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Abstract: During recent years, deep learning models proved to be very effective in multiple 
tasks in medicine and frequently outperformed other traditional machine learning methods. 
Especially in tasks where the processing of image or video data is necessary, deep networks 
present a very popular tool. Especially in medicine, image and video data present a frequent 
source of data. The work presented in this paper focuses on the use of deep learning models 
to detect specific phenomena from lung ultrasonography data. We focused on the detection 
of lung sliding, which can be observed from such data and used by clinicians in the diagnostic 
process of evaluating of patient's health condition. Previous research in this area mostly 
focused on processing a sequence of static images obtained from ultrasonography. In our 
work, we focused on the development of deep learning models able to process short video 
sequences. We used different architectures of a Resnet model and experimentally evaluated 
them on a real-world dataset. Then, we compared the results of best-performing 
architectures with the more traditional approach based on static image processing. 
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1 Introduction 
Lung diseases are among the most common pathological conditions worldwide. 
Therefore, accurate diagnosis and monitoring of lung diseases is of general interest. 
Also, for the reason of the pandemic caused by the SARS-COV-2 virus, there is a 
great motivation to collect clinical data. This also results in increasing interest in 
the academic field of artificial intelligence to create intelligent solutions using 
machine learning [1]. Standard scanning techniques for diagnosing and monitoring 
lung pathologies include chest X-rays, computed tomography (CT), and magnetic 
resonance imaging (MRI). However, these diagnostic approaches are based on 
ionizing radiation. This poses a risk to the patient's health, especially in the case of 
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a high dose or frequent exposure in the context of more frequent monitoring. 
Ultrasonic technologies can overcome the limitations of the mentioned technologies 
and thus provide a safer, portable, and cost-effective alternative [2]. 

Deep learning (DL) is a subfield of machine learning (ML) that attempts to learn 
abstractions at a higher level using hierarchical neural network architectures [3].  
It is currently a very popular field, widely applied in traditional tasks of artificial 
intelligence (AI), such as text mining and natural language processing [4], [5], 
image processing, and computer vision [6]-[8], or speech recognition [9].  
In medicine, DL proved to be very effective for multiple diagnostic tasks, including 
medical image analysis [10], [11]. With the increasing availability of sufficient 
computational resources, DL methods are becoming more applicable for video 
processing tasks as well. In comparison to images, video can provide important 
information about the evolution of the studied area over time. Therefore, we can 
track the movement of objects or the temporal appearance of an object, which can 
be challenging to obtain from static images. Short video sequences are also 
a frequent data source in medicine. 

One of the sources of video data in medicine is ultrasonography. Our work focuses 
on the short videos obtained from the lung ultrasound. Our primary motivation is to 
train the deep learning model to detect the lung sliding phenomenon in the lung 
ultrasound data. Contrary to other published research, which uses mostly 
transformed static images (see Section 2), we used a 3D convolutional neural 
network capable of video processing. We implemented the Resnet model, 
experimentally evaluated multiple topologies of the model using differently 
preprocessed data and compared its performance to previous research. 

This article is organized as follows. Section 2 provides an overview of the current 
state of the art in the analysis of ultrasound images using deep neural networks.  
The following (third) section describes the used data and models, and the fourth 
section summarizes the experiments and results. The final (fifth) section 
summarizes the main conclusions and sketches future work. 

2 Related Work 
When analyzing ultrasound (USG) images, the diagnostician observes certain signs 
(artifacts) that help to evaluate the patient's state of health. In the case of the lungs, 
these are mainly artifacts such as lung sliding, A-lines, and B-lines. Movement or 
lung sliding is a natural artifact that occurs in humans. The parietal and visceral 
pleura tightly adhere in a healthy individual with a minimal amount of fluid between 
them. This fact allows them to slide over each other during breathing. During the 
diagnostic process, a clinician may want to examine the patient for lung sliding (or 
its absence), which can be a symptom of one or more lung diseases. This backward 
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and forward movement of the pleura can be observed on images in B-mode or M-
mode. 

M-mode presents images that are a 2D time-slice of a video frame in the lung region. 
Two patterns can be observed in these images: a barcode or a seashore pattern. 
These patterns are an essential feature in the classification of M-mode images, 
whether the sliding movement of the lungs occurs on the given video (seashore 
pattern) or not (barcode pattern) [12]. Lichtenstein et al. in work [13] classified the 
sliding movement of the lungs in patients arriving at the intensive care unit (ICU) 
with acute respiratory problems while also using the mentioned patterns in M-mode 
images. Subsequently, in combination with other monitored symptoms on 
ultrasound, they could diagnose lung diseases with high accuracy. In Figure 1, we 
can see a comparison of these two patterns and an example of the selected slice of 
the B-mode image on the M-mode image over time. 

Figure 1 
Example of B-mode and M-mode with seashore and barcode sign 

Jaščur et al. [14] used deep learning methods for lung sliding classification on M-
mode images. The result of their work is a system for automatic detection of lung 
sliding, which frees the doctor from the need to perform manual cuts, while with 
their neural network model with 64-frame architecture, they achieved 89% 
classification accuracy, 82% sensitivity level and 92% specificity. 

Movahedi et al. [15] also devoted themselves to analyzing videos from a USG on 
the automatic classification of breast lesions based on videos obtained from an 
ultrasound examination. Their goal was to design an automated method to assist 
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radiologists in breast screening and cancer detection. The proposed algorithm was 
able to reduce the vibrations that arose during the creation of USG images by the 
doctor in such a way that the given algorithm evaluates every tenth image, 
regardless of what results in the previous image were achieved. The results of the 
proposed algorithm achieved better results than some existing breast lesion 
detection methods. Following works, even if are from the different field (not 
specifically USG video analysis). In the paper [16], the authors devoted themselves 
to the classification of atherosclerotic disease based on the segmentation of the 
boundaries of the middle part of the vessel wall while using the Kalman snake filter, 
achieving better results than similar works using dynamic programming. Sonka et 
al. in [17] performed automatic classification of ultrasound videos with the aim of 
early detection of cardiovascular disease. Their goal was the analysis of brachial 
ultrasound images while evaluating their performance. 

Ouyang et al. in [18] presented an algorithm called EchoNet-Dynamic based on 
echocardiography videos that outperforms human experts in the tasks of left 
ventricular segmentation, ejection fraction estimation and cardiomyopathy 
assessment. Based on repeated measurements, the paper's authors found that the 
model achieves comparable or smaller variance than human experts, who need years 
of practice for reliable and correct decision making. The given model can quickly 
and accurately diagnose cardiovascular diseases in real-time based on several heart 
cycles, is more reproducible, and quickly identifies subtle changes in the ejection 
fraction. This published work also includes an annotated echocardiography dataset 
containing 10,030 videos. 

3 Methods 
In the presented work, we analyse B-mode videos from the USG examination of the 
lungs to classify the presence or absence of lung sliding. USG examination of the 
lungs is a relatively new but effective lung examination technique, the main 
advantage of which is the absence of unnecessary transport of the patient as well as 
the absence of radiation to the patient, which occurs when using a conventional X-
ray examination of the chest. The analysis of such images from an ultrasonographic 
examination needs a certain level of expertise of the radiologist operating such a 
system [14]. 

In Figure 2, we can see what a video image from an ultrasonographic examination 
of the lungs looks like. The green marked area represents the ribs, blue represents 
the lung region, and red represents the pleura. 
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Figure 2 
Image from USG video with marked areas of the lung 

In this work, we focused on classifying videos containing lung sliding and where 
lung sliding is absent. Based on the previous results of works using M-mode images, 
we understood that for the model's decision, an image is needed in time, which 
creates a Seashore or Barcode image that is visible in the entire lung area. 
Therefore, any area of the lung should be suitable for its classification. Moreover, 
an image of 64 frames in a lung cross-section is already a sufficient sample.  
We decided to use the information about lung movement directly from the video. 
In contrast, for classification, we will use only a tiny area of the video in which the 
lungs are located, which we consider sufficient for the classification of movement 
or absence of lung movement. The models we will use are 3D convolutional neural 
networks. 
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3.1 Dataset Description 
In our work, we used the dataset presented in [14], where the given data were 
collected from an ultrasound examination of the lungs by doctors from the Clinic of 
Thoracic Surgery of the Jessenius Faculty of Medicine in Martin, Slovakia.  
The obtained videos are from a pneumothorax examination in which the patient lies 
on his back, and the doctor scans the front and side of the chest with a linear probe 
and focuses on three main signs: sliding lung, B-lines, and lung point. All of these 
videos were recorded in B-mode, which captures the impedance of a two-
dimensional tissue cross-section. Subsequently, the doctors divided this dataset into 
two classes, namely the class in which there are videos with the presence of lung 
sliding movement (28 videos) and the absence of lung sliding movement (20 
videos). The dataset contains 48 videos from 48 patients in various stages of 
postoperative care. The given videos differ from each other in several aspects, 
specifically in: 

• Resolution: 854 x 480 and 640 x 480 
• Format: MP4, AVI 
• Frames per second (FPS): 30 FPS and 54 FPS 
• Video length: 

 Lung sliding presence (LSP): 3 – 18 seconds 
 Lung sliding absence (LSA): 2 – 11 seconds 

3.1.1 Data Preprocessing 

When preprocessing the dataset, we initially focused on unifying the characteristics 
of the videos. Since the videos contain two different video formats, namely AVI and 
MP4, in the first step, we processed these videos to the same type, specifically to 
the MP4 format, for easier handling and further work with these videos. We then 
edited both types of videos to a uniform resolution of 640x480 and 30 FPS, keeping 
the length of the video in seconds. 

In the next step, we cut the videos to a length of 2 seconds (60 frames), which should 
be sufficient for classifying the presence of lung movement based on the work [5]. 
In this way, we extended the dataset to 115 videos with the presence of lung 
movement and 48 videos with the absence of lung movement. 

The next step of data preprocessing was to extract from the given videos the areas 
in which the sliding movement of the lungs occurs. This area is located between the 
ribs, the entire pleura width (the lung tissue between the two ribs). Since the given 
videos are shot in different zooms, and there is movement, it is impossible to crop 
the videos globally. 

Based on this need, we created a function that allowed us to manually mark the area 
of interest in the given videos and extract from this marked area the coordinates we 
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will need to process the dataset further. In Figure 3, we can see how the marking of 
the pleural areas took place. 

 
Figure 3 

The marked pleural area on the image from the USG lung video 

In the selected area of interest, we further divided the video into smaller videos with 
page dimensions of three alternative sizes: 30x30 pixels, 60x60 pixels, and 90x90 
pixels with a length of 60 frames. We created two sets. In the first set of videos, we 
focused on the upper part of the section only, in which the pleura is located, where 
the movement of the lungs is most visible. We used the first two rows of videos for 
this. 

In the second set, we focused on the entire selected area and created videos of the 
entire area. In this way, we obtained six different datasets (Figure 4 visualizes the 
class distributions in the datasets): 

• 2_30x30 (60 frames) – containing 1928 videos (1338 pos., 590 neg.) 
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• all_30x30 (60 frames) – containing 7 774 videos (5435 pos., 2339 neg.) 
• 2_60x60 (60 frames) – containing 890 videos (620 pos., 270 neg.) 
• all_60x60 (60 frames) – containing 1647 videos (1155 pos., 492 neg.) 
• 2_90x90 (60frames) – containing 663 videos (230 pos., 96 neg.) 
• all_90x90 (60frames) – containing 663 videos (470 pos., 193 neg.) 

Figure 4 
Class distributions in the datasets 

These datasets were split into training and test sets in a ratio of 70:30, maintaining 
a patient-wise split to prevent videos from the same patient from appearing both in 
the training and test sets. 

3.2 Proposed Model 
Since lung sliding is a sign that appears over time, it is necessary to work with the 
time component of the video. One way is to use an M-mode image (a slice of one-
pixel width and the entire video height in time) or to use a model that can process 
the whole video as input. In our work, we decided to investigate using the 3D CNN 
model directly for video processing and motion classification on video. 

Considering the success of the Resnet network [19] in work [14], we decided to use 
Resnet 3D implementation from the freely available library keras-resnet3d1. This 
library allows the processing of 3D image data. 

                                                           
1  https://github.com/JihongJu/keras-resnet3d 
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The input dimensions of the model were N * H * W * 3, where 3 is the number of 
channels, H represents the video height, W is the video width, and N is the number 
of video frames. In our experiments, we decided to compare three architectures, 
Resnet3D-18, Resnet3D-34, and Resnet3D-50, with 18, 34, and 50 layers 
respectively. The input goes through a 3D convolution layer, batch normalization, 
and ReLU activation, followed by a max-pooling 3D layer. They are followed by a 
series of residual blocks with 3D convolutional layers followed by a 3D average 
pooling layer. The output of the pooling layer is fully connected to the output of the 
model. Loss is calculated as binary cross-entropy, and the output is a binary 
prediction of the model. 

After the initial tests of the models, we chose the hyperparameters batch_size = 32 
and the number of epochs = 16, optimizer = Adam for the experiments, and used 
the ModelCheckpoint function to save the model weights while reducing the error 
function. Subsequently, the model with the smallest error function was used for 
evaluation. 

4 Experimental Results and Evaluation 
We used commonly used classification metrics such as accuracy, sensitivity, 
specificity, and F1 score to evaluate the results. 

4.1 Experimental Results on Datasets 30x30 
In the first experiment, we worked with a dataset with a resolution of 30x30 pixels 
for two rows and all rows from the lung region, respectively. We compared three 
Resnet3D models on each of the datasets. The results of the first experiment can be 
seen in Table 1. The best results were achieved by the Resnet3D-18 model on the 
dataset from the whole lung region (all_30x30). This model has the smallest depth 
among the compared models but achieved the best results. This case resulted in an 
accuracy of 89.13%, a sensitivity of 93.60%, and F1 score of 92.38%. Interestingly, 
this model performed the worst for the dataset of two lines selected around the 
pleura region. 

Table 1 
Models' performance on the 30x30 videos 

Model Dataset Accuracy Sensitivity Specificity F1 
Resnet3D-18 2_30x30 0.7047 0.5985 0.9344 0.7349 
Resnet3D-34 2_30x30 0.7953 0.7083 0.9836 0.8256 
Resnet3D-50 2_30x30 0.8420 0.8788 0.7624 0.8838 
Resnet3D-18 all_30x30 0.8913 0.9360 0.7853 0.9238 
Resnet3D-34 all_30x30 0.8752 0.9863 0.6113 0.9175 
Resnet3D-50 all_30x30 0.8849 0.9470 0.7376 0.9205 
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4.2 Experimental Results on Datasets 60x60 
For the experiments on 60x60 pixel videos, we followed the same procedure as with 
the previous datasets. When using datasets with 60x60 pixel videos, we found that 
the models used on data containing only the pleura surroundings performed better. 
However, our results deteriorated when using the entire lung height. The Resnet3D-
34 architecture achieved the best classification results with accuracy of 85.96%, 
specificity of 89.85%, and F1 score of 94.34%. The best-performing architecture 
that used the full lung height dataset was Resnet3D-50. It achieved accuracy of 
79.09%, sensitivity of 87.22%, and F1 score of 85.16%. The results of the 
experiments can be seen in Table 2. 

Table 2 
Models' performance on the 60x60 videos 

Model Dataset  Accuracy Sensitivity Specificity F1 
Resnet3D-18 2_60x60  0.7640 0.7143 0.8643 0.8019 
Resnet3D-34 2_60x60  0.8596 0.8403 0.8985 0.8889 
Resnet3D-50 2_60x60  0.7978 0.9076 0.5765 0.8571 
Resnet3D-18 all_60x60  0.6848 0.7048 0.6407 0.7547 
Resnet3D-34 all_60x60  0.6970 0.6256 0.8544 0.7396 
Resnet3D-50 all_60x60  0.7909 0.8722 0.6118 0.8516 

Compared to the best model for 30x30 pixel videos, the best model for 60x60 videos 
performed worse across all metrics. 

4.3 Experimental Results on Datasets 90x90 
This experiment ran on datasets containing 90x90 pixel videos and full lung height. 
The experiment confirmed that the simpler neural network architecture achieved the 
best results, and the deeper the architecture, the worse the classification results, as 
shown in Table 3. Our best model - Resnet3D-18, achieved classification accuracy 
of 88.15%, specificity of 89.40%, and F1 score of 87.68%. Overall, the models 
performed better than the previous experiment on the entire 60x60 dataset. 

Table 3 
Models' performance on the 90x90 videos 

Model Dataset Accuracy Sensitivity Specificity F1 
Resnet3D-18 all_90x90 0.8815 0.8768 0.8940 0.9150 
Resnet3D-34 all_90x90 0.8419 0.8518 0.8154 0.8870 
Resnet3D-50 all_90x90 0.8267 0.9875 0.3960 0.8925 
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4.4 Experimental Results Comparison 
Finally, we decided to compare the results of all our experiments. Comparing the 
experiments in Table 4, we can see that the best results were obtained by the 
Resnet3D-18 model on the 30x30 pixel dataset from the whole lung region, by the 
Resnet3D-34 on the 60x60 data of the first two rows, and by Resnet3D-18 on the 
90x90 pixel dataset from the entire lung region. Interestingly, according to the 
doctors, the area around the pleura is important for deciding lung movement, and 
the movement should be visible just at the pleura. 

Table 4 
Summary table of all evaluated models 

Model Dataset Accuracy Sensitivity Specificity F1 
Resnet3D-18 2_30x30 0.7047 0.5985 0.9344 0.7349 
Resnet3D-34 2_30x30 0.7953 0.7083 0.9836 0.8256 
Resnet3D-50 2_30x30 0.8420 0.8788 0.7624 0.8838 
Resnet3D-18 all_30x30 0.8913 0.9360 0.7853 0.9238 
Resnet3D-34 all_30x30 0.8752 0.9863 0.6113 0.9175 
Resnet3D-50 all_30x30 0.8849 0.9470 0.7376 0.9205 
Resnet3D-18 2_60x60 0.7640 0.7143 0.8643 0.8019 
Resnet3D-34 2_60x60 0.8596 0.8403 0.8985 0.8889 
Resnet3D-50 2_60x60 0.7978 0.9076 0.5765 0.8571 
Resnet3D-18 all_60x60 0.6848 0.7048 0.6407 0.7547 
Resnet3D-34 all_60x60 0.6970 0.6256 0.8544 0.7396 
Resnet3D-50 all_60x60 0.7909 0.8722 0.6118 0.8516 
Resnet3D-18 all_90x90 0.8815 0.8768 0.8940 0.9150 
Resnet3D-34 all_90x90 0.8419 0.8518 0.8154 0.8870 
Resnet3D-50 all_90x90 0.8267 0.9875 0.3960 0.8925 

Our experiments' results were then compared with the study by Jaščur et al. [14], 
which used an M-mode approach to time-lapse video images and their classification 
using Resnet networks. Table 5 shows the results of comparing our best models 
with the Resnet M-mode model for image classification. 

Table 5 
Comparison of the best performing model with the Resnet M-mode model (Resnet-18) 

Model Dataset Accuracy Sensitivity Specificity F1 
Resnet3D-18 all_30x30 0.9193 0.9360 0.7853 0.9238 
Resnet3D-34 2_60x60 0.8596 0.8403 0.8985 0.8889 
Resnet3D-18 all_90x90 0.8815 0.8768 0.8940 0.9150 
Resnet-18 64-frame 0.8900 0.8600 0.9200 - 

The best-performing model achieved better accuracy and sensitivity but worse 
specificity. In the case of sensitivity, we achieved more than 7.5% better. Our model 
learned better to recognize positive examples, i.e., those for which there was a 
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sliding lung movement in the video. The metrics are comparable to those achieved 
by the authors, while we had a smaller amount of data available for the training 
phase than the authors had for the 64-frame architecture. 

4.5 Explainability 
After the model training and evaluation, we wanted to explore the possibility of the 
model explanation. We decided to use the Vanilla saliency map method [20], which 
generates a heat map to show which part of the input image (in our case, which pixel 
in the video) affects the output classification. As a second method, we chose 
SmoothGrad [21], which is based on the saliency map method. It works on a similar 
principle, but adds noise at the input of its heat map calculations to reduce the noise 
at the output of this explainability. Thus, it provides more distinct regions on which 
to base the model's decisions. In Figure 5, we can see the applied explainability 
methods for a particular video over time. The given frames are six frames apart to 
show the given explainability for the entire video. The original video model (input) 
is in the first row. The second row depicts the frames from the video with Vanilla 
Saliency Map applied, and in the third row, SmoothGrad result is presented. In both 
cases, the highlighted areas visualize the pixels most significantly contributing to 
the classification. 

Figure 5 
Example of processed frames (first row), and result of XAI methods Vanilla Saliency Map (second 

row) and SmoothGrad (third row) to each processed frame 

Conclusion 

This work's goal was to use 3D convolutional neural networks for lung motion 
classification from USG B-mode videos. We used only a part of the video, thereby 
obtaining a larger number of samples, reducing the demands on the neural network, 
and proving that it is possible to replace lung movement in the time domain using 
M-mode classification directly from the video. We also tried to explain the 
decisions of the network using XAI methods such as Vanilla Saliency Maps and 
SmoothGrad. Assuming that additional annotated data from the ultrasonographic 
examination of the lungs are obtained, further research on the given issue could 
focus directly on the pleural area and classify the movement of the lungs only from 
this particular area. This was not possible due to the small amount of input data. 
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Subsequently, the given experiments presented in the paper could be repeated with 
additional explainability methods, the use of other neural network architectures, or 
the use of transfer learning to improve the results of the used network. 
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