
Acta Polytechnica Hungarica Vol. 18, No. 1, 2021

 – 79 –

Clean and Dirty Code Comprehension by Eye-

tracking Based Evaluation using GP3 Eye

Tracker

Jozsef Katona

University of Dunaújváros, CogInfoCom Based LearnAbility Research Team

Táncsics M. 1/A, 2400 Dunaújváros, Hungary

E-mail: katonaj@uniduna.hu

Abstract: During the observation, analysis, and examination of cognitive processes,

human-computer interfaces are increasingly becoming widespread. Programming could

also be seen as a complex cognitive process. This study aims to examine the efficiency of

the clean code paradigm and compares it to the dirty code produced without the principles

formulated in this technique. In addition to the traditional knowledge level test and

subjective judgment, the readability and comprehensibility of the implemented code were

determined by analysing the heatmap and gaze route besides measuring and evaluating eye

movement parameters. Based on the statistical evaluation, it can be stated that there is a

significant difference in the average number of fixations, the average fixation time, and the

average length of routes between fixations measured by studying two differently written

source codes. This means that in the case of the clean code, significantly less and shorter

information recording and processing were necessary to understand the code.

Keywords: eye-tracking; programming; clean code paradigm; dirty code

1 Introduction

Since every segment of our life is now supported by software, the quality and

usability of software products have become paramount. During the observation,

analysis. and examination of cognitive processes, human-computer interfaces are

increasingly becoming widespread. Programming could also be seen as a complex

cognitive process. In the spirit of usability, the field of Human-Computer

Interaction (HCI) has evolved since the 1970s, while various software life cycle

models have emerged due to designability and traceability. Countless variants of

these models have emerged over the years, but since 2001, agile development has

dominated. Laying down agile guidelines has led to the development of numerous

methodologies (e.g., Scrum, Kanban, XP) that provide guidance (like clean code)

to industry actors to create quality software products.

J. Katona Clean and Dirty Code Comprehension by Eye-tracking Based Evaluation using GP3 Eye Tracker

 – 80 –

1.1 Theoretical Overview

The aim of the clean code paradigm applied in the field of programming is to

support the executing of a software code base during a software implementation

that facilitates easy overview and understanding as well as contributes to effective

testing and development. To write codes with this structure, programmers need to

be familiar with concepts as Don't repeat yourself (DRY) applicable for methods

or Single Responsibility Principle (SRP) concerning classes. [1] Today,

developments in the research field of Human-Computer Interaction (HCI) allow

the observation and examination of various cognitive processes. [2, 3] Thus, by

now, the clean code paradigm briefly described above can be examined by

applying various HCI-based procedures. One of such analysis possibilities is the

examination of the parameters of eye movement, with which the characteristics

that can also be related to programming can be observed, the recorded results can

be evaluated, and finally, connections can be determined.

The study [4] focuses primarily on the mechanism of reading source code. The

method of reading a traditional text-based document and a source code describing

the operation of software while observing, recording, and evaluating eye

movement parameters were compared with the contribution of test subjects. The

results of the research show that reading a source code is much less linear than

that of a traditional text document, and experienced programmers read a code base

less linearly than beginner programmers. Further research [5-8] shows that novice

programmers spend much more time reading comments than their advanced peers

to understand the code. The results of these researches can be related to the

principles of clean code, because when compiling these types of code bases, the

source file must be strived to be as a newspaper article, that is it should contain

high-level concepts and algorithms, while details should be emphasized going

downwards and the lowest level functions should be placed at the end. Informative

nomenclature should be applied to minimize comments. [1] In the research [9] on

source code review, the visual attention of the test subjects was examined in an

industrial environment, where the recorded results showed that the test subjects

with programming skills had more efficient eye movement features; for example,

better code coverage, attention span and error lines as well as comments. These

features are particularly important in effective error detection, i. e. in code review

activity. In [10], the possibility of more effective education in programming is

analysed and, through empirical research, the eye movement parameters of expert

programmers are examined during modelling and debugging tasks. Other studies

[11-15] focused on the planning phase preceding the implementation phase of the

software development life cycle, where the intelligibility, arrangement, planning

and application of Unified Modeling Language (UML) diagrams with eye-

movement tracking technology were examined. In this study the effectiveness of

the clean code paradigm through gaze tracking is aimed to be examined with the

involvement of test subjects. In addition to examining eye movement parameters,

Acta Polytechnica Hungarica Vol. 18, No. 1, 2021

 – 81 –

the two techniques were also compared in the form of a traditional test, with

which the objective and subjective responses and opinions of the test subjects

were also evaluated.

2 Research Goal and Applied Methodology

During the examination, four smaller source codes were applied; two of them

were made with the clean code paradigm, while the other two ignored the

methodology recommendations. To observe and examine various eye movement

parameters, a Gazepoint GP3 eye-tracker hardware unit, and to record the metrics

the OGAMA software package were applied.

The examinations were carried out using the source codes detailed in Chapter 2,

applying the Gazepoint GP3 eye-tracker hardware unit and the OGAMA software

package as well as by completing tests. The test subject had to observe a source

code compiled on the basis of clean code paradigm and a dirty code-based code

base. The first source code to be studied was selected randomly from the four

available implementations. The second code base to be observed varied depending

on whether the test subject had analysed a clean code or a dirty code during the

first test. If the first examined source code was based on clean code paradigm,

only a dirty code could be analysed during the second round. As the aim of the

study was to compare the two techniques, no changes were made to the source

code elements apart from the methodological differences, so to avoid that the

results obtained in the first study influence the results of the second examination,

different abstraction was applied. For example, if someone started with a User

modelling source code in the first round, they could only continue with the

Employee modelling code in the second round and vice versa. Overall, in the case

of each test subject, the two techniques were compared at a different level of

abstraction, thus avoiding the use of knowledge from the first test in the second

test round. The test subjects had 120 seconds to study each code base and then

they had to answer questions concerning the code. For displaying the code lines,

an LG 22M45 type with1920x1080 resolution and 22” diameter monitor was used.

2.1 The Test Subjects

A total of 23 university students between the ages of 19 and 22 (M=20.78,

SD=1.28) who declared themselves to be healthy, including 11 females and 12

males, participated in the study. The test subjects volunteered for the study, which

had two conditions. The first one was the successful completion of the courses’

Introduction to Programming and Programming 1, as these subjects describe and

demonstrate the skills that are essential for completing the task. The second one

was the lack of knowledge required to implement clean code.

J. Katona Clean and Dirty Code Comprehension by Eye-tracking Based Evaluation using GP3 Eye Tracker

 – 82 –

2.2 The Applied Test Source Codes

During writing the source code, it was taken into account that only elements

familiar to test subjects from their previous studies would be used. In Figure 1, the

UML class diagram of the source of the Acta.Clean.User project can be seen. The

source code was made in compliance with the clean code paradigm, which

includes, among others, the proper naming of classes, properties, variables,

methods, etc. (using correct parts of speech and talkative identifiers, avoiding

noise words, etc.), readable implementation of functions (the principle of single

liability, maximum didactic, no side-effects), the avoidance of applying the switch

expression (using polymorphism with overridden method), omitting comments

(informative, applying expressive use of names), correct code formatting

(newspaper metaphor, indent level less than 3). In total, in the case of the

Acta.Clean.User project, 5 classes, of which one is an abstract and one is an

enumerator were implemented. The total length of the Acta.Clean.User source

code is 55 rows. The source code itself can be found in Appendix 1. class User

«enumerati...

Status

 Active

 Inactive

 Locked

User

+ LogIn(): void

«property»

+ AccountBalance(): int

+ FirstName(): string

+ LastName(): string

+ Status(): Status

UserActiv e

+ LogIn(): void

UserInActiv e

+ LogIn(): void

UserLocked

+ LogIn(): void

Program

- Main(string[]): void

- UserLogin(User): void«use» 0..*

Fig. 1. The UML class diagram of the source code of the Acta.Clean.User project

Figure 2 shows the UML class diagram of the source code of the Acta.Dirty.User

project. The source code ignores most of the recommendations listed in the clean

code paradigm. The total length of the Acta.Dirty.User source code is 43 rows.

The source code itself can be found in Appendix 2. class User

User

+ ULogin(User, string): void

«property»

+ AccBalance(): int

+ FrstNme(): string

+ LN(): string

Program

- Main(string[]): void

- UserLogin(User, string): void
0..*

Fig. 2. The UML class diagram of the source code of the Acta.Dirty.User project

Figure 3 shows the UML class diagram of the source code of the Acta.Clean.

Employee project. The source code was made following clean code paradigm,

which includes those described in the Acta.Clean.User project. In this case, too, 5

classes, of which one abstract and one enumerator were implemented. The total

length of the Acta.Clean.Employee source code is 57 rows. The source code itself

can be found in Appendix 3.

Acta Polytechnica Hungarica Vol. 18, No. 1, 2021

 – 83 –

class Employee

«enumeration»

TypesOfEmployees

 FullTime

 PartTime

 Casual

Employee

+ GiveBonus(): void

«property»

+ Age(): int

+ Company(): string

+ ID(): int

+ Name(): string

+ Salary(): double

+ TypesOfEmployees(): TypesOfEmployees

EmployeeFullTime

+ GiveBonus(): void

EmployeePartTime

+ GiveBonus(): void

EmployeeCasual

+ GiveBonus(): void

Program

- EmployeeGiveBonus(Employee): void

- Main(string[]): void
«use»

0..*

Fig. 3. The UML class diagram of the source code of Acta.Clean.Employee project

Figure 4 shows the UML class diagram of the source code of the

Acta.Dirty.Employee project, which, like the Acta.Clean.User project ignores

most of the recommendations listed in the clean code paradigm. The total length

of the Acta.Dirty.Employee source code is 44 rows. The source code itself can be

found in Appendix 4. class Employee

Employee

+ GvBon(Employee, string): void

«property»

+ Age(): int

+ Comp(): string

+ ID(): int

+ Nm(): string

+ Slry(): double

Program

- EmployeeGvBon(Employee, string): void

- Main(string[]): void0..*

Fig. 4. The UML class diagram of the source code of Acta.Dirty.Employee project

2.3 The Gazepoint GP3 Eye-Tracker Hardware Unit

During the research, the Gazepoint GP3 research-grade eye tracker hardware unit

(Fig. 5) was used to observe and examine eye movement parameters, which had

been successfully applied in several previous research. [16-22] This unit can also

be installed on the monitor and it detects and tracks gaze applying image

processing by 60Hz sampling with infrared cameras.

Fig. 5. GP3 Eye Tracker

J. Katona Clean and Dirty Code Comprehension by Eye-tracking Based Evaluation using GP3 Eye Tracker

 – 84 –

2.4 The OGAMA Software Package

During the examination, an open-source application, the OGAMA

(OpenGazeAndMouseAnalyzer) was applied to record eye movement parameters

observed and detected by the Gazepoint GP3 eye-tracker hardware unit, which

supports other eye-tracking devices in addition to the hardware unit used in the

research. The software package had been successfully used in several research

applications. [22-25]

Fig. 6. Structure of OGAMA software

2.5 The Stages of the Examination

Before the research, the Gazepoint software package was downloaded and

installed from the official manufacturer's site, and after successful installation, the

GP3 eye-tracker hardware unit was connected via a USB port. After successful

connection, the device was placed under the monitor about 65 cm from the eyes of

the test subjects. When finding the right position, the gaze-date server was started

and configured for real-time information retrieval and proper client server-based

operation. After the server was functioning properly, the OGAMA software was

launched and the Record Module was selected. After the successful launching and

configuring of the OGAMA, the source code made with adequate technique and

abstraction for the test case was opened in the Visual Studio Community

development environment, where we tried to place it in a way that filled the screen

as best as possible. Following proper preparation, the test subjects were provided

all the necessary information related to the examination, and their important data,

such as age or gender, were saved for further processing. After the successful data

recording, in each test case, the calibration of the eye tracking device had to be

done individually, during which the test subjects had to follow a circle moving

their eyes from the left top of the monitor without moving their head. Calibration

may have to be performed in the case of a test subject several times to achieve the

best possible result. After successful and proper calibration, the test subject could

begin to study the source codes. During the test, the eye movement parameters

supported by the hardware unit and the OGAMA software were observed and

recorded, and after the completion of the study, the data were saved in a database

for further statistical evaluation. After successful data backup, the test subjects had

to complete a test on the source code. With this method, we also tried to assess the

Acta Polytechnica Hungarica Vol. 18, No. 1, 2021

 – 85 –

difference between the two techniques and to test the subjective opinions of the

test subjects. A schematic diagram of the testing environment is shown in Fig. 7.

Fig. 7. A schematic diagram of equipment setup.

4 Results

The determination of the results started by evaluating the traditional tests. Each

test consisted of 12 questions, identical on each test, of which 7 were used to

check the readability and comprehension of the source code, and 5 questions were

made to ask about the subjective opinion of the test subject.

4.1 The Evaluation of the Results of the Traditional

Knowledge Level Tests

In the case of the source code based on the principles of clean code, all test

subjects answered the questions on code readability and comprehensibility. The

results show that most of them, five test subjects answered the fifth question,

which asks how the whole code works, incorrectly, that is the 21.74% of the test

subjects, while all of them could answer the fourth question, which asks some part

of the code works, correctly. For the total sample, M=2.86, SD=1.77 incorrect

answers were received, which corresponds to a total of M=12.42, SD=7.71

percent.

Even in the case of the dirty code test questions, all test subjects answered the

questions on code readability and comprehensibility, were in the worst case 8,

which is the 34.78% of the test subjects, answered to question 3 incorrectly, while

one person gave an incorrect answer to question 2. Concerning the total sample,

M=5.29, SD=2.29 incorrect answers were given, which corresponds to a total of

M=22.98, SD=9.95 percent.

J. Katona Clean and Dirty Code Comprehension by Eye-tracking Based Evaluation using GP3 Eye Tracker

 – 86 –

Table I. summary table shows the number and percentage of the incorrect answers

in the knowledge level test regarding the clean code and the dirty code.

TABLE I.
A SUMMARY TABLE ON THE NUMBER AND PERCENTAGE ON THE INCORRECT ANSWERS/INCORRECTLY

ANSWERING TEST SUBJECTS REGARDING THE CLEAN AND DIRTY CODE (N=23)

Clean Code Dirty Code

Min Max Mean SD Min Max Mean SD

0 5
2.86

(12.42%)

1.77

(7.71%)
 1 8

5.29

(22.98%)

2.29

(9.95%)

4.2 The Evaluation of Test Subjects’ Subjective Opinion

A five-question survey was administrated to test subjects who participated in the

examination to elicit their opinion on the clean and dirty codes, using a five-point

Likert-type scale of “A”: not at all; “B”: slightly; “C”: moderately; “D”: pretty;

“E”: completely. Based on the above, five questions were formulated (Qs):

Q1: How much did you feel reading an article while reading the code?

Q2: How difficult was it to understand the source code?

Q3: To what extent did you feel the need for comments?

Q4: How uncertain was the code?

Q5: How much did you feel the lack of precision?

According to the test subjects, the clean code is easier to read and better to

understand without comments than the dirty code. Furthermore, the clean code

was felt to be much more precise, causing much less uncertainty in their

understanding. The evaluation of the results can be seen in Fig. 8.

Acta Polytechnica Hungarica Vol. 18, No. 1, 2021

 – 87 –

Fig. 8. Responses to questionnaire.

4.2 Evaluating the Parameters of Eye Movement

During the evaluation of the eye movement parameters, the heatmaps that the

OGAMA software can generate in the Scanpath module were first examined along

displaying the gaze route. After observing, examining, and evaluating the

heatmaps, fixation numbers, average fixation durations, and Fixation Connections

Lengths were also analysed and evaluated.

4.2.1 Evaluating the Recorded Heatmaps

Fig. 9. (1) and (2) show the heatmap and the route of gaze following the clean

code paradigm, while Fig. 9. (3) and (4) shows a heatmap of the source codes and

the route of gaze where these principles are disregarded, randomly selected but are

generally characteristic of test subjects. The maps show that the code reading was

non-linear and the variability, the return to previous code lines was much less

observable at the clean code than at the dirty code, as according to the gaze routes,

the test subjects returned to the beginning of the source file more times,

presumably because of comprehension problems. All in all, the examination of the

codes seems much more uncertain in the case of the dirty code and reflects that the

test subject was unable to fully comprehend the text even after repeated reading.

The colours used on the heatmap have the following meaning:

 transparent area: observed and focused area not at all or only for a very

short time.

 green: observed, focused area for a short time.

 yellow: observed, focused area for a medium-length time.

 red: observed, focused area for a longer period.

 yellow lines: the route of the gaze.

(1) (2) (3) (4)

J. Katona Clean and Dirty Code Comprehension by Eye-tracking Based Evaluation using GP3 Eye Tracker

 – 88 –

Fig. 9. The heatmap of a randomly selected test subject with gaze route following regarding

Acta.Clean.User, Acta.Clean.Employee, Acta.Dirty.User and Acta.Dirty.Employee source codes.

Although the differences can be seen based on the heatmaps, they can only be

quantified by using the Area Of Interest (AOI) tool of the software, which is used

to link eye-movement measures to parts of the stimulus used. In this examination,

the code was a single area.

4.2.1 The Evaluation of the Index Numbers of Eye Movement

The first evaluation was carried out on the interval scale with respect to the

number of fixations. In the case of the source codes written in different ways, the

Shapiro-Wilk test results applied during the examination of the normality of the

data are not significant, in the case of the clean code it is (D(23)=0.948, p=0.262),

in case of the dirty code it is (D(23)=0.917, p=0.057). As the data show normal

distribution and we compared the fixation amount of the same test subjects in a

group, the paired-samples t-test was applied to show that there is a significant

difference in the mean number of fixations measured at the clean code and the

dirty code (t(22)=- 3.528, p=0.002 (2-tailed), d=0.942). The test subjects in case of

the clean code showed on average fewer information captures (M=382.29,

SD=157.37) than in the case of the dirty code (M=520.61, SD=135.42). The

confidence interval for the mean of the fixations is shown in Fig. 10.

Fig. 10. The confidence interval for mean of the number of fixations.

Acta Polytechnica Hungarica Vol. 18, No. 1, 2021

 – 89 –

The second evaluation was also performed on an interval scale with respect to the

fixation time. In the case of differently written source codes, the Shapiro-Wilk test

results used during the examination of the normality of data are not significant in

case of the clean code, but in the case of the dirty code, they are significant. In the

case of the clean code, it is (D(23)=0.961, p=0.492), while in case of the dirty

code it is (D(23)=0.777, p<0.001). As the data do not follow a normal distribution

in case of the dirty code and in one group the fixation time is compared at the

same test subjects, the Wilcoxon-test was applied, according to which it can be

determined that there is a significant difference between the average fixation time

measured at the clean code and the dirty code (T=37, Z=-3.072, p=0.002 (2-

tailed), r=0.64). The test subjects on average in case of the clean code spent less

time studying the code (Mdn=314.89) milliseconds than in the case of the dirty

code (Mdn=335.04) milliseconds. The distribution of the average fixation duration

is shown in Fig 11.

Fig. 11. The distribution of average fixation duration.

The third and final evaluation was carried out on an interval scale regarding

Fixation Connections Length. In the case of the source code written in different

ways, the Shapiro-Wilk test results used to test the normality of the data are not

significant, in the case of the clean code it is (D(23)=0.922, p=0.073), while in the

case of the dirty code it is (D(23)=0.926, p=0.090), as in the case of evaluating the

number of fixations, a paired-samples t-test was applied, which shows that there is

a significant difference in the average length of the routes measured between the

fixations in the case of the clean code and the dirty code (t(22)=-3.869, p<0.001

(2-tailed), d=0.995). In the case of the clean code, the test subjects followed a

shorter route between the fixations (M=44779.354, SD=17876.352) pixels than in

case of the dirty code (M=61377.328, SD=15371.635) pixels. The confidence

interval for mean lengths of fixation connections is shown in Fig. 12.

J. Katona Clean and Dirty Code Comprehension by Eye-tracking Based Evaluation using GP3 Eye Tracker

 – 90 –

Fig. 12. The confidence interval for mean of the length of the fixation connections.

5 Discussion

After evaluating the results, it can be stated that the test subjects after studying the

source files written using the clean code paradigm, achieved better results

regarding the tests measuring the effectiveness of learning. As a consequence, it

can be claimed that in the field of education, it is worthwhile to introduce and

teach these types of codes from the beginning, in order to increase the efficiency

of knowledge transfer and learning.

Based on the evaluation of subjective opinion questions, the test subjects felt that

the top-down build of the source code following the principles of the clean code is

well implemented and better suited to human information processing than the dirty

code. In their opinion, the clean code besides easier readability is much easier to

understand, and they did not feel the lack of comments, which cannot be stated in

the case of the dirty code. In addition, they believe that uncertain codes often

confusing programmers, in the case of the clean code were minimally or not at all

present, which was attributed to accuracy.

Considering the results of the heatmaps observed by the OGAMA application, it

can be concluded that in the case of the dirty code, the gaze is much more varied,

and the test subjects focused more on parts of the source file that are less

significant regarding code operation. Ultimately, this could also lead to the poorer

results of the knowledge tests on understanding the dirty code, leaving them less

time to study the more important code lines. However, with proper informative

nomenclature, ignoring noise words, and applying top-down construction, that is,

placing the more prominent parts at the end of the code, the source code reviewer

can focus on the more important parts of the code line that affect the operation of

the application. It is also confirmed by the results of the knowledge level

measuring tests on the understandability of the clean code besides the heatmaps.

The results examined in the research [4] show similarity with the results of the

Acta Polytechnica Hungarica Vol. 18, No. 1, 2021

 – 91 –

current research since the reading of the codes was not linear, but the variability

and the return to the previous code lines is much less observable in the case of

clean code. This result may also mean that a novice programmer with more

observable linear reading ability [4] can understand the clean code much more

easily. This is also confirmed by the positive results of the clean code learning

tests evaluated above. Overall, attention is less scattered with source code written

using the clean code paradigm, and linearity is much more present in reading than

in the case of the dirty code-based source files. These facts are confirmed by

heatmaps and gaze routes generated from the recorded eye movement parameters.

After evaluating the eye movement parameters, it can be stated that there is a

significant difference in the number of fixations, the duration of fixations, and the

fixation connections length when comparing the two code types. This means that

in the case of the clean code, significantly less and shorter information recording

and processing were necessary to understand the code, and the distances between

the fixation points were also significantly shorter. The importance of this is also

related to the clarity of the code and its linear readability since the longer route

means that test subjects had to return much more times to a more distant point of

the code lines in order to understand its operation. Overall, the use of less

informative names, the incorrect switch instruction, more frequent information

recording, the longer information processing phase and the gaze route between

longer fixations led to diverse attention and the more important parts from the

aspect of the operation of the application were less focused. The effects of these

can be seen in the results of the knowledge acquisition tests evaluated above.

Conclusions

Today, HCI-based technology is increasingly present in the analysis and

examination of cognitive processes. In addition to general knowledge level

questionnaires and subjective opinions, in this research, the efficiency of

readability and understandability of the clean and dirty codes were analyzed with

the eye movement parameters (fixation number, fixation duration, and fixation

connections length) and the observation, examination, and evaluation of the

generated heatmaps and the gaze route. The results show that source files written

using the clean code paradigm are more readable and easier to understand than

source codes ignoring this technique, which ultimately provides a more efficient

testing opportunity and can greatly simplify application development and

maintenance. As a result of the research, it can be stated that besides using

subjective, traditional knowledge level tests, with the application of eye

movement tracking systems, the understandability, readability and the quality of a

source code can be examined and these can predict the difficulty of testing and

further developing of the application. In education, pedagogical methodologies

such as project-based education, in which students can learn in real-life contexts,

[26] have been introduced due to the increasingly difficult and complex coding

systems. Studies in [28, 29] primarily focus on developments that accompany the

entire life cycle of a product. In addition to the modern pedagogical approaches

J. Katona Clean and Dirty Code Comprehension by Eye-tracking Based Evaluation using GP3 Eye Tracker

 – 92 –

used today [27], HCI-based systems [30] could also function as a kind of learning

[31] and education support system besides using modern learning environment

[32-37] such as MaxWhere [38, 39]. In the future, in addition to the techniques

and principles based on experience, eye movement parameters can serve as a

support system for generating high-quality source code, which may become

necessary to be applied in the field of industry besides education due to

increasingly difficult and complex source files.

Acknowledgment

The project is sponsored by EFOP-3.6.1-16-2016-00003 founds, Consolidate

long-term R and D and I processes at the University of Dunaujvaros. Also, thanks

for the support of EFOP-3.6.2-16-2017-00018 „Produce together with the nature –

agroforestry as a new outbreaking possibility” project.

References

[1] R. C. Martin: Clean code: a handbook of agile software craftsmanship,

Pearson Education, 2009, p. 464

[2] P. Baranyi, A. Csapo, Gy. Sallai: Cognitive Infocommunications

(CogInfoCom), Springer International Publishing Switzerland, 2015, p. 219

[3] P. Baranyi and A. Csapo: Definition and synergies of cognitive

infocommunications, Acta Polytechnica Hungarica, vol. 9, 2012, pp. 67-83

[4] T Busjahn, et al.: Eye movements in code reading: Relaxing the linear

order, In 2015 IEEE 23rd International Conference on Program

Comprehension, 2015, pp. 255-265

[5] M. E. Crosby and J. Stelovsky: How do we read algorithms? a case study,

Computer, vol. 23, no. 1, 1990, pp. 24-35

[6] M. E. Crosby, J. Scholtz and S. Wiedenbeck: The roles beacons play in

comprehension for novice and expert programmers, Proceeding of

Programmers 14th Workshop of the Psychology of Programming Interest

Group, 2002, pp. 18-21

[7] T. Busjahn, C. Schulte and A. Busjahn: Analysis of code reading to gain

more insight in program comprehension, Proceedings of the 11th Koli

Calling International Conference on Computing Education Research ser.

Koli Calling’ 11, 2011, pp. 1-9

[8] T. Busjahn, R. Bednarik and C. Schulte: What influences dwell time during

source code reading?: Analysis of element type and frequency as factors,

Proceedings of the Symposium on Eye Tracking Research & Applications

ser. ETRA '14. New York, 2014, pp. 335-338.

[9] R. K. Chandrika, J. Amudha, and D. S. Sudarsan: Recognizing eye tracking

traits for source code review. In 2017 22nd IEEE International Conference

on Emerging Technologies and Factory Automation (ETFA), 2017, pp. 1-8

Acta Polytechnica Hungarica Vol. 18, No. 1, 2021

 – 93 –

[10] S. Emhardt, C. Drumm, T. Van Gog, S. Brand-Gruwel and H. Jarodzka:

Through the eyes of a programmer: a research project on how to foster

programming education with eye-tracking technology, The 32nd Annual

Conference of the Working Group Business Information Systems of the

German-speaking Universities of Applied Sciences, 2019, pp. 42-49

[11] B. De Smet, L. Lempereur, Z. Sharafi, Y. Guéhéneuc, G. Antoniol and N.

Habra: Taupe: Visualizing and analyzing eye-tracking data, Science of

Computer Programming, vol. 79, 2014, pp. 260-278

[12] G. Cepeda Porras and Y. Guéhéneuc: An empirical study on the efficiency

of different design pattern representations in UML class diagrams,

Empirical Software Engineering, vol. 15, no. 5, 2010, pp. 493-522

[13] S. Jeanmart, Y.-G. Guéhéneue, H. A. Sahraoui, N. Habra: Impact of the

visitor pattern on program comprehension and maintenance, Proceedings of

3rd International Symposium on Empirical Software Engineering and

Measurement, 2009, pp. 69-78

[14] S. Yusuf, H. H. Kagdi, J. I. Malefic: Assessing the comprehension of UML

class diagrams via eye tracking, Proceeding of 15th IEEE International

Conference on Program Comprehension ser. ICPC '07, 2007, pp. 113-122

[15] B. Sharif, J. I. Maletic: An eye tracking study on the effects of layout in

understanding the role of design patterns, Proceedings of the 26th IEEE

International Conference on Software Maintenance, 2010, pp. 1-10

[16] S. Seha, G. Papangelakis, D. Hatzinakos, A. S. Zandi and F. J. Comeau:

Improving Eye Movement Biometrics Using Remote Registration of Eye

Blinking Patterns, ICASSP 2019 - 2019 IEEE International Conference on

Acoustics, Speech and Signal Processing (ICASSP), 2019, pp. 2562-2566

[17] H. Zhu, S. Salcudean and R. Rohling: A novel gaze-supported multimodal

human–computer interaction for ultrasound machines, International Journal

of Computer Assisted Radiology and Surgery, 2019, pp. 1-9

[18] J. Meng, T. Streitz, N. Gulachek, D. Suma and B. He: Three-Dimensional

Brain–Computer Interface Control Through Simultaneous Overt Spatial

Attentional and Motor Imagery Tasks, in IEEE Transactions on Biomedical

Engineering, vol. 65, no. 11, 2018, pp. 2417-2427

[19] J. Iskander, et al.: Age-Related Effects of Multi-screen Setup on Task

Performance and Eye Movement Characteristics, 2018 IEEE International

Conference on Systems, Man, and Cybernetics (SMC), 2018, pp. 3480-

3485

[20] B. J. Edelman, J. Meng, N. Gulachek, C. C. Cline and B. He: Exploring

Cognitive Flexibility With a Noninvasive BCI Using Simultaneous Steady-

State Visual Evoked Potentials and Sensorimotor Rhythms, in IEEE

Transactions on Neural Systems and Rehabilitation Engineering, vol. 26,

no. 5, 2018, pp. 936-947

J. Katona Clean and Dirty Code Comprehension by Eye-tracking Based Evaluation using GP3 Eye Tracker

 – 94 –

[21] S. Li and X. Zhang: Implicit Intention Communication in Human–Robot

Interaction Through Visual Behavior Studies, in IEEE Transactions on

Human-Machine Systems, vol. 47, no. 4, 2017, pp. 437-448

[22] A. Kovari, J. Katona and C. Costescu: Evaluation of Eye-Movement

Metrics in a Software Debugging Task using GP3 Eye Tracker. Acta

Polytechnica Hungarica, vol. 17, no. 2, 2020, pp. 57-76

[23] A. Voßkühler, V. Nordmeier, L. Kuchinke and A. Jacobs: OGAMA (Open

Gaze and Mouse Analyzer): Open-source software designed to analyze eye

and mouse movements in slideshow study designs, Behavior Research

Methods, vol. 40, no. 4, 2008, pp. 1150-1162

[24] T. Ujbányi: Examination of eye-hand coordination using computer mouse

and hand tracking cursor control, 2018 9th IEEE International Conference

on Cognitive Infocommunications (CogInfoCom), 2018, pp. 353-354

[25] T. Ujbanyi, J. Katona, G. Sziladi and A. Kovari: Eye-tracking analysis of

computer networks exam question besides different skilled groups, 2016

7th IEEE International Conference on Cognitive Infocommunications

(CogInfoCom), 2016, pp. 277-282

[26] G. Schrauf: Importance of project-based learning in software development,

Computers & Learning, vol. 2, no. 1 2019, pp. 27-39

[27] S. Jambor: Educational methods based on student activity in vocational

education, Transactions on IT and Engineering Education, vol. 2, no. 1,

2019, pp. 16-41

[28] R. Toth and R. Auer: Implementing and testing “Aubot” robot using self-

study and collaborative learning strategies, Transactions on IT and

Engineering Education, vol. 1, no. 1, 2018, pp. 25-41

[29] C. Csizmadia: Implementing a Java EE based information system as a

student self-study task, Computers & Learning, vol. 2, no. 1, 2019, pp. 40-

54.

[30] A. Skobrak: Direct hand-movement control in virtual space: a potential

interface for virtual lab purposes, Transactions on IT and Engineering

Education, vol. 2, no. 1, 2019, pp. 30-45

[31] Gogh E., Kovari, A.: Experiences of Self-regulated Learning in a

Vocational Secondary School. Journal of Applied Technical and

Educational Sciences, 9(2), 2019, 72-86.

[32] Gilányi A., Chmielewska K.: Educational Context of Mathability. Acta

Polytechnica Hungarica, vol 15, no 5, 2018, pp. 223–237.

[33] Namestovski Z, et al. External Motivation, the Key to Success in the

MOOCs Framework. Acta Polytechnica Hungarica, 2018, vol 15, no 6, pp.

125-142.

Acta Polytechnica Hungarica Vol. 18, No. 1, 2021

 – 95 –

[34] Molnár G., Szűts, Z., Biró K.: Use of augmented reality in learning. Acta

Polytechnica Hungarica, vol 15, no 5, 2018, 209-222.

[35] Orosz B. et al.: Visual, own device and experience-based educational

methods and possibilities in VET, Proceedings of the 10th IEEE

International Conference on Cognitive Infocommunications, 2019, pp. 517-

520.

[36] Sik D. et.al.: Smart devices, smart environments, smart students – A review

on educational opportunities in virtual and augmented reality learning

environments, Proceedings of the 10th IEEE International Conference on

Cognitive Infocommunications, 2019, pp. 495-498.

[37] Sik, D. et al.: Supporting Learning Process Effectiveness with Online Web

2.0 Systems on the basis of BME Teacher Training, 9th IEEE International

Conference on Cognitive Infocommunications, 2018, pp. 337-340.

[38] A Horvath I., Sudar A.: Factors contributing to the enhanced performance

of the Maxwhere 3d VR platform in the distribution of digital information.

Acta Polytechnica Hungarica, vol 15, no 3, 2018, pp. 149-173

[39] Horvath I.: MaxWhere 3D Capabilities Contributing to the Enhanced

Efficiency of the Trello 2D Management Software. Acta Polytechnica

Hungarica, vol 16, no 6, 2019, pp. 55–71.

Appendix

J. Katona Clean and Dirty Code Comprehension by Eye-tracking Based Evaluation using GP3 Eye Tracker

 – 96 –

Appendix 1. The source code of the Acta.Clean.User project

using System;
using System.Collections.Generic;
using System.Linq;

namespace Acta.Clean.User
{
 public enum Status { Active, Inactive, Locked }
 public abstract class User
 {
 public string FirstName { get; set; }
 public string LastName { get; set; }
 public Status Status { get; set; }
 public int AccountBalance { get; set; }
 public abstract void LogIn();
 }
 public class UserActive : User
 {
 public override void LogIn()
 {
 throw new NotImplementedException();
 }
 }
 public class UserInActive : User
 {
 public override void LogIn()
 {
 throw new NotImplementedException();
 }
 }
 public class UserLocked : User
 {
 public override void LogIn()
 {
 throw new NotImplementedException();
 }
 }
 class Program
 {
 static void Main(string[] args)
 {
 List<User> users = new List<User>();

 const int minimumAccountBalance = 1000;
 var matchedUsers = users.Where(u => u.AccountBalance < minimumAccountBalance)
 .Where(u => u.Status == Status.Active);

 foreach (User user in matchedUsers)
 UserLogin(user);
 }
 private static void UserLogin(User user)
 {
 user.LogIn();
 }
 }
}

Acta Polytechnica Hungarica Vol. 18, No. 1, 2021

 – 97 –

Appendix 2. The source code of the Acta.Dirty.User project

using System.Collections.Generic;

namespace Acta.Dirty.User
{
 public class User
 {
 public string FrstNme{ get; set; }
 public string LN { get; set; }
 public int AccBalance { get; set; }
 public void ULogin(User u, string stat)
 {
 switch(stat)
 {
 case "Active":
 break;
 case "Inactive":
 break;
 case "Locked":
 break;
 default:
 break;
 }
 }
 }
 class Program
 {
 static void Main(string[] args)
 {
 List<User> userList = new List<User>();
 List<User> users = new List<User>();
 foreach (var u in userList)
 if (u.AccBalance < 1000 == true)
 users.Add(u);

 foreach (User user in users)
 UserLogin(user, "Active");
 }
 private static void UserLogin(User user, string stat)
 {
 user.ULogin(user, stat);
 }
 }
}

J. Katona Clean and Dirty Code Comprehension by Eye-tracking Based Evaluation using GP3 Eye Tracker

 – 98 –

Appendix 3. The source code of Acta.Clean.Employee project

using System;
using System.Collections.Generic;
using System.Linq;

namespace Acta.Clean.Employee
{
 public enum TypesOfEmployees { FullTime, PartTime, Casual }
 public abstract class Employee
 {
 public int Age { get; set; }
 public string Company { get; set; }
 public int ID { get; set; }
 public string Name { get; set; }
 public TypesOfEmployees TypesOfEmployees { get; set; }
 public double Salary { get; set; }
 public abstract void GiveBonus();
 }
 public class EmployeeFullTime : Employee
 {
 public override void GiveBonus()
 {
 throw new NotImplementedException();
 }
 }
 public class EmployeePartTime : Employee
 {
 public override void GiveBonus()
 {
 throw new NotImplementedException();
 }
 }
 public class EmployeeCasual : Employee
 {
 public override void GiveBonus()
 {
 throw new NotImplementedException();
 }
 }
 class Program
 {
 static void Main(string[] args)
 {
 List<Employee> employees = new List<Employee>();

 const int minimumSalary = 1000;
 var matchedEmployees = employees.Where(e => e.Salary < minimumSalary)
 .Where(e => e.TypesOfEmployees == TypesOfEmployees.FullTime);

 foreach (Employee employee in matchedEmployees)
 EmployeeGiveBonus(employee);
 }
 private static void EmployeeGiveBonus(Employee employee)
 {
 employee.GiveBonus();
 }
 }
}

Acta Polytechnica Hungarica Vol. 18, No. 1, 2021

 – 99 –

Appendix 4. The source code of Acta.Dirty.Employee project

using System.Collections.Generic;

namespace Acta.Dirty.Employee
{
 public class Employee
 {
 public int Age { get; set; }
 public string Comp { get; set; }
 public int ID { get; set; }
 public string Nm { get; set; }
 public double Slry { get; set; }
 public void GvBon(Employee e, string t)
 {
 switch (t)
 {
 case "Full-time":
 break;
 case "Part-time":
 break;
 case "Casual":
 default:
 break;
 }
 }
 }
 class Program
 {
 static void Main(string[] args)
 {
 List<Employee> employeeList = new List<Employee>();
 List<Employee> employees = new List<Employee>();
 foreach (var e in employeeList)
 if (e.Slry < 1000 == true)
 employees.Add(e);

 foreach (Employee employee in employees)
 EmployeeGvBon(employee, "Full-time");
 }
 private static void EmployeeGvBon(Employee employee, string t)
 {
 employee.GvBon(employee, t);
 }
 }
}

