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Abstract: An interpolation of fuzzy sets is an important method in development of efficient 

fuzzy rule systems. An important property of the interpolated set is the distance minimum 

property. As can be seen, the validity of this property depends on the applied distance 

metric. The authors analyse the distance relationship among the base and generated fuzzy 

sets in the case of KH linear interpolation. The paper presents new properties among the 

entropy-based distances and proposes an appropriate method for distance optimum 

interpolation. 
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1 Introduction 

Interpolation is a widely used method to determine the values of a target function 

f() at a position x in a real interval [a,b], where f(a) and f(b) are given but f(x) is 

not known. In a more general approach, the method can be extended for an 

arbitrary domain D with Dxaaa n ,,...,, 21  to determine f(x) from f(a1),..., f(an). 

Our investigation focuses on set D of fuzzy sets. The notion of a fuzzy set was 

introduced by [4]. It is a class of objects with continuous values of membership 

and hence extends the classical definition of a set (to distinguish it from a fuzzy 

set we refer to it as a crisp set). Formally, a fuzzy set is a pair (E, m) where E is a 

set of objects and m is a membership function m : E → [0, 1]. Fuzzy set theory can 

be used in a wide range of domains in which information is incomplete or 

imprecise, such as pattern recognition and decision theory [2] [3]. 

In the area of fuzzy rule interpolation (FRI) [7], the goal is to generate new fuzzy 

rules from existing rules. An important component of FRI is the generation of 

antecedent and consequent fuzzy sets using a Fuzzy Set Interpolation (FSI) 

method. In the most widely used approaches, f(x) is generated as a weighted sum 
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of f(ai) where the weight value depends on the distance between x and ai: In the 

case of linear interpolation, the sum of weights is equal to 1: 
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The KH method developed by Kóczy and Hirota [8] uses linear interpolation as a 

standard FSI method. The position of the generated fuzzy set B* is calculated with 

the formula 
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where A denotes the antecedent set and B is the consequence set. The symbol  

denotes a -cut which is defined as Hα = {x  E | mH(x) ≥ α} for any H fuzzy set 

with membership function mH(). In addition to the KH method, several new 

approaches are available in the literature. In the modified α-cut based interpolation 

(MACI) [11], fuzzy sets are described with two vectors containing the left (lower) 

and right (upper) flanks. The improved version of MACI is called the 

multidimensional modified α-cut based interpolation [9], and it extends MACI 

with the fuzziness conservation technique proposed by [10]. A more detailed 

survey of FRI methods can be found in [7] [12], among others. 

In all versions, the distance value [1] has a central role in the interpolation 

algorithm. A semi-metric function to measure the distance DDd : meets 

the following conditions: 
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For the Euclidean space, the most widely used metric is the Minkowski distance 

between two points x and y in 
n
 , which is defined as 
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(2) 

For sets in Euclidean space there are several variants for the metric function. The 

Hausdorff distance q() is defined as 
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(3) 
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This can be extended to fuzzy sets as follows. Let E be a finite set and let (E) be 

the set of all fuzzy subsets of E. Then, for two fuzzy subsets A, B  (E), the 

distance in (3) can be extended to the following distance between A and B, 

.),(),(

1

0

  dBAqBAq  

 

A different approach is the Hamming distance for fuzzy sets. Consider two fuzzy 

subsets A, B  (E) with membership functions mA, mB : E → [0, 1]. Then (2) can 

be extended to the following Hamming distance, 
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(4) 

The Euclidean distance has the following nice property: consider two elements A, 

B in the space, then for every element C that satisfies 

]1,0[,)1(   BAC   

the following equality holds 

0),(),(),(  CAdCBdCAd ,
 

(5) 

i.e., the points of the connecting line are extreme points from the viewpoint of 

distance relationship. This nice property will not in general be met for other 

distances. 

The goal of our investigation is to analyze the relationship between the linear 

interpolation of fuzzy sets and the distance function in the case of a specific 

metric, the entropy-based distance function. The analysis shows that the fuzzy sets 

generated by linear interpolation will not meet (5), and a different generation 

method should be used to fulfill this extreme condition. 

In Section 2, three basic entropy-based distance definitions for fuzzy sets are 

presented. The first approach corresponds to a global entropy difference, the 

second method is based on an element-wise entropy difference and the third 

approach uses a descriptive complexity with symmetric difference of the 

corresponding membership functions. In Section 3, the property of distance 

optimality is investigated in KH interpolation for the different distance 

interpretations. It will be shown that the KH interpolation algorithm is not suitable 

to generate a fuzzy set lying on the distance optimum middle point between the 

operand fuzzy sets. To prove the existence of such an optimum fuzzy set, a 

generation algorithm is also presented in the section. The theoretical 

considerations are demonstrated with numerical examples in the paper. 
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2 Entropy-based Distances 

Different application areas require different similarity and distance interpretations. 

In the case of fuzzy sets, there are basically three main aspects of similarity [5]: 

- similarity of the support set in E (Hausdorff metric); 

- similarity of the values of membership functions (Hamming metric) 

- similarity of the fuzziness of membership functions 

In the latter, we assume a continuous E domain. The fuzziness of A  (E) is 

defined by De Luca and Termini [6] as 
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where 
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One approach to include the fuzziness into the distance calculation is given by the 

following formula: 

2
1 ))()((),( BentropyAentropyBAdS  . 

(6) 

As the entropy() function maps the fuzzy sets into  , ds1() meets the 

requirements of a metric function. Another way is to define an element-wise 

difference as 
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where 

)).(1lg())(1())(lg()(}){( xAxAxAxAxSentropyA    

This approach maps the fuzzy sets into a multi-dimensional vector space, where 

the applied Euclidean distance is a metric; ds2() meets also here the requirements 

of a metric function. 

The third approach uses the distance function that is based on a descriptive-

complexity [6]. This distance uses the symmetric difference of the corresponding 

membership functions and is based on the following considerations. Given two 

fuzzy subsets A,B   ([N]) with membership functions mA(x), mB(x), we denote 

by 

 )(),(min)( xmxmxm BABA    

and 

 )(),(max)( xmxmxm BABA  .  
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Define by A  B = (A  B) \ (A  B) the symmetric difference between crisp sets 

A,B. For fuzzy sets A, B   ([N]) define by 

)()()( xmxmxm BABABA   .  

Define a sequence of Bernoulli random variables XA(x) for x  [N] taking the 

value 1 with respect to mA(x) and the value 0 with respect to 1 - mA(x). Define by 

H(XA(x)) the entropy of XA(x), 

))(1log())(1()(log)())(( xmxmxmxmxXH AAAAA  .  

Define the random variable 
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We define a new distance between A, B   ([N]) as 
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for discrete domain and 
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(8) 

for continuous domain. 

In [6] we proved that the function dS3(A, B) is a semi-metric on Φ([N]); i.e., it is 

non-negative, symmetric, equals zero if A = B, and satisfies the triangle inequality. 

Note that for any x  [N] with a crisp membership value, i.e., mA(x)=1, or 

mA(x)=0, we have 1)( 


xm
AA

, and hence in this case 0))(( 


xXH
AA

. This 

means that for a crisp set A (for all xA, mA(x)  {0,1}) our distance has the 

following property (we call this the complement-property) 

0),( AAdist .  

From an information theoretic perspective, this property is expected since 

knowing a set A automatically means that we also know how to describe its 

complement. Hence, there is no additional description necessary to describe A 

given its complement. This is what 0),( AAdist means. It can be seen from the 

definition that the function dist(A, B) may equal zero even when A  B. 

As an example, consider the fuzzy sets A,B,C and the complement A' with 

membership functions as shown in Figure 1. Note that A and its complement are 

crisp sets. The distance matrix D = [di,j] is shown below; the rows and columns 

correspond to A, B, C and A' so that for instance the element d2,3 = dS3(B, C) = 

0.709. 
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Distance matrix D 

As can be seen, C is a translated version of B and they are both the same distance 

from A. This is due to ))10(())((   xXHxXH CABA . B and C are farther apart 

than B and A. Since dS3(A, A') = 0 then each one of B, C is of the same distance to 

A as to A' 

 

Figure 1 [6] 

Fuzzy sets A,B,C and Ac 

 

 

 

3 Distance-Optimal Interpolation Algorithm 

According to (5), a linear interpolation with Euclidean metric generates elements 

with optimal distance. In this paper we obtained experimental results using the KH 

method, which was used to generate the intermediate fuzzy set C for given A,B  

 ([N]). In these tests, the  value runs from 0 to 1. The test results are shown in 

Figure 2. In the Figure, the x-axis shows the value of ; on the y-axis the value 

ddiff(A,B,C) = d(A,C) + d(B,C) - d(A,B) is given. The top (red) line is the 

descriptive complexity distance (dS3()), the middle (blue) line is the element-wise 

entropy distance (dS2()) and the bottom (green) line refers to the entropy-difference 

distance (dS1()). 

The ddiff(A,B,C) value indicates whether the generated C element is the closest 

element to both A and B.  If ddiff(A,B,C) is equal to zero, the triangle inequality 

yields an equality and C lies on the line connecting A to B. 
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Figure 2 

Distance differences for dS1(),dS2() and dS3() 

Based on the test results, we conclude the following: 

Property 1: For the entropy-difference distance dS1(), for elements generated by 

KH interpolation, the distance difference ddiff(A,B,C)  is equal to zero. 

Proof. Let us take trapezoid membership functions with the following parameters 

for a set A: 
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where symbol Aα=c denotes the set of points with the membership function A equal 

to c. The entropy(A) differs from zero only on the intervals (A1,A2) and (A3,A4). 

The entropy value entropy((A1,A2)) is calculated with 





































12

0 12121212

)1log()1(log
AA

dx
AA

x

AA

x

AA

x

AA

x
. 

 

With corresponding substitutions, the integral can be transformed into the form 
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Thus, the entropy value for the set A, is equal with 
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i.e., it is equal to the length of it non-crisp parts. Taking a C KH-interpolated set 

with parameter , the C will be also a trapezoid fuzzy set with the following 

parameters: 

iii BAC  )1(  .  

It follows from the linearity that also 

)()1()()( BentropyAentropyCentropy     

holds. Thus, 

)}](),(max{)},(),([min{)( BentropyAentrpoyBentropyAentrpoyCentropy    

and ddiff(A,B,C) = 0 is met. 

Assuming the membership function can be approximated with a chain of linear 

segments, the ddiff(A,B,C) = 0 condition is fulfilled for fuzzy sets of arbitrary 

shapes. ▄ 

Property 2.  For every A,B  (E), the dS3(A,B) ≥ dS2(A,B) inequality holds. 

Proof. Consider first the following inequality, 

})({})({))(( xentropyxentropyxXH BABA  . (9) 

for every x  E. The inequality in (9) can be converted into the following 

expression: 
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The entropy() function can be substituted with its definition: 
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(10) 

where xA denotes mA(x). 

Let us fix xb to a value b and simplify notation xa to x. As (10) contains two 

absolute value expressions, four different subdomains should be defined: 
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In subdomain R1, formula (10) can be written as 
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The extreme point of K() meets the following equation 
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In subdomain R1, the extreme points lie on the line y = 2x. In a similar way, the 

extreme points are the following in the other subdomains: 
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As can be easily verified, the following conditions are met: 
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Thus, for every b  [0,1], the K(x) function has the following function-value 

segments: zero, increasing, decreasing, zero, increasing, decreasing, zero. From 

this fact, it follows that 

0)( xK   

for every x and b value. Thus condition (9) is met. The measured K() values are 

given in Figure 3. 
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Figure 3 

The K() difference function 

From the fact 
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it follows that 
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Extending the expression to infinite elements, we get the expected property 
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As can be seen, the KH interpolation algorithm is not suitable to generate a fuzzy 

set C lying on the middle point between A and B, i.e. 
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In the next step, an algorithm is presented for generating the required C set. 

Property 3. The required C set can be generated from A, B in such a way that 

every elements of C,(x) is either equal to A(x) or to B(x). 

Proof.  For the required element C, the equation 
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should be met. It follows from definition (8) that 
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In a similar way, as was shown in the proof of Property 2, we get 
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If mA(x) = 1 (or = 0) then mC(x) can be equal to zero (or 1) too. The same is true 

for mB(x) also. ▄ 

Figure 4 shows the dd(x) value for mC(x)  [0..1], mA(x) = 0.1, mB(x) = 0.7. 

 

 

Figure 4 

The dd() difference function 

Based on this result, a constructive algorithm can be given to generate C from the 

sets A and B. The algorithm assigns points to C from A in a greedy way, until it 

reaches the required distance value: 

 Gen(,A,B) 

 C = B 

 i = 1 

 while (dS3(A,C) > dS3(A,B)) { 

  C =A(0..i)  C (i+1..N) 

  i++ 

 } 
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In Figure 5, the fuzzy sets generated by KH and the proposed Gen() function are 

displayed. The two target trapezoid fuzzy sets A and B are shown in Figure 5a. 

The KH interpolated fuzzy set C' with =0.5 is given in Figure 5b in the middle in 

a solid blue line. The interpolated fuzzy set C'' generated with Gen() is shown in 

Figure 5b with a thick brown line. 

In the example, the following distance values can be measured: 
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Thus, the Gen() method yields the required distance relationship for the 

interpolated C set using the descriptive complexity distance. 

 

Figure 5a 

The A and B fuzzy sets 

 

Figure 5b 

The interpolated C sets 
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Conclusion 

This paper analyzes the distance relationship among the base and generated fuzzy 

sets for KH linear interpolation. In the case of Euclidean distance, the usual 

behavior can be seen, but in the case of entropy-based distances, the new 

generated sets do not provide the distance optimum. The paper presents new 

properties among the entropy-based distances and proposes an appropriate method 

of distance optimum interpolation. 
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