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Abstract: The brain-computer interface is one of the most up-to-date communication 

options. The advances made in this area open up opportunities to help mentally or 

physically disadvantaged people. The brain-computer interface offers the possibility of re-

acquiring communication skills by deaf individuals. Electroencephalography (EEG) based 

speech recognition is, therefore, a novel research topic, which is an important component 

in communication technologies. In this article, we propose a speech activity detector 

algorithm, which, as expected, should improve the performance of the EEG based speech 

recognition system. EEG data uploaded while pronouncing 50 different phrases were 

classified using a feed-forward neural network. As a result of detection, a 0.82 F1 score 

was achieved. 
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1 Introduction 

Electroencephalography (EEG) is a method for measuring brain electrical signals 

on the head surface. The advantage of EEG is that it is a non-invasive technique 

that facilitates the use of the brain-computer interface (BCI) technology without 

implantation of electrodes by neurosurgery. We are convinced that speech 

investigation from the brain's electrical impulses leads to the BCI communication 

enablement [1]. 

Speech activity detection from EEG signals is based on the speech information 

look up in the brain's electrical signals. EEG devices can capture part of these 

signals on the head surface. However, they are weakened, degraded, or mixed 

with several sources or artifacts after crossing the skull [2]. Another problem of 

searching for such a speech signal from EEG is that we are still unable to record a 

clear EEG signal that consists solely of speech information. The presence of EEG 

signals from different sources, which are formed and transmitted simultaneously, 

makes speech signal detection very difficult. Although the EEG subject focuses 
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only on producing speech during the scanning of his brain, the recorded EEG is 

still a mixture of impulses from many sources. 

Speaking is a complex process that requires the involvement of several brain areas 

and articulatory organs to create a specific sound. Verbal language is created in 

the brain for several hundred milliseconds before the speech. A study [3] suggests 

that the brain needs an average of 600 ms to produce a word. Words and sentences 

include several kinds of abstract information that are lexical, grammatical, 

phonological, and graphic information. These components are stored in brain 

speech centers. Before the word is formed, the individual components are linked 

together and sent information about the articulation to the motor center, which 

controls the correct movement of the articulatory organs. Because speech is 

represented in the human brain as a cluster of information that is transmitted by 

nerve cells by electrical impulses, we can investigate the speech from the nerve 

perspective using the brain-computer interface [4]. 

Our speech recognition system from EEG signals was discussed in [5]. The study 

described the effort to find a suitable speech recognition algorithm. The 

experiment consisted of EEG signals processing from 10 subjects that read 50 

different phrases. When recognizing these 50 phrases using the Hidden Markov 

model, the best result was achieved when training a single subject model at 53.4% 

accuracy. The cross-subject experiment showed a significantly dropped accuracy 

of recognition to 6%. Based on the results of the experiment we started to create 

an algorithm for speech activity detection, an analogy to Voice Activity Detector 

used in ASR, which could help to achieve higher results of speech recognition 

from EEG signals. An appropriately designed speech activity detector from EEG 

signals could be an important part of the EEG based speech recognizer. 

Speech activity detection from EEG, and generally from BCI, has so far been very 

poorly reviewed. In addition to many BCI-based speech recognition kinds of 

research, speech activity detection from brain waves is still a very little solved and 

published problem, although it is very close to this field. 

One of the few BCI speech activity detection studies has been presented in [6]. 

Functional Near-Infrared Spectroscopy (fNIRS) signals to detect speech from the 

brain were used. The study was executed on normal audible speech, silent speech, 

imagery speech. The result of the study was an F1 score of 0.7. This study 

confirms that speech can also be detected using BCI devices, which can greatly 

help develop speech recognition in the BCI field. 

Another study discusses speech activity detection from EEG, suggests the use of 

such a system to improve classical speech recognition in a noisy environment. The 

study [7] demonstrates adding EEG-based speech activity detection can improve 

the performance of a voice activity detector that could be used to detect an 

acoustic noisy signal. The use of an EEG speech activity detector can also help 

predict whether a person wants to speak or not. 
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EEG based speech research contributes significantly to CogInfoCom discipline. 

Speech detection from EEG signals can greatly aid in the development of new 

forms of communication, combining computer science and cognitive science. [8]. 

In this paper, we present an EEG-based speech activity detection algorithm and a 

comparison of different EEG signal processing methods and their impact on 

improving the detection of speech in the EEG signal. The proposed algorithm was 

evaluated and tested on a pattern recognition neural network with a speech EEG 

corpus with a larger dictionary. Speech activity detection searches for a brain 

signal pattern that is generated before the word is formed or when it is spoken. 

The speech activity detector can help improve the performance of the 

aforementioned EEG-based speech recognition by eliminating false alarms in 

word recognition. 

2 Methodology 

2.1 EEG Recording 

The spread of electrical pulse from the brain through the skull and scalp causes the 

electrical signal captured on the surface of the head to be attenuated, distorted, and 

dispersed. EEG signals on the scalp are diffused because the secondary electrical 

currents are spreading between different mediums of the head such as 

cerebrospinal fluid, skull, and scalp tissues, which have noticeably different 

conductivities. The lower SNR in the EEG is justified by the fact that the 

distribution of electrical potential on the head surface is more dispersed [9]. Due 

to the diffusing of the signal on the scalp, we used the electrode placement over 

the entire head and record signals from more scalp areas. 

2.2 Brain Waves 

In the published experiment [5] it was stated that the results of speech recognition 

were better in dividing the signal into wave frequencies. In this experiment, it has 

been shown that potentially the greatest amount of speech information is carried 

by the beta alpha and gamma waves. From the study [10] we can assume that 

different frequencies carry different types of information. Slow waves were more 

represented in simpler or calmer brain processes. Faster waves have been 

observed in processes requiring concentration and greater cognitive activity. 

When designing the EEG signal processing methods, we were inspired by these 

findings. In the experiment, we used the decomposition of EEG signals on 5 

frequency bands. If the different frequency components are responsible for 

different brain activities, we can assume that the speech activity we are looking 

for will be easier or more clearly detectable in the distributed EEG waveform [11]. 
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3 Experiment 

In the experiment, we designed an algorithm for speech activity detection from 

EEG signals. In the signal processing part, we divided the experiment into two 

parts: in the first one, we focused on signal processing from the perspective of 

frequency waves. In the second part, we decided to describe the EEG signal from 

the cepstral region. Both of these signal processing approaches were finally 

trained and tested using a neural network and the results of such processing 

compared. Figure 1 shows a block diagram of a speech activity detection 

experiment. 

 

Figure 1 

Block diagram of speech activity detector. Signal processing as performed in two separate parts: 

frequency decomposition and reconstruction from real cepstrum. These parts were considered 

separately. 

3.1 Data Acquisition 

EEG signals were recorded with a 16-channel OpenBci Ultracortex Mark III EEG 

cap [12]. The EEG device is based on sensing brain signals using dry electrodes 

configured according to the 10/20 system [13] [14]. The EEG device is mobile 

and the signal is transmitted from the head surface to the computer via Bluetooth. 

It captures the brain waves with 250 Hz sampling frequency. For recording brain 

signals, this device incorporates 16 channels namely Fp1, Fp2, F3, F4, F7, F8, C3, 

C4, T3, T4, P3, P4, T5, T6, O1, O2 according to the international 10/20 system as 

shown in Figure 2, where two reference electrodes are positioned above the ears. 

For signal recording, open-source graphic user interface OpenBCI GUI 

compatible with the used EEG cap was used [12]. All signals were recorded to 

format .txt, which simplifies the work of further signal processing. 

The participant of the experiment to which EEG was measured was right-handed 

speaking Slovak, without any reported neurological disease. The participant 

followed the pre-agreed instructions during the recording. He was sitting 

motionless and tried to focus solely on speech processes. After starting the EEG 

recording, the participant read loudly phrases showed him on single charts one by 

one. 
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Figure 2 

Electrode placement according to 10/20 international system 

A dictionary created for the experiment contains 50 various phrases, there were 14 

one-word phrases, 20 two-word phrases, and 16 three-word phrases. The EEG 

signals were recorded in 9 sessions. To create speech labels, we also recorded an 

audio signal while recording EEGs. 

3.2 Signal Preprocessing 

The EEG signal was browsed to remove excessive noise at first. Evident noise 

was found mainly in the sections at the beginning and the end of the sessions. 

These parts were manually removed from the EEG as well as from audio 

recordings. In Figure 3 we see noise-infected parts of the EEG recording of one 

session. 

 

Figure 3 

Example of noise in the EEG signal of one session 
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During EEG recording, the signal is mixed with artifacts. Some types of artifacts 

can be prevented by using appropriate methods to record brain activity, but 

obtaining a perfect signal without artifacts is not yet possible. 

An artifact of power line interference is commonly found in the EEG signal. It has 

a frequency of 50 Hz, and it is easy to remove using frequency filtering [1]. For 

this purpose Butterworth filter was used because it has it an extremely flat 

frequency characteristic in passband range, and compared to other filters it 

contains lower passband ripples [15] [16]. Unlike the experiments [5] [17], other 

artifacts filtering was omitted, which could cause potential loss of speech 

information in the EEG signal. 

3.3 Frequency Decomposition of the EEG Signal 

The EEG signal from each channel into 5 frequency components in the first part 

of the experiment was divided. These separate components were combined into a 

matrix with a width of 16x5. Figure 4 shows a portion of the signal waveform 

from channel F7 in separate frequency bands. 

 

Figure 4 

EEG signal decomposition into five frequency bands according to normal brain rhythms 

3.4 Signal Reconstruction from Real Cepstrum 

The second part of the experiment consists of a cepstral reconstruction signal. 

Real cepstrum was calculated from the EEG signal for each channel. The 

reconstructed signal had a minimum phase property [18]. Figure 5 is the 
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reconstructed EEG signal in comparison with the original raw EEG signal from 

channel F7. 

 

Figure 5 

EEG signal after reconstruction. Blueshape- raw EEG signal. Magenta shape – reconstructed EEG 

signal with minimum phase 

3.4 Feature Extraction 

The reconstructed EEG signal was split into 240 ms frames with a 50% overlap. 

For each frame following features were calculated. The set of features was 

extracted from the frequency and time domains. Table 1 shows the features 

extracted from the EEG signal. The feature selection suitable for speech activity 

detection was influenced by the studies [19] [20]. The publication [19] describes 

methods of selecting features for describing EEG seizures. The study used the 

feature used in ASR from an audio signal. 

The mean value of the frame is an average value of signal partis. A standard 

deviation is a measure of the amount of variation or dispersion of a set of values. 

The skewness factor indicates the measured lack of symmetry of the distribution. 

We can say that the data set is symmetrical when it looks equal on the right and 

left sides of a given central point. Using the kurtosis coefficient we determine 

whether the data are peaked or flat in comparate to the normal distribution. The 

average band power summarizes the contribution of the frequency band to the 

overall power of the signal [21]. When dealing with information content, the 

Shannon entropy is often considered as the foundational and most natural one. 

Entropy, regarded as a measure of uncertainty, is the most paradigmatic example 

of these information quantifiers. [22] 
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Table 1 

Features extracted from the EEG signal and their descriptions.  

𝜇 is the mean of the signal x(n), 𝛿 is the standard deviation of the signal x(n), E represents statistical 

expectation, xi is the coefficient of the signal in an orthonormal basis. 

Feature Description Domain Equation 

Mean Mean value of a 

local  

Time 

𝜇 =
1

𝑁
∑𝑥𝑖

𝑁

𝑖=1

 

STD Standard 

deviation 

Time 

δ = √
1

𝑁 − 1
∑(𝑥𝑖 − �̅�)2
𝑁

𝑖=1

 

Skewness Local skewness 

in a frame 

Time 
𝑠𝑘𝑒𝑤 = 𝐸 [(

(𝑥(𝑛) − 𝜇)

𝜎
)

3

] 

Kurtosis Local kurtosis 

in a frame 

Time 
𝑘𝑢𝑟𝑡 = 𝐸 [(

(𝑥(𝑛) − 𝜇)

𝜎
)

4

] 

RMS Root mean 

square 

Time 

𝑟𝑚𝑠 = √
1

𝑁
∑|𝑥𝑖|

2

𝑁

𝑖=1

 

Band power The average 

band power 

Frequency 
𝑃 = lim

𝑇→∞

1

2𝑇
∫ |𝑥(𝑡)|2
𝑇

−𝑇

𝑑𝑡 

Shannon entropy Amount of 

information in a 

variable 

Information 

theory 𝑆ℎ𝑎𝑛𝑛𝑜𝑛 =∑𝑥𝑖

𝑛

𝑖=1

log2 𝑥𝑖  

Based on the set of features, EEG signals were described. Features were 

calculated for each signal channel from 60 samples, which at a sample rate of 250 

hz represents a frame of 240 ms. Hence, overlap was set to 50%, the features were 

recalculated for the 30 previous samples. These 7 feature values calculated for 

each recording channels were merged into a row matrix of shape (112.1). In the 

case of the decomposed signal, it was the matrix of shape (560.1), since we 

calculated the symptoms for 16 channels divided into 80 waves. 

3.5 Speech Labels 

Speech and non-speech segments in EEG data were labeled manually. Finding 

speech activity in EEG data is not possible due to the complexity of the signal. 

Therefore, audio was recorded and synchronized with EEG data. Speech labels 

were labeled from the audio signal, which is a simple task. 

For this purpose, we utilized the tool Transcriber for segmenting, labeling, and 

transcribing speech [23]. The audio record was divided into time segments. Each 
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segment by the start and end times of the pronounced word or the silence was 

bound. 

The proposed EEG speech activity detection model consisted of EEG data 

recorded during the speech activity generation. The speech of a subject consisting 

of 50 different phrases has been tagged with values 1 and 0 indicating segments of 

speech activity or non-speech activity of brain waves. 

3.6  Neural Network Training 

The EEG signal described by selected features was fed to the input layer to the 

neural network. We have compared two neural network models with two different 

signal processing approaches. The first was the frequency decomposition of the 

EEG signal into 5 waveforms of normal brain rhythms. The second one consisted 

of signal reconstruction from real cepstrum. 

In the experiment, the 2-layer feed-forward neural network was used. Various 

numbers of hidden neurons were tested. The best results were achieved with 60 

neurons on a single hidden layer. The neural network consist of a single tanh 

activated hidden and binary output sigmoid activated output layer. We trained the 

network with Scaled conjugate gradient backpropagation, with binary cross-

entropy as the loss function. Output pseudo probabilities were thresholded with a 

0.5 decision boundary. 

4 Results 

The proposed EEG speech activity detection model consisted of EEG data 

recorded during the speech activity generation. The speech of a subject consisting 

of 50 different phrases has been tagged with values 1 and 0 indicating segments of 

speech activity or non-speech activity of brain waves. 

In the experiment, we tried to get the best possible result of speech activity 

detection. Therefore, we compared different approaches to EEG signal processing 

to find information about speech using the Neuron network. 

In the baseline experiment published in [16], the same method of Feed-forward 

neural network training was used. The EEG signals were processed in different 

methods. The best result reported for the F1 (F-speech) score was 0.77. Despite 

relatively good F1 results, the trained model had a problem with the prediction of 

zero segments (non-speech). 

Table 2 shows the results of speech activity detection by the neural network in 

comparison with various signal processing approaches. These results were 

achieved on the same EEG database. We thought that decomposing the EEG 

signal into different frequency bands could result in an improvement. However, 
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the detection results achieved by this approach were comparable to those of the 

preceding experiment. 

The speech activity detection best result with signal reconstruction with minimum 

phase was achieved. The F1 score value was 0.82. An improvement of 0.05 

absolute in the F1 score compared to the preceding experiment was achieved. The 

inclusion of feature extracting functions in signal processing has yielded a better 

analysis of the speech EEG signal. 

Table 2 

Features extracted from the EEG signal and their descriptions 

 Accuracy Precision Recall F1 score 

Baseline experiment 0.45 0.69 0.87 0.77 

Wave decomposition 0.67 0.72 0.82 0.77 

Reconstruction with minimum phase 0.77 0.79 0.84 0.82 

Figure 6 shows an example of a graphical representation of speech activity 

detection output compared to input targets. The blue shape shows input targets 

indicating speech activity and the red shape shows output segments of speech 

activity predicted by our proposed algorithm. 

 

Figure 6 

A portion of output targets in comparison with input labels. The blue shape represents input 

segmentation. Red crossed shaper represents ground truth 

Conclusions 

This study examined speech activity in EEG signals. The results show that speech 

can be detected using EEG technology. A significant difference in EEG signal 

processing has been demonstrated in creating a speech detector model using a 

reconstructed minimum phase signal. From the results, we can assume that the 

cepstral area of EEG signals contains a greater amount of speech information. In 

this study, we used, among other methods, the method of reconstructing the EEG 
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signal from real cepstrum with minimum phase, which has not yet been 

investigated in a relation to finding a speech pattern. 

The results obtained in this paper can, in collaboration with other research dealing 

with speech and brain signals, contribute to solving the problem of EEG speech 

recognition. The method of signal processing based on cepstral reconstruction 

brought interesting results in our research. Although research has focused on 

speech detection, signal processing methods can be used and investigated in other 

research related to EEG and speech, such as [24] . 

In our future work, we would like to explore this area of EEG signal processing. 

In the course of further research, we would like to execute also more experiments 

with speech detection using RNN and CNN models, which could deliver better 

results in this field. 
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