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Abstract: The aim of this research was to develop a robust motor controller for the 

Szabad(ka)-II hexapod robot. A Fuzzy-PI controller that utilized a lookup table was chosen 

because of its reported promising performance and its ability to be embedded in the 

microcontrollers of the robot. The variables of the controller were defined by a particle 

swarm optimization method to minimize the five quality objectives related to the walking of 

the robot. The preferences of the five objectives were successfully expressed by a biased-

weighted geometric mean utility function. The resulting optimal solutions were significantly 

altered by changing the bias and exponential weights of preferences. Therefore, we 

checked the robustness of the solution against the controller’s variables as a secondary 

objective. 
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1 Introduction 

This work presents advanced research for control optimization related to the 

Szabad(ka)-II hexapod walker robot (Fig. 1), therefore, it is closely aligned with 

previous research results. The author’s previous publication provides detailed 

information about the Szabad(ka)-II mechatronic device, its structure, sensors, 

motion requirements, modeling and control challenges. 

This paper focuses on the issue of motion quality formulation, and the effects of 

the changing of preference weights between the objectives. Robust optimization is 

performed on a fuzzy-based motor controller, while walking quality is defined as a 

multi-scenario and multi-objective, in a specific simulation environment. 

The Szabad(ka)-II is an 18 degree of freedom (DOF) hexapod walker robot. All 

the 18 joints are driven by 12 V DC gear motors. The embedded electronics 

executes the control algorithm real-time with a sampling frequency of 500 Hz. 
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The dynamic simulation model of the Szabad(ka)-II was developed and validated 

based on measurements performed on a real robot [1]. The cyclic trajectory data 

were generated offline specifically for the intended walking scenario. The 

trajectory curve of the tripod hexapod walking [2] has been researched and 

optimized together with a PI motor controller [3]. The optimization of the Fuzzy-

PI motor controllers has also been researched [4]. 

In this study, the optimization of the motor controller differs from previous 

research in the following aspects: 

 Developing and optimizing a Fuzzy-PI controller that can be embedded 

into real robot controllers (one Texas Instruments MSP430F2618 

microcontroller for each leg). The fuzzy output is calculated by a 

previously generated lookup table, which has a constant number of 

dimensions and resolution, see details in [5]. 

 The simulation has multi-scenario properties. The multi-scenario approach 

is important to develop a universally optimal and robust motor controller 

for the intended use of the robot. See the details in Subsection 2.1. 

 

Figure 1 

Szabad(ka)-II hexapod robot 

The analyzed and optimized system is a multi-scenario multi-objective (MSMO) 

simulation system. These two properties are described in the second chapter. The 

third chapter describes the fuzzy-PI motor controller, and the fourth chapter 

summarizes the experimental results. 
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1.1 Multi-Objective Optimization Algorithms 

Over the past decade, a number of multi- and many-objective evolutionary 

algorithms have been proposed. The most cited procedure is the Nondominate 

Sorting Genetic Algorithm (NSGA) [6] and its extended version, the NSGA-II 

method [7], which is currently the most widely read article in this field of science. 

The authors of the NSGA have provided two sets of test problems. Besides the 

popular NSGA series, there are several evolutionary multi-optimization search 

methods, such as Multi-Objective Particle Swarm Optimization (MOPSO) [8], 

Cuckoo Search [9], Ant colony optimization (ACO) [10], and Multi-objective 

Differential Evolution (MOnDE) [11]. 

A multi-objective optimization process has several objective functions, and when 

searching for the optimum solution, the criteria involve finding the best fitness 

values while making compromises between the objectives. This topic has been 

addressed well in several studies [12] [13] [14]. 

The utility function is a specific type of objective function that is used to 

summarize (aggregate) the original objectives into a single figure of merit" [15] 

based on any predefined preferences - this is also called scalarization. When the 

aggregation of the objectives into a single utility function value can be defined 

unambiguously, then it represents the best solution [16]. 

One common approach is to combine the objective functions into a single function 

using weights, and the problem then becomes a matter of how to determine the 

appropriate weights [17]. However, in case of a real system optimization, it is 

often difficult to define the importance of these aspects relative to each other and, 

in addition, how they can be aggregated numerically. 

1.2 Controller Multi-Objective Optimization 

Structural and control optimization issues in complex dynamic systems are 

commonly multi-objective problems, as seen in hexapod robots [4] [18] [19], 

turbojet engines [20] [21], servo motor controllers [22] [23] [24], smart grids [25], 

train speed controllers [26], vehicle design [27], or building energy consumption 

problems [28]. 

Multi-objective optimization is commonly used for controllers where more than 

one quality objectives are defined. Adaptive PID and PI controllers are optimized 

using Multi-Objective Generic Algorithm in [22]. Cascaded DC motor controllers 

are optimized using multi-objective optimization evolutionary algorithms 

(MOEAs) selecting different solution on the Pareto-set in [29]. Optimal PID 

controllers are developed by NSGA-II algorithm, and compared to the traditional 

Ziegler Nichols methods in [30] and [23]. 
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Complex, nonlinear and stochastic systems, such as, a hexapod robots or smart 

grids are frequently controlled by fuzzy or neuro-fuzzy systems. A multi-objective 

genetic algorithm is commonly used to find the optimal fuzzy controller, e.g., in 

[25] and [31] the set of solutions was found on the Pareto front. The results were 

compared using the same fuzzy controller optimized by a mono-objective genetic 

algorithm in [25]. Multi-objective Particle Swarm Optimization is also used for 

motor controller optimization [24]. 

In the cited optimization research group, the Pareto solution is determined without 

researching any further robustness or additional criteria to select the final solution. 

For example, in [30] the solution is selected based on only the primary objective 

from the Pareto set of two-objectives without any further investigation or 

explanation. In papers where weighted aggregation is performed to create single-

objective from multi-objectives, the weights are not mentioned explicitly [26], or 

defined empirically. 

1.3 Multi-Scenario in Optimization 

A scenario in this context means a bunch of modifications in the input or 

parameterization of the system handled and optimized in parallel mode (e.g., a 

walker robot is walking, running, turning or sneaking). Scenarios are also referred 

to as 'situations' or 'modifications' in literature, but in event-based controlling, a 

scenario is not the same as an event. 

The multi-scenario is similar to the multi-objective property. Commonly, the 

aggregation of scenarios is performed similarly to or together with the multi-

objectives. The main purpose of the scenario-oriented approach is to be able to 

deal with a series of small multi-criteria design problems as opposed to a single 

large multi-criteria problem [32]. The increase of optimum robustness is the most 

common additional criteria aimed for in the multi-scenario approach, such as in 

[32] and [33]. In [34], the multi-scenario optimization was used to reach a robust 

optimum by dealing with uncertainty. 

The MSMO approach has already been developed for theoretical problems [35] 

but it still appears as a new research area for issues related to motion quality of 

robot systems. 

2 Multi-Scenario Multi-Objective Quality Definition 

of a Walker Robot 

To the best of the authors' knowledge, there are no specific and applicable quality 

definitions for walker robot control problems. Practically, there are no definitions 

for the required quality aspects, nor is it clear to what extent the aspects should be 
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optimized. In our definitions, goodness is divided into simpler elements, which are 

established by common sense and empirical experience. Thus, the quality 

description is multi-objective. 

2.2 Multi-objective Quality Definition 

A multi-objective optimization process has several objective functions, and when 

searching for the optimum solution, the criteria involve finding the best fitness 

values while compromising between the objectives [12] using any preference 

between them. 

The determination of the robot walking quality is not a trivial task. However, the 

most commonly seen criteria are the maximum traction and the minimum power 

consumption [36]: “In rough terrain, traction should be maximized. In benign 

terrain, power consumption should be minimized.” 

The walking quality or driving quality definition is multi-objective. Previously, 

five quality objectives were defined for the Szabad(ka)-II robot walking [4]; see 

Table 1. In addition to the energy consumption and maximum walking speed, the 

vibration and jerks that appear in dynamics are addressed. The minimization of 

such high accelerations or rigid collisions is generally examined in robotics [37]. 

Table 1 

Hexapod walking objectives 

Quality Goal Objective (to be minimize) Symbol 

achieve the maximum walking speed 
the reciprocal value of mean 

velocity in the X direction 5f  

minimize the electrical energy 

consumption 

electric energy consumption for 

walking one meter  4f  

minimize the torque on the joints and 

gears, thus minimizing the jerks in the 

motor current 

root mean square of torque 

measured in the 18 joints 1f  

minimizing the robot’s body 

acceleration in all three-dimensional 

directions 

root mean square of magnitude of 

3D body acceleration 2f  

minimizing the robot’s body angular 

acceleration in all three-dimensional 

directions 

root mean square of magnitude of 

3D body angular acceleration 3f  

2.2 Multi-Objectives Aggregation 

Some type of manual selection is required for the Pareto solution sets that result 

from the multi-objective optimizer algorithms [15], because only one solution at a 

time can be implemented in the real application. 
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The fitness values are calculated by aggregating these five (M=5) objectives by a 

so-called utility function. We propose a bias-weighted utility function and the 

production operation for the aggregation (geometrical mean). This function has a 

bias (bm) and exponent (em) weights for each objective. The bias weights can 

reduce the strong influence of near zero values, while the exponent weights 

express the relative importance between the objectives. Equation (1) describes this 

utility function resulting in the scalar fitness value (fSC) for one simulation 

scenario. The X represents the design variables, which are optimized by the 

optimizer algorithm. 

    



M

m

e

mmSC
mXfbXf

1

 (1) 

The well-defined quality formulation and proper weighting of the objectives are 

important [4]. In this study, these quality definitions are used. However, the 

preferences between these objectives are defined carefully and empirically. 

Different variations of these preferences are presented in Section 3.2. 

2.3 Multi-Scenario Simulation 

A driving solution is sought that provides robust and universally optimal behavior 

for all possible movements or walking tasks of the walker robot. The scenario-

oriented approach offers an advantageous solution to this issue, as stated in the 

conclusion of [27]: The all-situation problem can thus be decomposed into several 

scenarios to form multiple objective functions, where these scenarios can be 

typical cases of all possibilities (generally an infinite number of situations). The 

main criteria in the selection of these targets and the determination of the number 

of scenarios should be a diversity of the required maneuvers as much as possible. 

There is no guidance on how to select and how many scenarios are necessary, e.g., 

in [38], there are only two scenarios. The selected six typical scenarios for the 

Szabad(ka)-II robot demonstrate the possible intended use (which is just an 

example, because this robot was built for research purposes). In the selection of 

these scenarios, we considered the possible types of motions that the real robot 

can perform in the given laboratory conditions. 

Table 2 lists the six scenarios and their parameters used for the optimization of the 

Szabad(ka)-II robot fuzzy controllers. The load means a real cargo, mounted on 

the robot body. 

This ellipse-based leg trajectory was first published in [39]. The 3D leg trajectory 

curves are generated based on a half-ellipse. The width, the stride, the height, and 

the radius parameters are predefined or calculated from other scenario 

requirement parameters, such as withers or turn. These parameters differ for each 

scenario, as shown in Table 2. 



Acta Polytechnica Hungarica Vol. 15, No. 7, 2018 

 – 163 – 

Table 2 

Parameters of six walking scenarios 

Scenario description Trajectory parameters 

ID Gait Speed Load Turn Time Radius Withers 

1.  Tripod normal Fast 0 kg 0 1.5 s 0.16 m 0.15 m 

2.  Tripod normal Slow 0 kg 0 2.2 s 0.16 m 0.15 m 

3.  Tripod normal Fast 2 kg 0 1.5 s 0.145 m 0.20 m 

4. Tripod normal Slow 2 kg 0 2.2 s 0.145 m 0.20 m 

5. Tripod slope Fast 0 kg 0 1.5 s 0.20 m  0.14 m 

6. Turn right Fast 0 kg 0.5 1.5 s 0.16 m 0.15 m 

 

Figure 2 

Ellipse based leg trajectory for the tripod hexapod walking of the Szabad(ka)-II robot 

Each of the six legs received the same curves with inverted phases according to 

the tripod walking. This curve is adjusted only with the parameter turn if the robot 

performs a turn. The joint trajectories are calculated from this leg trajectory using 

inverse kinematics, which was described in a previous publication [1]. 

2.4 Multi-Scenario Aggregation 

Parallel execution of these scenarios (K=6) provides a multi-scenario objective 

function that is primarily a multi-objective function. Multi-scenario problems are 

regularly solved by aggregating all the objectives of all scenarios into a large 

multi-criteria problem, which is confirmed by previous studies [27], [35]. The 

global scalar fitness values (fG) are calculated with the geometrical mean applied 

for the scenario’s fitness values (fSC); see equation (2). 
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2.5 Simulation Model 

The kinematic model describes the movement, while the dynamic model shows 

the forces and torque effects on the robot body and engine, as well as the electrical 

activity of the motor. The kinematic and dynamic models are essential for the 

effective development of robots, especially if the controllers are under research, 

which is confirmed by several of the studies [40], [41], [19]. 

The current simulation model was described in paper [1] (it includes a detailed 

kinematic and dynamic model of the real Szabad(ka)-II robot). This model 

includes the kinematics and dynamics of the 18 DOF robots, model of the DC 

motor and gearboxes, model of the PWM amplifiers, model of the encoders and 

current sensors, model of the ground contacts, and model of the controllers 

embedded in the robot electronics. Fig. 3 illustrates the simulation model 

implemented in Simulink. 

 

Figure 3 

Simulink model of the Szabad(ka)-II robot – the root level. More details are given in [1] 

2.6 Optimization Algorithm 

In previous research [4], the examined motor controllers were optimized together 

with the parameters of the leg trajectory of the Szabad(ka)-II robot. The particle 

swarm optimization (PSO) method was chosen from 12 heuristic optimization 

methods through a benchmark-based selection and with the help of specific test 

functions [4]. The applicability of swarm-based optimizations of the hexapod 

robot structure and its walking are summarized in reference [42]. 
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Therefore, in this study, we used the already developed algorithm of the PSO 

(original implementation available in [43]). Fig. 4 illustrates the block diagram of 

the implemented optimization system in a Matlab/Simulink environment. This 

implementation is capable of parallelizing iterations, storing iteration results 

immediately after its calculation and analyzing the evolution during the work. 

These functionalities are especially developed for long term optimizations (when 

calculations last more than days or weeks). 

The Matlab code is available in webpage [44]. 

 

Figure 4 

Block diagram of the PSO optimization system in a Matlab/Simulink environment for the MSMO 

robot simulation 

3 Fuzzy-PI Motor Controller 

The main advantage of the Fuzzy Logic System is that it can extract heuristic rules 

that contain if-then statements from human experience [38]. Fuzzy Logic Systems 

are introduced to learn the behaviors of the unknown dynamics of the robot and 

wheel actuators due to their universal approximation properties. In this way, the 

external disturbances and approximate errors can be efficiently counteracted by 

employing smooth, robust compensators [45]. 
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The fuzzy controller can provide a more comprehensive solution compared to the 

PID controller [46]. This is confirmed by our previous studies: 

 A fuzzy-PI motor controller with three input variables was constructed 

and compared with a previously used PI controller for the Szabad(ka)-II 

walker robot [4]. 

 A fuzzy route controller was introduced and compared with a simple PID 

route controller [40]. 

 A fuzzy-I motor controller was developed and optimized to ensure better 

control performance to protect the Szabad(ka)-II walker robot’s electro-

mechanical equipment against high peaks or jerks, and was compared to 

a PID controller. [41] 

3.1 Motor Controller of Szabad(ka)-II Robot 

In this context, the fuzzy-PI controller type is a PI controller, where the P -

proportional tag is defined by a Fuzzy Logic Controller (fuzzy); see Fig. 5. This 

control system includes the following: 

 The fuzzy controller is implemented as a lookup table (LUT), published 

in [5]. Therefore, its name became “fuzzy LUT” in this context. This 

controller has two inputs: the angle error and the motor current. 

 Each motor current is measured by the robot’s microcontroller with a 12-

bit resolution AD converter. 

 The desired joint angles are predefined (see Section 2.3) and sent from a 

Matlab program implemented in the PC client side. 

 The measured joint angles are calculated based on an encoder sensor 

mounted on the motor. 

 The I integrator tag’s output is added to the P proportional tag and results 

in the control voltage. This voltage drives a PWM amplifier with a 10-bit 

resolution DA converter. 
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Figure 5 

Block diagram of the Fuzzy-PI motor control design and implemented for 18 joints of the Szabad(ka)II 

robot 

3.2 Fuzzy Controller 

The aim of the fuzzy-P controller is the same as the proportional tag of a 

traditional PID controller. However, this fuzzy controller is capable of taking into 

account the motor current and ensuring softer behavior for high motor currents. 

Moreover, when the motor current is extremely high, inverse output can be 

ensured to protect the electro-mechanical system. These requirements are 

represented by the six fuzzy rules; see Table 3 and Fig. 6. 

Fig. 7 shows the surface that is established by the proposed rules, which will be 

transformed to a LUT in the embedded implementation. It demonstrates the 

nonlinear control behavior along the two input variables. 

Table 3 

Rules of the proposed fuzzy-P controller 

Rules Comment 

 ErrorAngle MotorCurrent Voltage Weight  

1.  Zero - Null 0.5 direct P controlling rules 

for normal behavior 2.  Pos - Pos 1 

3.  Neg - Neg 1 

4. Zero small Null 0.5 inverse P controlling rules 

for protection again high 

motor current 
5. Neg large pos-ex 1 

6. Pos large neg-ex 1 
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Figure 6 

Demonstration of the rules of the proposed fuzzy-P controller 

 

Figure 7 

Surface of the proposed fuzzy-P controller – the basis of the fuzzy lookup table in the embedded 

implementation 

This kind of controller was previously tested under extreme mechanical situations 

[47] and proposed to protect the robot in such situations. An adaptive control 

mechanism is proposed in [47] by changing the rule’s weights in the fuzzy 

controller: “The suggested solution of mechanism control lies in the turning on or 

turning off of some membership functions in the fuzzy control. Changing the 

weight of the rules in the control algorithm we can modify the characteristics of 

the controller so as to be optimal in the case of drop test and walking as well.” 

In this study, the weights of the fuzzy rules are optimized by the PSO to increase 

the multi-objective walking quality during multi-scenarios. 
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3.3 Design Variables 

In this context, the parameters that are changed by the optimizer algorithm are 

called design variables, and the other parameters that influence the objectives but 

are not changed by the optimizer are called design parameters. In this case, there 

are some constant design parameters, and there are some that differ between the 

scenarios (considered as scenario design parameters). 

In this study, the optimal motor controller is searched for by the previously 

designed leg trajectories and walking algorithm. The fitness function is multi-

objective as introduced in Section 1.1. 

Table 3 lists the selected design variables (N=9) related to the fuzzy-PI motor 

controller. The minimum and maximum values are selected empirically and based 

on the previous experience given in [4]. The symmetric rules (2-3 and 5-6) are 

handled together as proposed by [4]. The unit of inputs and outputs are in integer 

coded format inherited from the ADC and DAC, but the transfer multipliers are 

mentioned in Table 4 in the Unit and Domain column. The fuzzy output 

membership function domain includes three functions that are convertible to each 

other without adding or removing any parameters (triangular – trimf, gaussian – 

gaussmf, and Π-shaped membership function - pimf). This is important in the 

optimization algorithm, for a constant number of design variables. 

Table 4 

Design variables – selected fuzzy controller parameters to be optimized 

Abbr. Variable Description 
Min. 

Value 

Max 

Value 

Unit and 

Domain 

I Integrator tag  0.1 1 V/rad 

FI1R  Fuzzy input 1 (Aerr) range 1500 6000 Rad/10430 

FI2R Fuzzy input 2 (Im) range 6000 24000 A/2079 

FOR Fuzzy output 1 (P) range 500 2000 V/(511/11.3) 

FOMF 
Fuzzy output membership 

function 
1 3 

1: trimf  

2: gaussmf  

3: pimf 

FW1 Fuzzy rule 1 weight  0.1 1  

FW23 Fuzzy rule 2 and 3 weight 0.1 1  

FW4 Fuzzy rule 4 weight 0.1 1  

FW56 Fuzzy rule 5 and 6 weight 0.1 1  
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4 Results 

4.1 Optimization Results 

The PSO method was applied to increase the MSMO walking quality of the 

Szabad(ka)-II robot by searching for the best motor controller. The MSMO fitness 

evaluation and aggregation were described in Chapter 2. The design variables of 

the motor controller and their boundaries were defined in Section 3.3. 

The PSO algorithm has its own parameters, which were defined based on previous 

experiences [4], [42], [3]. These parameters include the cognitive attraction of 0.5, 

Social Attraction of 1.5, generation number of 25, and the population number of 

25. However, in this phase the population and generation numbers were set 

relatively small compared to the final optimization instance. Here, the aim was to 

research the method, to make the multiple runs of the optimization faster during 

the development, and to run one final larger optimization for the real 

implementation at the end. I.e. the larger sized optimization reach the global 

optimum with higher probability [48], but not obligatory [49]. 

 

Figure 8 

Statistical results of the PSO (case A) for the fuzzy-PI controller evaluated by the MSMO approach. 

The top graph shows the distribution of the global fitness values (fG) occurring in the optimization, the 

middle graph shows its distribution for each generation, and the bottom graph shows its distribution 

over generations and populations 



Acta Polytechnica Hungarica Vol. 15, No. 7, 2018 

 – 171 – 

Fig. 8 graphically shows the statistical analysis of the first optimization (A case). 

It confirms that the PSO during the generations continuously found a better 

solution, as it the maximum curve (red curve) illustrates in the middle graph. On 

the other hand, there is no proof that the best solution from the tested 142 

iterations - considered “optimum” - is the real global optimum. However, the 

global optimum within a weaker tolerance is expected based on the previous 

research [4]. 

The given optimum is given in Table 6, while the fuzzy controller surface for the 

A case is illustrated in Fig. 8. 

The preference weights for the MSMO fitness evaluation according to equation 

(1) are listed in Table 4 (A case). The explanations for these preference weights 

are described in next subsection. 

4.2 Various Preferences of Multi-Objective 

There is no universal guidance for predefining the preferences between the 

objective methods as introduced in Chapter 2. In this section, we analyze the 

effect of changing the preferences to the optimum values. 

Table 5 lists the tested preference values, where the preferences for the A and B 

cases are generated randomly, while the C case preferences are set manually to 

default values (bias b=0, exponent e=1). 

Table 5 

Multi-objective preference changes by modifying the weights of the utility function 

Utility Function 

Case 

Bias weight of utility function 

(bm) 

Exponent weight of utility 

function (em) 

A [0.9  0.8  0.24  0.5  0.8] [0.1  0.7  0.3  0.3  0.1] 

B [0.4  0.7  0.3  0.4  1] [0.2  0.6  0.8  0.1  0.2] 

C [0.0  0.0  0.0  0.0  0.0] [1.0  1.0  1.0  1.0  1.0] 

Table 6 lists the given optimum for these three cases. We can observe significant 

differences between the cases for most of the design variables. 

Table 6 

Calculated optimums of the design variables by the three different multi-objective preferences (note: 

global fitness values are not comparable between the cases because of the different utility functions) 

Design Variables Result A Result B Result C 

I 0.171 0.160 0.607 

FI1R  5837 5400 5629 

FI2R 20111 18693 18242 

FOR 781 500 527 

FOMF 2 (gaussmf) 3 (pimf) 3 (pimf) 
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FW1 0.187 0.347 0.581 

FW23 0.961 0.972 0.889 

FW4 0.789 0.592 0.702 

FW56 0.927 0.814 0.188 

Global fitness (fG) 20.8696 59.5132 1396908 

Fig. 9 shows the fuzzy surfaces for these three optimums. The observable 

significant differences of these surfaces also confirm that the different preference 

weights lead to different solutions. 

 

Figure 9 

Optimal fuzzy-P surfaces for the A, B, and C optimization cases 

4.3 Robustness Comparison 

Robust optimization refers to the process of finding optimal solutions for a 

particular problem that have the least variability to probable uncertainties [50]. 

The robustness index introduced by [51] is used to evaluate and compare our 

optimums, because the robustness is aimed as the secondary performance metric 

in addition to the primary multi-objectives, similar to in [28]. 

Robustness index (Ri) is determined to be the largest eigenvalue of the sensitivity 

Jacobian matrix (JkRN×M), which calculated between the design variables (XRN) 

and the objective function values (FRM, F={f1,…fM}), for one scenario (k), see 

equation 3. 
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The robustness indices are calculated for each of the six scenarios in each of the 

three cases. The values and distribution of these robustness indices are illustrated 

in the left panel of Fig. 10. The smaller values represent more robust or less 

sensitive optimums for the changes of the design variables. Solution A shows a 

slightly higher median value (red line) but with the lowest maximum, solution B 

has the highest maximum, and solution C has the lowest median value. It is 

difficult to select the most robust solution because the robustness properties 

deviate between the scenarios. 

 

Figure 10 

Comparison statistics of the three optimization cases: the left graph shows the distribution of the 

robustness indices (lower is more robust), the right graph shows the average values of the multi-

objectives (lower is better) 

The right panel of Fig. 10 illustrates the how the five objectives (defined in Table 

1) differ between the three cases. The plotted values are averaged over the six 

scenarios. This analysis confirms that the preferences weights are influenced by 

the relation between the objectives. For example, in case A, the exponent for f4 

was small (e4=0.1), while it was high in case C (e4=1.0), furthermore f4 shows a 

better value in case C. 

Conclusions 

We studied the issues related to the heuristic optimization of motor controllers for 

a walker robot, using a dynamic simulation model. Defining and quantifying the 

quality of the hexapod robot walking as a multi-objective problem and how to 

aggregate the multi-objectives into a scalar fitness value using preference weights 

were explored. Integrating the multi-scenario simulation approach was also 

examined in this optimization system. 
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The optimization results (three example solutions of the fuzzy-PI controller) show 

high divergences between the optimums for defining different preferences 

between the objectives. The preferences are implemented in a utility function with 

bias and exponent pair weights for each objective. 

The manual selection of these weights opens another optimization issue, which we 

believe, is the important part of the entire system. The sensitivity or robustness 

analysis can be used as an external quality aspect to select the appropriate 

preferences. The method proposes an automatic definition of the preference 

weights by the optimum robustness against the design variables, design 

parameters or multi-scenarios. 

This robust optimization approach could be applied, not only to mobile robots 

(legged, wheeled or train structures), but in other fields of engineering systems, 

such as, optimization problems of smart-grids, turbo-jet engines, or bridge 

structures. In the aforementioned systems, quality can be defined using more 

objectives; moreover, the intended use could both include additional scenarios and 

be simulated with multi-scenarios. The robustness of optimum against situation 

variability can be considered as a secondary objective, since in reality, several 

scenarios may occur. 
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