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Abstract: The analysis of bearing vibration signals is presented in this study, using a 
proposed approach that combines several signal processing tools. Starting with the local 
mean decomposition using an empirical optimal envelope algorithm to decompose the 
signal into several components. We then select the relevant components related to defects, 
which include high energy pulses, using a new indicator called defect symptom. Then, a 
new signal is reconstructed by adding the previously selected effective components. Peaks 
can be observed at the fault frequency of component in the log-envelope autocorrelation 
spectrum of the new signal. After applying the approach to the signals available in the 
Case Western Reserve University and Paderborn University databases, peaks were 
observed at the respective inner and outer race fault frequencies. 
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1 Introduction 

In all rotating machinery, the bearing has an essential function of supporting loads 
and facilitating movement between shafts. Hence, inadequate installation or 
overloading may cause malfunctions in bearing components, such as the inner or 
outer ring, cage, and balls. The bearing is situated inside the machine and if it 
fails, the machine performance is reduced, necessitating the monitoring of the 
bearing condition. The techniques used to detect faults can be classified into two 
categories: the first relies on signal analysis, while the second is based on 
evaluating the behavior of a detailed model of the machine operating system [1]. 

Vibration signal analysis is a highly effective approach to machinery monitoring, 
which entails measuring and interpreting vibrations using sensors and analyzers 
[2]. Vibrations are collected either periodically or continuously, and the condition 
is monitored by comparing the results with reference data from a bearing or 
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machine in a healthy state [2]. Signal processing methods are essential for fault 
detection [2]. Such as envelope analysis is the most popular method for obtaining 
valuable information about bearings from vibration signals [3]. To detect faults in 
bearings, various techniques are employed, including de-convolution, 
decomposition, and stationary cycle analysis [4]. The presence of pulses in the 
vibration signal serves as symptoms of these defects [4]. Signal impulses, such as 
those found in a failed bearing, are often identified using kurtosis values greater 
than three [5]. An essential step in identifying the impulse section of a signal is to 
decompose the signal and add up the modes that have kurtosis values exceeding 
three [5]. 

To diagnose rotating machinery, the vibration signal is often examined because of 
a complex process between the impulse component, which is linked to the fault, 
and the transfer function of the path between the fault source and the sensor [6]. 
Deconvolution is an inverse operation of convolution used to eliminate noise and 
extract the impulse part of the signal [7]. This technique is widely applied in this 
field [7]. 

We present in our paper an approach that utilizes various signal processing 
algorithms to analyze the vibration signals of the bearing. The identification and 
localization of the faulty components are achieved through the reconstruction of a 
new signal from the original signal. The remainder of the article is organized as 
follows: section (2) presents the proposed approach to bearing defect detection, as 
well as the different signal processing methods incorporated in this approach, 
which are presented in the subsections. Section (3) comprises the experimental 
study consisting of the analysis of vibration signals available in two different 
databases, in order to evaluate the effectiveness of the proposed approach from the 
results obtained. Finally, we present our conclusions. 

2 Methods 

In this section, we propose an approach based on signal processing methods, 
demonstrated in the subsections below. Figure (1) shows the flowchart of the 
approach. 

The steps of the proposed approach are illustrated as follows: 

- The local mean decomposition using an empirical optimal envelope 
(EOE-LMD) algorithm is used to decompose the signal into several 
components (PF). 

- The indicator symptom of defect (SD) is calculated for each component. 
- If SD is greater than 40.62, the component (PF) is selected, otherwise, it 

is eliminated. 
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- Reconstruction of new signal: 

62.40)()( ≥=∑ SDWithtPFtnx                                          (1) 

- Log-envelope spectrum of autocorrelation of the new signal. 

 
Figure 1 

Flowchart of the approach 

2.1 Local Mean Decomposition using an Empirical Optimal 
Envelope 

The empirical optimal envelope (EOE) method is integrated into the local mean 
decomposition (LMD) algorithm to decompose a signal into multiple components 
(PF) [8]. Additionally, two interpolation functions cubic spline (CS) and 
piecewise cubic Hermite interpolating polynomial (PCHIP) are included to 
improve signal decomposition convergence [8]. 

The EOE method optimizes the envelope distance to approximate the ideal 
envelope, and reference [8] provides information on the various steps of the EOE 
algorithm. 

The EOE-LMD algorithm is comprised of the following steps [8]: 

1) Take the signal )(tx as input and initialize a counting variable C=1. 
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2) The interpolation function chosen depends on the value of C. If C=1, 
cubic spline (CS) is used, while for C>1, the piecewise cubic Hermite 
interpolating polynomial (PCHIP) is adopted. 

The EOE algorithm is used to calculate the lower )(tel and upper, 

)(teu envelopes, the local average )(11 tm and local envelope )(11 ta  
functions can be obtained using the following equations: 

2
)()()(11

tetetm ul +
=                                                                          (2) 

2
)()()(11

teteta lu −
=                                                                           (3) 

3) The following formula is used to calculate the modulated signal: 

)(
)()()(

11

11
11 ta

tmtxts −
=                                                                          (4) 

Let C=C+1, the signal )(11 ts can be regarded as a new signal. If 

1)(12 =ta , )(11 ts therefore is a purely normalized modulated signal and 

the first component PF1 is obtained. If 1)(12 ≠ta , steps 2 and 3 are 

repeated until the envelope function )()1(1 ta n+ of )(1 ts n equal 1. 

4) The envelope signal is obtained by multiplying all envelope functions: 

)()......()()( 112111 tatatata n=                                                             (5) 

The first component PF1 is obtained by multiplying the envelope 
signals )(1 ta  and )(1 ts n . 

)()()(1 11 tstatPF n×=                                                                        (6) 

5) The first residual )(1 tu is obtained by subtracting PF1 from the original 
signal )(tx and considering it as a new signal. 

)(1)()(1 tPFtxtu −=                                                                          (7) 

Steps 1, 2, 3, and 4 are repeated until the kth residual becomes constant. 
Finally, the original signal is decomposed into several components (PF) 
and the residual: 

∑
=

+=
k

i
ik tPFutx

1
)()(                                                                          (8) 
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2.2 Symptoms of Defects 

Pulses in the signals and the increase of energy at a certain frequency are two 
symptoms indicating the presence of defects in the bearings [9]. Therefore, we 
suggest an indicator called defect symptom (SD) to assess the pulses and high 
energy. SD is computed as the product of the Gini index (GI) and the signal 
energy (E), as shown in the equation: 

EGISD ×=                                                                                                        (9) 

The Gini index (GI) is a statistical parameter used to evaluate the impulsiveness of 
signals created by defects [10]. The values of GI range between 0 and 1, and it is 
defined by the following formula [11]: 







 +−

×−= ∑ N
kN

x
x

xGI k 5.021)(
1

                                                         (10) 

The elements of the signal are denoted by ( kx ) and reorganized as follows [11]: 

Nxxx ≤≤≤ ,....,21                                                                                       (11) 

The Gini index is more effective than kurtosis in detecting repetitive pulses [12]. 
When the signal contains a pulse train, the Gini index attains their maximum 
value, while in the opposite scenario, it takes on a minimum value [12]. 

The energy of the vibration signal is defined by equation (12) as follows [13]: 

dttxE ∫
+∞

∞−

= 2)(                                                                                                  (12) 

The vibration signals of a bearing will be analyzed during a test, both in a healthy 
state and a failed state with inner ring and ball damage and a defect size of 0.3556 
mm. The signals being used are from the Case Western Reserve University 
database and were collected at a sampling frequency of 12 kHz. The goal of the 
test is to define the threshold of SD danger. As a result, the figure (2) shows the 
variation of SD as a function of speed and load. 

From the values of SD, it can be observed that the signals of the healthy state have 
values lower than 32.5, while the signals of the faulty state exhibit very high 
values. Based on this test, a threshold for SD can be defined as follows: 

62.405.3225.1 =⇔×= ThresholdThreshold SDSD                                          (13) 

If: 62.40≥SD  bearing failure 

Else: a healthy bearing 
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Figure 2 

Variation of SD 

2.3 Log-Envelope Spectrum of Autocorrelation 

The envelope spectrum of a signal can be calculated using the Fourier and Hilbert 
transform, which is commonly used for detecting mechanical defects [14]. This 
method facilitates the extraction of the faulty component frequency [14]. 

An effective method in processing vibration signals is the autocorrelation 
function, which reduces noise and enhances the impulsive periodic part of the 
signal [15]. Autocorrelation, on the other hand, measures the similarity between a 
signal and its time-shifted variant [16]. The vibration signal can be represented as 
a combination of impulsive periodic (p) and noise components (n) [16]: 

)()()( tntptx +=                                                                                             (14) 

The autocorrelation calculation of the signal is expressed as follows [16]: 

∫
+∞

∞−

+= dttxtxRxx )()()( ττ                                                                               (15) 

)()()()()( τττττ nnnppnppxx RRRRR +++=                                              (16) 

)(τppR )(τnnR
)(τnpR and )(τpnR represent the cross-correlation between (n) and (p).  
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The components (p) and (n) are independent, therefore 0)( =τnpR  

and 0)( =τpnR . The autocorrelation of white noise is theoretically 

zero 0)( =τnnR , so it can be concluded that: 

)()( ττ ppxx RR ≅                                                                                                (17) 

The equations presented above express the process of applying the log envelope 
on the autocorrelation of the vibration signal [17]: 

t
tRtRH

π
1*)()]([ =                                                                                         (18) 

)]([)()( tRjHtRtAn +=                                                                                (19) 

))]([)(())(()( 222 txHtxLnLetAnLntLe +=⇔=                               (20) 

∫
+∞

∞−

−= dtetLefLe ftj π2)()(                                                                                (21) 

The log-envelope spectrum of autocorrelation can be used to establish a 
correlation between the frequency of high amplitude peaks and the frequencies of 
defects in the bearing components. The defect frequencies are defined by the 
following formulas [18]: 

- Inner race: 

))cos(1(
2

a
Dm
dFrzFir +

×
=                                                          (22) 

- Outer race: 

))cos(1(
2

a
Dm
dFrzFor −

×
=                                                         (23) 

- Cage:  

))cos(1(
2

a
Dm
dFrFc −=                                                                 (24) 

- Rolling element: 

))(cos1(
2

2
2

2

a
Dm
d

d
FrDmFre −

×
=                                                (25) 
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3 Experimental Study 

The effectiveness of the proposed approach was evaluated by analyzing vibration 
signals from the databases of Case Western Reserve University (CWRU) and 
Paderborn University. 

3.1 Case Western Reserve University Database 

MATLAB files containing vibration signals can be obtained from CWRU, which 
correspond to a motor with two bearings. The first bearing is positioned at the 
drive end, and the second one is at the fan end, as indicated in the test strip 
presented in reference [19]. 

If you are conducting a study and wish to analyze signals from a 6205-2 RS JEM 
SKF bearing located at the drive end, you can apply the proposed method to two 
signals that exhibit inner ring defects while the bearing is operating under various 
conditions, as outlined in the table 2 [19]. 

The fault frequencies of the rolling elements are obtained by multiplying the 
operating speed in Hz with the coefficients, which are presented in Table 1 [19]. 

Table 1 
Fault frequencies 

Components Coefficients Fault frequencies 
Inner race 5.4152 FrFir ×= 4152.5  

Outer race 3.5848 FrFor ×= 5848.3  

Cage 0.39828 FrFc ×= 39828.0  

Ball 4.7135 FrFb ×= 7135.4  

Table 2 
Vibration signals 

Operating 
speed 

Sampling 
frequency 

Defect 
diameter 

Load Defect 
frequency 

1772 rpm 12 kHz 0.3556 mm 745.7 Nm/s 159.92 Hz 
1730 rpm 12 kHz 0.3556 mm 2237.1 Nm/s 156.13 Hz 

3.1.1 Results and Discussions 

Case 1:  The inner ring fault signal is analyzed while the bearing is rotating at 
1730 rpm and under a load 2237.1 Nm/s 



Acta Polytechnica Hungarica Vol. 21, No. 4, 2024 

 – 273 – 

- As figure (3) demonstrates, the vibration signal has a complex spectrum, 
making it challenging to detect defects. The value of SD=280.44, which 
is significantly higher than the threshold of 40.62, confirms the existence 
of a defect. 

- The figure (4) displays three PF components generated by the EOE-LMD 
algorithm. 

- The values of SD for each component (PF) are shown in table (3), and 
equation (26) represents the new signal. 

)(1)( tPFtnx =                                                                                   (26) 

 
Figure 3 

Time and frequency domains of the signal 

 
Figure 4 

Components (PF) 
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Table 3 

Values of SD 

Components PF1 PF2 PF3 
SD 258.4589 15.0068 1.0555 

- As shown in figure (5), the autocorrelation log-envelope spectrum of the 
new signal shows a high amplitude peak at the inner ring fault frequency 
156 Hz. 

 
Figure 5 

Log-envelope spectrum of autocorrelation 

Case 2:  By analyzing the fault signal of the inner ring when the bearing rotates at 
1772 rpm and under a load of 745.7 Nm/s 

- The spectrum of the vibration signal is depicted in figure (6), and it has a 
value of SD= 253.8264. 

 
Figure 6 

Spectrum of vibration signal 
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- The EOE-LMD algorithm decomposes the signal into three components. 
Table (4) shows that the first component has the highest SD value and 
therefore represents the new signal. 

Table 4 

Values of SD for each component 

Components PF1 PF2 PF3 
SD 245.9514 6.5890 1.0822 

 
Figure 7 

Components (PF) obtained after decomposition 

- In the log-envelope autocorrelation spectrum, a prominent peak is 
detected in the inner ring fault frequency (159.7 Hz), as shown in figure 
(8). 

 
Figure 8 

Log-envelope spectrum 
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3.2 Paderborn University Database 

The database contains vibration signals of FAG-6203 ball bearings, and their 
geometrical parameters are presented in Table (5) [20]. 

Table 5 
Parameters related to geometry 

Parameter Value 
Diameter of inner race 24 mm 
Diameter of outer race 33.1 mm 
Pitch diameter 28.55 mm 
Ball diameter 6.75 mm 
Angle of contact 0° 
Number of balls 8 

A piezoelectric accelerometer placed on the bearing is used to measure vibration 
signals, which are then recorded as MATLAB files at a sampling frequency of 64 
kHz. 

A single vibration signal of outer ring fault is analyzed by the proposed approach. 
By utilizing the parameters listed in table (5) and applying formula (23), while 
taking into consideration the operating condition, the fault frequency value is 
determined. 

Table 6 
The vibration signal that requires analysis 

Operating condition Component Fault frequency 
900 rpm/ 1000 N Outer race 45.81 Hz 

3.2.1 Results 

- Figure (9) depicts the vibration signal spectrum. SD=2141.2. 

 
Figure 9 

Vibration signal spectrum 
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- By decomposing the signal, 11 components (PF) were derived, and their 
corresponding SD values were recorded in the table (7). The equation 
(27) presents the expression of the new signal. 

∑
=

++=
5

1
1110 )()()()(

i
i tPFtPFtPFtnx                                         (27) 

Table 7 
SD values for each PF 

PF1 PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9 PF10 PF11 
604.5 275 636.1 407 112.2 36.8 37.5 28.3 21.9 50.4 42.6 

- A significant peak corresponding to the fault frequency of the outer ring 
(45.9 Hz) is present in the autocorrelation log envelope spectrum (Figure 
10). 

 
Figure 10 

Log-envelope spectrum of autocorrelation of the vibration signal 

Conclusions 

The proposed approach was applied to vibration signals, available in two different 
databases, resulting in a good diagnostic outcome. Based on the steps involved in 
the approach, it can be concluded that: 

- The initial vibration signal spectrum is intricate and challenging to 
interpret, due to the presence of multiple peaks at various frequencies. 

- Decomposing a signal is a crucial step in separating useful data.  
The newly proposed SD indicator has shown greater efficiency in 
identifying the effective mode composed of high-energy pulses. 
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- The high amplitude peaks in the spectrum of the log-envelope 
autocorrelation, allow for the identification of the faulty component 
based on its frequency. 

In addition, the association between signal energy and Gini index is used to 
evaluate the pulses, thus creating an indicator that enables effective selection of 
fault symptoms, which are generally present in the form of high-energy pulses. 

Thus, on the basis of the peaks of high-energy pulses in the autocorrelation log-
envelope spectrum, the fault can be detected by comparing the theoretical fault 
frequency values with the peak frequency. 
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Nomenclature 
  

)(tAn –  Analytic signal 

)(11 ta –  Local envelope 
a –  Angle of contact (°) 
CWRU – Case Western Reserve 
University 
CS –  Interpolation function cubic 
spline 
Dm –  Pitch diameter [mm] 
d – diameter of the rolling 
element [mm] 
E –  Energy 

)(tel –  Lower envelope 

)(teu –  Upper envelope 

EOE-LMD–  Local mean 
decomposition using an empirical 
optimal envelope 

irF –  Inner race fault frequency 
[Hz] 

cF –  Cage fault frequency [Hz] 

orF –  Outer race fault frequency 
[Hz] 

reF –  Fault frequency of rolling 
element [Hz] 

Fr –  Operating speed [Hz] 
FAG –  Fischer's automatic steel ball 
factory 
GI –  Gini index 
H –  Hilbert transform 
Le –  Log-envelope 

)( fLe -  Log-envelope 
spectrum 

)(11 tm –  Local average 
n –  Noise components 

)(tnx –  New signal 
PF –  Product function 
PCHIP –  Piecewise cubic 
Hermite interpolating polynomial 
p –  Impulsive periodic  
R –  Autocorrelation 
SD –  Symptom of defect 
SKF –  Swedish ball bearing factory 

)(11 ts –  Modulated signal 

ku –  Residual 

)(tx –  Vibration signal 
z –  Number of rolling elements 
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