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Abstract: The Tensor Product (TP) model transformation is a recently proposed technique 
for transforming given Linear Parameter Varying (LPV) state-space models into polytopic 
model form, namely, to parameter varying convex combination of Linear Time Invariant 
(LTI) systems. The main advantage of the TP model transformation is that it is executable 
in a few minutes and the Linear Matrix Inequality (LMI)-based control design frameworks 
can immediately be applied to the resulting polytopc models to yield controllers with 
tractable and guaranteed performance. Various applications of the TP model 
transformation-based design were studied via academic complex and benchmark problems, 
but no real experimental environment-based study was published. Thus, the main objective 
of this paper is to study how the TP model transformation performs in a real world problem 
and control setup. The laboratory concept for TP model-based controller design, 
simulation and real time running on an electromechanical system is presented. 
Development system for TP model-based controller with one hardware/software platform 
and target system with real-time hardware/ software support are connected in the unique 
system. Proposed system is based on microprocessor of personal computer (PC) for 
simulation and software development as well as for real-time control. Control algorithm, 
designed and simulated in MATLAB/SIMULINK environment, use graphically oriented 
software interface for real-time code generation. Some specific conflicting industrial tasks 
in real industrial crane application, such as fast load positioning control and load swing 
angle minimization, are considered and compared with other controller types. 

Keywords: Parallel Distributed Compensation, Linear matrix inequalities, TP model 
transformation, Single Pendulum Gantry (SPG), position control, swing angle control 

1 Introduction 
The main contribution of this paper is that it investigates the performance of the 
TP model transformation-based control design in a real experimental setup, and 
evaluates and compares the results. The study is conducted through the example of 
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a translational electromechanical system, the Single Pendulum Gantry (SPG), an 
educational testbed of University of Zagreb. We derive three different controllers. 
One is based on a classical linearization and pole placement technique. It 
approximates the given model by one LTI system and derives one feedback gain. 
The second and the third ones are based on the TP model, that is the nonlinear 
combination of LTI models. The second design is very similar to the first one, but 
determines feedback gains by pole-placement to all LTI component of the model. 
Finally the control value is given by nonlinear combination of the feedback gains. 
The third one also generates one feedback gains to each LTI system, but the gain 
are oprimised by linear matrix inequalities instead of pole-placement. The 
performance of the three controllers are compared on the reail system. 

The TP model representation belongs to the class of polytopic models. The TP 
model represents the Linear Parameter Varying state-space models by the 
parameter varying combination of Linear Time Invariant (LPV) models. The TP 
model transformation was proposed as a uniform and automatic way to transform 
given LPV models to TP model form [4, 5]. The TP model transformation was 
soon introduced as the Higher Order Singular Value Decomposition (HOSVD) of 
Linear Parameter Varying (LPV) state-space models, and the result of the TP 
model transformation was defined as the HOSVD-based canonical form of LPV 
models [20, 21]. Further, the TP model transformation offers options to satisfy 
various convexity constrains on the type of the resulting parameter varying 
combination. For instance, the Linear Matrix Inequality-based control designs [1, 
2, 3], under the Parallel Distributed Compensation framework [6], can 
immediately be executed on the resulting polytopic model if the parameter varying 
combination defines a convex combination. Furthermore, if it is, for instance, 
define tight convex hull then the feasibility of the LMI-based design is 
significantly relaxed. The TP model transformation is capable of generating 
various types of convex parameter combinations for the resulting polytopic model 
automatically [10, 13, 14, 16]. 

The TP model transformation was applied in non-linear complex and benchmark 
problems for controller and observer design [8, 9, 16, 18]. The approximation 
properties of the TP model form were examined in papers [11, 12]. Tradeoff 
property of the TP model transformation was studied in [11]. Further 
computational improvement of the TP model transfromation is presented in [19, 
20, 21, 22]. 

The practical advantage of the TP model transformation-based control design 
framework is that it can be uniformly and automatically executed on a regular 
computer without human interaction. Recently, the TP transformation is applied 
for sliding surface sector design of a variable structure system to reduce the 
chattering, which is the main problem of sliding mode control [15]. 

The paper is organized as follows: Section II discuses the theoretical background 
of TP model transformation-based control design. Section III introduces the 
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laboratory development system. Section IV describes mathematical model of the 
experimental set up. Section V explains the basic steps of the controller design. 
Section VI presents the experimental results and Section VII concludes this paper. 

2 Tensor Product Model Transformation-based 
Control Design Methology 

2.1 Definition of the TP Model Form of LPV Models 
Consider the following linear parameter-varying state-space model: 
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with input u(t), output y(t) and state vector x(t). The system matrix S(p(t)) ∈ ROxI 
is a parameter-varying object, where p(t) ∈ Ω is time varying N-dimensional pa-
rameter vector, and is an element of the closed hypercube Ω = 
[a1;b1]×[a2;b2]×…×[aN;bN] ⊂ RN. p(t) can also include the elements of the state-
vector x(t), therefore (1) is considered in the class of nonlinear dynamic state-
space models. 

Definition 1 Finite element TP model: The S(p(t)) of (1) is given for any parame-
ter p(t) as the convex combination of LTI system matrices S also called vertex sys-
tems: 
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where row vector wn(pn) ∈ RIn  n = 1,…,N contains one variable weighting func-
tions )..1(),(, nnnin Iipw

n
= . Function [ ]1,0))((, ∈tpw

nin  is the in-th weighting func-

tion defined on the n-th dimension of Ω, and pn(t) is the n-th element of vector 
p(t). In < ∞  denotes the number of the weighting functions used in the n-th dimen-
sion of Ω. Note that the dimensions of Ω are respectively assigned to the elements 
of the parameter vector p(t). The (N+2)-dimensional coefficient tensor 

IOIII NRS ××××⋅⋅⋅×∈ 21  is constructed from LTI vertex systems IO
iii R

N

×∈...21
S . 

For tensor notation we refer to [23] 

Definition 2 Convex finite element TP model: Assume that we have the explicit 
function (2) of a TP model. If the weighting functions satisfy that: 
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then (2) becomes a convex combination, namely, the LTI systems 
Nii ,...,1

S  form a 

convex hull of the given LPV model. 

2.2 The Main Steps of the TP Model Transformation 
The TP model transformation starts with (1) and results in the convex finite ele-
ment TP model form (2) with (3). Main steps of the Tensor-Product Model Trans-
formation is shown in Fig. 1. First the transformation space is defined by Ω which 
the parameter vector p ∈ Ω varies in. Then the parameter varying system matrix is 
discretised in Ω. This means the computation of system matrix S(g) over the grid 
points g of a hyper rectangular grid net defined in Ω. The second step extracts the 
singular value-based orthonorm structure of the system, namely, this step deter-
mines the minimal number the LTI systems in orthonorm position according to the 
ordering of the singular values and defines the orthonorm discretised weighting 
functions of the searched polytopic model. The second part of this step is capable 
of modifying the LTI systems and the discretised weighting functions, in order to 
satisfy further conditions for the weighting functions. For instance, this step can 
ensure the convexity of the weighting functions (3). The third step determines the 
continuous weighting functions from the discretised ones.  If the given LPV model 
has no TP structure, then the resulting TP model is an approximation of the given 
LPV model. The approximation accuracy can be controlled by the TP model trans-
formation. 

2.3 TP Model Transformation-based Control 
The structure of the control design is shown in Fig. 1. The LMI-based control de-
sign theorems under the PDC framework can immediately be executed on the fi-
nite element convex TP model. The multi-objective control performance can be 
expressed in terms of LMIs. For instance, various LMI theorems are proposed in 
[6] for different conditions. We also can find a number of further and relaxed 
theorems in the related literature. LMI theorems are also proposed for obsrever 
design as well. 

In conclusion, we can substitute the LTI systems of the resulting TP model into 
LMIs selected according to the desired control performances. The solution of 
these LMIs determines one LTI feedback gain F to each LTI system. Computing 
the feedback gains over the same weighting functions by tensor product gives the 
control value as: 
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Figure 1 

Main steps of Tensor Product Model Transformation-based Control Design 

This can always be given in the typical polytopic form where the same feedback 
gains are applied, but with linear indexing and the tensor product of the one vari-
able weighting functions are given as multi variable weighting functions with the 
same indexing: 
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3 Concept of the Development System 
The development system is realized in the frame of mechatronics laboratory (Fac-
ulty of Electrical Engineering and Computing, University of Zagreb, Croatia). It is 
based on the different electromechanical modules, which can be controlled, ana-
lyzed and optimized from a personal computer, Fig. 2. 

Instead of a separate target microcontroller for the controlling task (each electro-
mechanical module), proposed solution is based on the microprocessor of the per-
sonal computer and advanced software tools. The testbed consists of specific elec-
tromechanical plant (mechanical subsystem) controlled by PC. The user applica-
tion is modeled, simulated, programmed and run on the PC. The communication 
with electromechanical plant is provided by a data acquisition card (DAC) 
mounted in PCI slot of a personal computer and terminal board. The terminal 
board covers a broad range of input and output signals allowing interfacing to a 
variety of devices via analogue and digital signals as well as quadrature encoders. 
Communication between the computer and the electromechanical plant is fast 
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enough to ensure real time controlling of the system. This solution is based on the 
Windows operating system which is not real-time environment and because of 
that, specific and optimized software tools have to be used. 

Systems ‘hardware chain’ consists of a personal computer (PC), data acquisition 
board (DAC), terminal board, and power supply with amplifier unit (UPM) and 
different electromechanical plants, Fig. 3. There are no strong demands on PC, it 
should be Pentium class processor or better (the faster the better), 16 MB RAM 
minimum, with Windows 95/98/Me/NT/2000/XP. Terminal unit is connected to 
DAC board supplied with 16 differential 14 bit analogue inputs, 4 analogue 12 bit 
outputs, 6 optical encoder inputs, 48 programmable digital inputs. Universal 
power module (UPM) with +/-15V, 3A has amplifier for electromechanical plant's 
actuators (DC motors). Electromechanical plants are modular in construction, each 
one has module with rotational or translational output, [24, 25]. This is according 
to the possibility of industrial translational and rotational crane models investiga-
tions. Rotational module is equipped with DC motor with planetary gearbox, in-
cremental encoder as a speed feedback, load antibacklash gearbox and additional 
mass for experiments with variable inertia load. In rotational experiments with 
pendulum, incremental encoder for pendulum angle measurement is added. 

Planar translational module (Single Pendulum Gantry, SPG) consists from a cart 
moving on the horizontal track and suspended pendulum. There is DC motor on 
the cart (the same as for rotational module) with planetary gearbox and two in-
cremental encoders for cart position feedback and pendulum angle measurement. 
These two modules are core of practically all mechatronic experiments, aimed for 
TP model transformation-based controller developing, as well as for other control-
ler types investigation. 

 
Figure 2 

Development system based on different PC controlled electromechanical models 



Acta Polytechnica Hungarica Vol. 3, No. 4, 2006 

 – 101 –

Figure 3 
Structure block diagram of development system 

with different electromechanical models

Other modules are coupled 
with basic rotational and 
translational accessories 
(pendulums, arms, gears, 
etc.) forming different type 
of experiments. It is 
possible to run close to 
twenty different 
experiments with different 
levels of difficulty. Some 
of them are: 

• Position and speed 
control with rotational 
and translational 
electromechanical plants 

• Ball and beam 
experiment with 
balancing the ball on the 
beam 

• Antipendulum control in 
rotational and 
translational moving 
(SISO and MIMO 
experiments) 

• MIMO experiments with 
2D gantry and 2D robot 
inverted pendulum 

• Self erected inverted 
pendulum in rotational 
and translational moving 
(only SISO experiments) 

 

The system software core is WinCon, real-time Windows 2000/XP application, 
[26]. It allows running code generated from a Simulink diagram in real-time on 
the same PC (also known as local PC) or on a remote PC. There is no need to 
write code by hand. Before a Simulink model may be run in real-time, it is needed 
first to generate the real-time code in Real-Time Workshop (RTW). Changes are 
as easy as modifying the Simulink diagram. Data from the real-time running code 
may be plotted on-line in WinCon scopes and model parameters may be changed 
on the fly through WinCon control panels as well as Simulink. The automatically 
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generated real-time code constitutes a stand-alone controller (i.e. independent 
from Simulink) and can be saved in WinCon projects together with its correspond-
ing user-configured scopes and control panels. 

4 TP Model-based Controller Design to the Single 
Pendulum Gantry 

The Single Pendulum Gantry system, shortly described in prior section, is used for 
experiment verification of the TP model transformation-based position and load 
swing angle controller, Fig. 4a. It is also used for education and research purposes 
in Laboratory of Mechatronics at University of Zagreb. It is an experimental test-
bed, and the goal is to design, compare and evaluate several controller approaches, 
[17]. 

4.1 Equation of Motion of the Single Pendulum Gantry 
Let us consider the stabilization problem as shown in Figure 4b. Only a brief dis-
cussion is presented here, for detailed description, please, refer to [17]. Letting 

 a) b) 

Figure 4 
SPG photo in mechatronics laboratory a), and schematics of the model b) 
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The parameters of the experimental system are given in Table I. 
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TABLE I 
PARAMETERS OF THE SPG SYSTEM 

 
Description   Parameter   Value   Units 
Equivalent viscoust   Beq    5.4   N ms/rad 
damping coefficien 
Viscous damping  Bp   0.0024   N ms/rad 
coefficient 
Planetary gearbox efficiency ηg    1   — 
Motor efficiency   ηm    1  — 
Gravitational constant of earth  g    9.81   m/s2 
Pendulum moment of inertia  Ip    0.0078838  kg m2 
Rotor moment of inertia  Jm    3.9001e-007  kg m2 
Planetary gearbox gear ratio  Kg    3.71   — 
Back electro-motive force Km    0.0076776  Vs 
constant 
Motor torque constant  Kt    0.007683  Nm/A 
Pendulum length from  lp    0.3302   m 
pivot to COG 
Lumped mass of the   Mc     1.0731   kg 
cart system 
Pendulum mass   Mp    0.23   kg 
Motor armature resistance  Rm    2.6   Ω 
Motor pinion radius   rm p    0.00635   m 

4.2 TP Model Representations of the Single Pendulum Gantry 
Observe that the nonlinearity is caused by state values )(3 tx  and ( )tx4 . The op-
eration range of the pendulum’s tip is limited to ±25deg for safety reasons, and the 
angular acceleration for the motor is maximum 0.7 rad/s. For the TP model trans-
formation we define the transformation space as [ ]8.0,8.0

180
27,

180
27W −×⎥⎦

⎤
⎢⎣
⎡−

= ππ  (note that 

these intervals can be arbitrarily defined). Let the density of the sampling grid be 
137137 × . The sampling results in s

ji ,A  and s
ji ,B , where i, j = 1…137. Then we 

construct the matrix ( )s
ji

s
ji

s
ji ,,, BAS = , and after that the tensor 54137137 ×××∈ RS s  

from s
ji ,S . If we execute HOSVD on the first two dimensions of sS  then we find 

that the rank of sS  on the first two dimensions are 7 and 2 respectively. The sin-
gular values are as follows in the dimension x3: S1,1 = 1609.4, s1,2 = 206.72, s1,3 = 
12.604, s1,4 = 10.719, s1,5 = 2.3109, s1,6 = 0.14075, s1,7 = 0.001854, and in the di-
mension x4: s2,1 = 1622.7, s2,2 = 10.965. This means that the SPG system can be 
exactly given as convex combination of 1427 =×  linear vertex models (the L2 
numerical error of the TP model transformation for exact model is less than 10-12). 
The TP model transformation describes SPG system as: 
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As in most cases it is to expensive in computational sense to work with 14 LTI 
models, and in real world situations the actuators accuracy is much worth than the 
modeling accuracy, it is possible to reduce the model. If we only keep the four 
biggest singular values in dimension x3 and keep the two singular values in dimen-
sion x4, the system can be reduced to 8 LTI models. The theoretical maximum L2 
approximation error is the sum of the discarded singular values s1,5 +s1,6 +s1,7 = 
2.4535. However by checking the actual L2 error for 10000 test points, an average 
maximal error of 0.080307 is received. Thus, the system can be reduced to a sys-
tem of half the complexity while it is still accurate enough for real world experi-
ments. The resulting basis functions are depicted in Figure 5. 

 
Figure 5 

Weighting functions of the TP model 

The LTI system matrices of the TP model are: 
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5 Controller Design 
We compare the control performances to various different alternative solutions. 

5.1 Conventional Controller based on Pole Placement 
CONTROLLER 1: A linearized model is selected for the conventional state 
feedback control design as 
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The poles of the closed loop linearized system (8) with state feedback are selected 
in the following way 
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i

i

Poles  (9) 

The state feedback control is 

,xu F−=     ( )2321088160 −=F . (10) 

5.2 Derivation of TP-based Controllers 
In the present case the controller (5) has the following form: 

( ) xxxwu
r

rr ⎟
⎠

⎞
⎜
⎝

⎛−= ∑
=

8

1
43, F . (11) 

Two methods are presented to define the feedback gains Fr for the eight systems. 

CONTROLLER 2: The feedback gains Fr are selected separately for the all sys-
tems to place closed loop system poles to (9). 

CONTROLLER 3: We design here a controller capable of asymptotically stabi-
lize the SPG and satisfy the given constraints. We apply the following LMIs. The 
derivations and the proofs of these theorems are fully detailed in [6]. 

Theorem 1 (Asymptotic stability) convex finite element TP model (2) with con-
trol value (5) is asymptotically stable if there exist X > 0 and Mr satisfying equa-
tions 



F. Kolonic et al. Tensor Product Model Transformation-based Controller Design for Gantry Crane Control System 
– An Application Approach 

 – 108 –

0>++−− rr
T
r

T
rr

T
r MBBMXAXA  (12) 

for all r and 

0≥++++−−−− rs
T
s

T
rsr

T
r

T
ss

T
sr

T
r MBBMMBBMXAXAXAXA  (13) 

for r < s · R, except the pairs (r; s) such that wr(p(t))ws(p(t)) = 0,8p(t), and where 
the feedback gains are determined form the solutions X and Mr as 

1−= XMF rr  (14) 

In order to satisfy the constraints defined earlier, the following LMIs are added to 
the previous ones. 

Theorem 2 (Constraint on the control value) Assume that kx(0)k · f, where x(0) 
is unknown, but the upper bound f is known. The constraint ku(t)k2 · µ is enforced 
at all times t ¸ 0 if the LMIs 

XI ≤2φ  

02 ≥⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

IM
MX
μi

T
i  

Theorem 3 (Constraint on the output) Assume that kx(0)k · f, where x(0) is un-
known, but the upper bound f is known. The constraint ky(t)k2 · l is enforced at all 
times t ¸ 0 if the LMIs  hold. 

XI ≤2φ  

02 ≥⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

IXC
XCX
λi

T
i  

The bounds of the control value and the output is guaranteed by Theorem 2 and 3. 
Thus we solve these LMIs for the constrains together with the LMIs of Theorem 1 
to guarantee asymptotic stability. By using the LMI solver of MATLAB Robust 
Control Toolbox, the following feasible solution and feedback gains are obtained 
for the controller: 

( )4703.166237.453126.513947.1181 −=F  

( )4069.161783.463291.510638.1182 −=F  

( )9900.152620.502320.525669.1173 −=F  

( )1934.191795.562115.631224.1414 −=F  

( )4747.166394.452608.512570.1185 −=F  

( )3999.161995.463926.512075.1186 −=F  
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( )9900.152620.502318.525665.1177 −=F  

( )1918.191805.562101.631182.1418 −=F  

6 Experimental Results 
The basic structure of TP model transformation-based controller used for simula-
tion and for real time running too, is realized in Simulink environment and pre-
sented in Fig. 6. 

 
Figure 6 

TP model transformation-based position and swing angle controller for SPG electromechanical system 
realized in Simulink environment 

The experimental results with the three controllers, mentioned in chapter V, are 
presented in Figs. 7-9. The reference was a pulse train. In the first set of plots (Fig. 
7), the time functions of the reference and the load position is shown. In the sec-
ond set of plots (Fig. 8), the time functions of the angle of the load are shown. As 
it was expected, the performances of CONTROLLER 1 and CONTROLLER 2 
are quite similar since they are set to have the same poles. The CONTROLLER 3 
seems to be faster but there are no significant differences among the three re-
sponses. The main difference appears in the control activity. According to Fig. 9, 
the CONTROLLER 3 has the smoothest time functions. 
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Figure 7 

The position of the load (Mp), comparison of the performances of three controllers 
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Figure 8 

The angle of the load (Mp), comparison of the performances of three controllers 
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Figure 9 

The control signal, comparison of the performances of three controllers 

Conclusion 

This paper presented a method by which a TP-based controller can be automati-
cally designed for a non linear system using commercial Matlab functions. For 
investigation of such controller in real-time environment, development system 
with different electromechanical models with complete development tools is real-
ized. Development system is based on the microprocessor of the personal com-
puter and advanced software, enabling modeling, simulation, programming and 
real-time running of different electromechanical systems on the PC. For adequate 
case study, single pendulum gantry electromechanical system has been chosen, in 
order to mimic the real industrial task-load position and swing angle control in 
gantry crane load (e.g. container) handling application. Keeping the four biggest 
singular values for angular position and two for angular speed, 14 LTI models are 
reduced to 8, resulting for real-world application acceptable trade-off between 
modeling accuracy and computational time. Owing to this key step, the bridge be-
tween theoretical background to practical applications of TP model transformation 
technique is built. Experimental results realized on SPG electromechanical sys-
tem, confirmed that TP model transformation-based controller can handle real 
time application in a good manner. 
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