in the fault-free 

case. 

1
, ,1

1

( ) ( )
p

T

o o p o pp
j

j j
−

=

= Ξ Ω Ω  (37) 

to give the possibility of generating the fault occurrence threshold as: 

1( ) ( )T

o o ot i i

−= ω Ξ ω      (38) 

when defining the detection logic: 

,

,
h

h

t t no fault

t t a fault





 

                  (39) 

where ht + is a defined threshold. 

The presented approach takes advantage of the actual system input and output data 

sets to generate a discrepancy (residuals) that are indicative as a potential additive 

fault occurrence. 

It can be underlined that the data-driven technique addresses mostly anticipated 

fault conditions only. 
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5 Suppression of Noise Effects 

When the system is corrupted by the system and measurement noise, both taking 

Gaussian white noise properties, the instrumental variable ( )o iz  can be exploited 

to suppress noise effects. Since in this case the past data ( )g iz  are uncorrelated 

with the future noise realizations then, using (12): 

( )lim lim
, , , , , ,

1 1T T T

o p g p o p g p o p g pp pp p→ →
= + =D Z SV Z W Z 0  (40) 

where, 

,

,
,

( 1) ( )

( 1) ( )
g p g g

g p
g p g g

i i p

i i p

− −   
= =   − −   

Y y y
Z

U u y
 (41) 

The following remark shows the computation of the orthogonal complement ⊥
P  

Remark 4 Constructing according to (16) the orthogonal complement ,o p

⊥
U then it 

yields for the auxiliary variable   

( )lim lim lim
, , , , , , , , , ,

1 1 1T T T

o p o p o p g p o p o p g p o p o p g pp p pp p p
⊥ ⊥ ⊥

→ → →
 = − = =Y RU U Z Y U Z PQ U Z   

 (42) 

and the result of SVD to  , when exploiting the property (25), means: 

 1 2

T

=Γ Φ Ψ Ψ Σ                              (43) 

which defines that ⊥
P can be computed as: 

2

⊥ =P Ψ  (44) 

Finally, since (40) implies for  (34) that: 

( )lim
, , , ,

1 T T

o p g p o p g pp p
⊥

→
= −0 P Y Z RU Z  (45) 

(45) means that: 

lim lim
, , , ,

1 1T T

o p g p o p g pp pp p
⊥ ⊥

→ →
=P Y Z P R U Z  (46) 

and using the notations: 

lim lim
, , , ,

1 1,T T

YZ o p g p UZ o p g pp pp p→ →
= =Φ Y Z Φ U Z  (47) 

then, with the pseudoinverse of the matrix UZΦ it can be computed that: 
1

YZ UZ

⊥ ⊥=P R P Φ Φ  (48) 

Thus, all the parameters are now known to construct (35) when computing the 

fault residuals from the system input and system output data.  

Note, in practice, the limit to infinity in (40), (42), (47) is replaced by a 

substantially large value of p. 
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6 Reference Wind Turbine Model 

The proposed reference linear model can be given by the model of the three-blade 

horizontal wind turbine [21]. 

In this scheme the aerodynamic torque is given as [22]: 

3 21

2
( ) ( ( ), ( )) ( )r qt r C t t v t   =  (49) 

where ( )v t is the actual speed of wind [m.s-1], r is the rotor radius [m], ( )qC   is the 

torque coefficient and   is the air density [kg.m-3]. Specifically, ( )qC   depends 

on the tip speed ratio ( )t [rad] between the tangential speed of the tip of a blade 

and the actual speed of wind and the blades pitch angle ( )t  [rad], where: 

( ( ), ( )) ( )
( ( ), ( )) , ( )

( ) ( )

p r

q

C t t r t
C t t t

t v t

  
  


= =  (50) 

whilst ( )r t is the rotor angular speed [rad.s-1] and ( ( ), ( ))pC t t   is a rotor torque 

coefficient. 

The turbine speed is controlled to track the reference trajectory ( )rt t , to maintain 

the tip-speed ratio at its optimal value o , computed from the relation: 

( )
( ) ( )rt

v t
t t

r
 =  (51) 

Thus, using ( )t it yields: 

5 2

2

1( ) ( ( ), ( )) ( )
2 ( )

r q rt r C t t t
t

    


=  (52) 

The two-mass drive train equations take the forms: 

( )
( ) ( ) ( ) ( ) ( )dtr

r r dt r r dt g

g

bd t
J t b b t k t t

dt N


   = − + − +  (53) 

2

( )
( ) ( ) ( ) ( )

g dt dt dt dt dt dt

g r g g g

g g g

d t k b b
J t t b t t

dt N N N

   
   

 
= + − + − 

 
 

 (54) 

( ) 1
( ) ( )r g

g

d t
t t

dt N


 = −  (55) 

where ( )r t  is the rotor angular speed [rad.s-1], ( )g t is the generator rotating 

speed [rad.s-1], ( )t is the torsion angle [rad], ( )g t  is the aerodynamic torque 

[kg.m2.s-2], rJ is rotor inertia moment [kg.m2], gN is gear ration, dtb is the torsion 

damping coefficient [N.m.s.rad-1], rb is rotor external damping [N.m.s.rad-1], dtk is 

the torsion stiffness [N.m.rad-1], gb is the generator external damping [N.m.s.rad-1] 

and dt is efficiency od drive train. 

The hydraulic pitch is modeled by the differential equation of the form [23] 
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2
2 2

2

( ) ( )
2 ( ) ( )n n n r

d t d t
t t

dtdt

 
    + + =  (56) 

while ( )t  is the measured pitch angle [rad], ( )r t  is the reference pitch angle 

[rad], n is the pitch filter natural frequency [rad.s-1],   is the damping factor and 

the generator and converter dynamics are modeled by the first-order differential 

equation [24]: 

( )
( ) ( )

g

g gr

d t
t t

dt


 + =  (57) 

where ( )g t  is the generator torque [Nm], ( )gr t is the generator torque reference 

[Nm] and  is the generator and converter time-constant parameter [s-1]. 

Considering the continuou-tine system state-space description of the reference 

wind turbine model of the following form: 

( )
( ) ( ), ( ) ( )

d t
t i t t

dt
= + =

q
Aq Bu y Cq                 (58) 

then the used vector variables and the reference model matrix parameters are 

defined as follows: 

( ) ( ) ( ) , ( ) ( ) ( )T T

gr r r gt t t t t t      = =   u y                                   (59) 

( ) ( ) ( ) ( ) ( ) ( ) ( )T

r g gt t t t t t t      =  q                                   (60) 

0 0 0 0 0 1 0 0 0 0 0
,

0 0 0 0 0 0 1 0 0 0 0
T

n




   
= =
     

B C  (61) 

11

2

2

0 0 0

0 0 0

1
0 0 0 0 0

0 0 0 2 0
0 0 0 1 0 0
0 0 0 0 0

dt dt

r g r

gdt dt dt dt dt dt

g g g g gg g

g

n n

b k
a

J N J

bb b k

J N J J NJ N

N

  

 



 
− 

 
 

− − 
 =
 −
 
 

− − 
 
 − 

A  (62) 

5

11 2

1( ) ( ( ), ( )) ( )
2 ( )

dt r

q r

rr

b b
a t r C t t t

JJ t
   



+
= −  (63) 

In simulation this scheme is accommodated by accordingly adding the vectors of 

the system noise and the measurement noise. 
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7 Simulations 

The parameters used in the reference model are [21] 

3 1

g

1 1 1

dt r g

6 1 2 6 2

dt g r dt 

1

n

 = 1.225kg.m  = 57.5m  = 95  = 501s

 = 775.49 N.m.s.rad  = 7.11N.m.s.rad  = 45.6 N.m.s.rad 0.6

 = 2.7 10 N.m.rad  = 390kg.m   = 55 10 kg.m = 0.97

 = 11.11rad.s

r N

b b b

k J J

 







− −

− − −

−

−

=

 

and, consequently, the derived matrix elements are 
-2

12 13 21
4

23 22 32

44 45 66

 =    1.4840 10  =   -49.0909  =    0.0203

 =    7.0688 10   =   -0.1171  =   -0.0105
 = -13.3320  = -123.4321  = -50.0

a a a

a a a
a a a



  

Finally, supposing the constant speed wind profile, then the matrix element 11a is 

defined as: 

s r q

11

 = 0.05  = 2.4  = 1.25  = 0.25

1.0499

C

a

  

=
 

To obtain parameters of the discrete-time system model (1), (2), the continuos-

time representation was converted to the discrete-time form by the standard 

Matlab function using the sampling period 0.02st s= and the resulted equations 

were used for generating the input and output data to construct the instrumental 

variable in the simulation. 

 

Figure 1 

Time response of the residual filter on the first actuator fault 

As the result Figure 1 presents the fault residual response reflecting a step-like 

fault in the gain loss of the first actuator at the time 20ft s= . The FDI was 

trained according to the algorithm discussed in the paper and the result is analyzed 



D. Krokavec et al. Data Driven Additive Fault Detection of Wind Turbines 

 – 94 – 

in the term of detection threshold. In order to generate a suitable training data set 

with the proportion balance of the faulty-free and the faulty event, there were set 

both interval parameters as 8r s= = and the value 12p = . 

The system model was extended by the system noise input vector: 

  0.693 0.3 0097 0. 0872T =V  

while the system noise ( )v i  obeys normal distribution with zero mean and 

standard deviation 0.3 = . 

These examples illustrate the power that can be invoked through the prescribed 

method properties. 

Conclusions 

In the paper, a benchmark model is used for building and simulation testing a fault 

detection scheme, based on the subspace method data-driven principle, applicable 

to wind turbine benchmarks. To construct the reference residual from fault-free 

data, the discrete-time system model parameters are used for the prediction data 

set generation. Exploited data-driven methodology has sufficient adaptability in 

correspondence to different system operating points. Simulation case indicates 

that the residual performance is satisfactory. 

Compared with the model-based fault detection method, prior knowledge of 

complex system model is not needed and only the parameterized matrices, need to 

be identified. Modifications of this framework to obtain hybrid solutions, 

combining neural networks and fuzzy inference system approaches, are the subject 

of future research in this algorithmic field, since the hybrid input-output 

representations are challenging research works in the wind turbine diagnosis. It is 

worthwhile to point out here, that the proposed method can be simply adjusted to 

disturbances or noise [23], which would be welcome applications in the wider 

industrial systems. 
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