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Abstract: In this paper, an analysis of phenotypic evolutionary search with proportional 

selection and Gaussian mutation is presented. Evolution is regarded in the space of 

population states where population is considered as a whole. This approach enables 

theoretical studies of expected states for small populations. In this paper, three-element 

populations are examined. The expected states of populations cannot be calculated 

explicitly due to overwhelming complexity. Therefore, they are approximated numerically. 

A study of the expected states dynamics and its dependence on several parameters is also 

provided. It appears that the population moves around, in a fitness landscape, as a compact 

cluster of individuals and quickly locates neighborhoods of optima. 
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1 Introduction 

Due to complexity, high-dimensionality and non-linearity, a theoretical study of 

evolutionary algorithms is rather difficult. Therefore, some simplifying 

assumptions have to be accepted. One of several possibilities is to consider infinite 

(or very large) populations [1, 2, 3]. The opposite approach is to consider 

populations composed of only a few individuals [4, 5]. A population can be 

represented in two different ways: either regarding its individuals in the space of 

their types, or concerning the whole population in a space of population states (a 

space of all possible populations). The second approach is specific for modeling 

evolutionary algorithms as Markov chains [6, 7] or dynamical systems [1]. 

In this paper, we will focus on finite, small populations evolving under 

proportional selection and Gaussian mutation in a real-valued space of population 
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states. In the real-world applications, populations are not infinite. Moreover, small 

populations have better exploration properties in search for the global optimum of 

multidimensional and multimodal quality functions. Nonetheless, using small 

populations in an evolutionary process has some disadvantages. Such populations 

behave more chaotically and are unable to maintain diversity for many 

generations. They cannot penetrate as large areas within a search space as more 

numerous ones. Also, small size of a population may lead to genetic drift which 

can result in reduction of a fitness value. Theoretical studies of small populations 

are scarce and mainly devoted to evolution strategies (ES) [8]. The presented 

population states approach facilitates the study of very small populations’ 

dynamics in landscapes of one-dimensional unbounded fitness functions. These 

states allow us to analyze averaged (deterministic) evolution of the whole 

population instead of non-deterministic behavior of its elements. The expected 

values locate position of the averaged population and evolution may be interpreted 

as the population’s trajectory in the space of states. Somewhat similar approaches 

were successfully applied to study the evolution of an ensemble of binary-coded 

populations in a phase space, that is a space of all possible sets of gene sequences 

[9], as well as to describe the averaged (macroscopic) evolutionary dynamics of 

simple genetic algorithm using statistical mechanics-based methods [10]. 

Thus far, the simplest possible case of two-element populations with one real-

valued trait (gene) was studied [4, 5]. Expected values of consecutive population 

states were calculated and the asymptotic behavior of evolution was examined. 

We argue that it would be informative to extend the previous analyses to more 

numerous populations. Therefore, in this paper, estimation of expected values of 

population state for three-element populations is provided and the mean-value 

dynamics is evaluated. 

The rest of the paper is organized as follows. In Section 2, a formal description of 

the considered evolution model is presented. Calculations of expected population 

state for three-element populations are provided in Section 3, followed by the 

expected dynamics studies in Section 4. Section 5 concludes this paper. 

2 Model of Phenotypic Evolution 

A one-dimensional version of the model of phenotypic asexual evolution, based 

on Darwinian theory of evolution, is regarded in the paper [11]. An m-element 

population  1 2, , , mP  x x x  evolves in an unbounded one dimensional (n = 1) 

continuous real-valued search space, so the k
th

 individual is described by one trait 

(type)  ,1k k kx x x , and corresponding quality index (fitness)   : R Rkq x  . 

Evolution of successive generations of individuals is ruled by two mechanisms: 

1) Proportional selection (also called soft, or roulette-wheel selection) where a 
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parent is chosen randomly with probability proportional to its fitness, 2) Gaussian 

mutation producing the offspring individual by adding independent random 

variables, normally distributed with identical standard deviation σ to the parental 

traits. The model is simple but demonstrates essential properties of an 

evolutionary process and allows one to obtain some theoretical results for infinite 

[3], as well as finite (small) populations [4, 5]. 

Evolving populations are usually studied in a space T of individuals’ types. In this 

space, when the location of i
th

 generation 
iP  is known, a conditional distribution 

of a new individual’s position in the (i+1)
st
 generation is given by: 

     1

1 1
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m m

i i i i i i

T k k k k

k k
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x x x xN N  describes a normal 

distribution of mutation,  q x  denotes a non-negative fitness function, σ stands 

for the standard deviation of mutation. 

The population as a whole is considered in a space of population states S. The 

structure of this space is seemingly more complex than the typically studied space 

T. The dimensionality of S depends on the population size and it is equal to 

dimS mn  (compared to dimT n ). In the case of one-dimensional search 

spaces, dimS m  and RmS  . Additionally, as the population is insensitive to 

ordering of its individuals, an equivalence relation U has to be defined in S to 

identify all the points corresponding to permutations of individuals within the 

population. Consequently, the population state is reduced to a point in the quotient 

(factor) space / R /m

US S U U  . In this study, the relation U arranges 

individuals within population in a decreasing manner based on the values of their 

traits. Thus, in the case of three-element population, in the quotient space 
US  the 

population state becomes an ordered tuple  1 2 3, ,x x xs , where 
1 2 3x x x  . 

When a state 
i

s  of population in the i
th

 generation is known, the probability 

distribution  1 |
U

i i

Sf


s s  of the population state in SU in the next generation can be 

determined. The distribution is a product of m individual distributions (1) 

considered in the space T: 

        1 1

1 11 1 1

,| ! | ! ! .
U

m m mm m
i i i i i i i i

S T j k k j k jk

k kj j j

f m f x m x x x m   

   

     s s s N N   

  (2) 
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Once the distribution (2) is defined, the expected value of next population state 

can be computed. Unfortunately, because of the restriction of the population state 

to the quotient space SU, straightforward calculations of the expectations are only 

possible for two-element populations [4, 5]. For this simplest case, an expected 

asymptotic behavior of evolution was studied and some essential aspects of the 

process were discovered, namely rapid unification of initially widely diversified 

populations and a slow motion towards the optima of the quality function. For 

more numerous populations, expected values have to be approximated numerically. 

3 Expected Value of Population State of Three-

Element Population 

Determining the expected value of the population state of a three-element 

population is one of the main objectives of this paper. To obtain the value, several 

triple definite integrals need to be calculated with integrand given in the 

multiplicative form of normal distribution functions with different parameters. As 

an illustrative example, 
1x  coordinate of the expected state is given by: 

 
1 21 1

1 1 1 2 3| , , |
U

x x
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SE x x f x x x
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   1 21 2 22 3 1 31 223 33 232 3 3 1d d dx x x        N N N N N N , (3) 

and, for simplicity, the generation number i was omitted within integrals. It is 

worth noticing that limits of integration of two inner integrals do not range from 

minus to plus infinity. Instead, the upper limits are constrained, since the values 

are calculated in a quotient space being a reduced real space (R / )m U . 

Let us first denote the component integral  1 , ,I p r s  as: 

 
1 2

1 2 31 3 2 11 , , 3! d d d ,
x x

p r p r ssI p r s x x x x  


  
    N N N  

where p, r, s take values from the set {1, 2, 3} (with repetitions). In order to obtain 

just a single coordinate of the expected state, 27 such integrals need to be 

calculated. Having performed some exhaustive computations, we finally obtained 

the following form of 1I : 
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 , and  erf x ,  erfc x  are error function and complementary error 

function derived from normal distributions. 

 1 , ,p r sI  can only be evaluated analytically for p = r = s. If p = r or r = s, the 

integral can be calculated using the approximation    2 2 2erf 1 exp 8x x    . 

For p ≠ r ≠ s,  1 , ,p r sI  has to be computed numerically. 

Ultimately, expected value of coordinate 
1x  can be expressed as a sum of: 
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Expected values of coordinates 
2x  and 

3x  are calculated correspondingly: 
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and their component integrals are given in Appendix 1. All calculations and 

simulations were performed using Mathematica software [12]. 

4 Dynamics of Expected States of Three-Element 

Populations 

With given values of the expected states, an expected long-term behavior of the 

evolving three-element populations can now be analyzed. Simulations of the 

expected states were carried out in landscapes of different quality functions: 

unimodal triangle and Gaussian, both symmetrical and asymmetrical. Similarly, 

multi-modal functions in the form of bimodal Gaussian fitness with different 
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heights and various distances between optima were considered (all the functions 

are listed in Appendix 2). In these landscapes, population dynamics and the 

influence of several parameters (standard deviation of mutation σ, fitness function 

asymmetry, and distance between optima) was analyzed. In order to study 

population diversity, random and homogeneous initial populations were 

examined. 

Expected states are a good estimation of random population behavior. In Fig. 1, 

locations of coordinates 
1 2 3, ,x x x  averaged over 50, 100 and 500 runs are 

presented along with expected states coordinates calculated with Eqns. (5)–(7) in 

the course of 30 generations. The fitness function is shown in the right panel. It 

can be noticed that the averaged behavior closes the expected state trajectories — 

the approximation accuracy is acceptable for less than 100 runs. 

 

a) b) c) 

   

Figure 1 

Random evolution of three-element populations averaged over: a) 50; b) 100; c) 500 runs (dotted lines) 

along with the expected states coordinates (solid lines). The red, green, and blue colors correspond 

respectively to coordinates 1 2 3, ,x x x
 
of consecutive states. Parameters on the upper side of the plots 

specify the value of the standard deviation of mutation (σ) used in the simulations, as well as the a 

parameter of unimodal Gaussian fitness function (cf. Appendix 2) 

 

At first, we will examine expected states trajectories in a landscape of the 

unimodal Gaussian fitness function with the optimum located at (0,0,0). Five 

trajectories of 30 generations starting from different random initial states are 

presented in Fig. 2 followed by Euclidean distances between consecutive states ds 

in Fig. 3, and Euclidean distances between the states and the optimum do in Fig. 4 

together with a steady state distance from optimum versus σ plot (for the distances 

definitions see Appendix 3). 

Based on the simulations, the following observations can be made: 

– At the beginning, differences in subsequent locations of trajectory points 

are large, thus Euclidean distances between successive states ds are large 

(jumps of trajectories) (Fig. 3), 
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a) b) 

  

Figure 2 

Five expected trajectories of three-element populations starting from different initial states. 

Coordinates correspond to the values of E[x1], E[x2], E[x3]; identity line x1 = x2 = x3 and the optimum 

are depicted. a) σ=0.1; b) σ=0.2 

 

– Just after a few generations, the differences become much smaller, so 

distances ds decrease (small steps of trajectories), 

– Subsequent states are located along a line parallel to the identity line 

1 2 3x x x   called evolutionary channel [5]; the distance between the 

channel and the identity line depends on σ (Fig. 2), 

– Expected states do not change, i.e., trajectories starting from different 

initial states converge to one point (a steady state, or equilibrium point), 

– The rate of convergence to the steady state depends on the standard 

deviation of mutation σ, 

– Steady states are not located exactly at the optimum, 

– Distances between subsequent states and the optimum do quickly 

decreases to a value depending on the standard deviation σ; the bigger the 

σ, the larger the distance to the optimum in the steady state (Fig. 4). 

Trajectories of expected values of three-element populations for various unimodal 

fitness functions: Gaussian and triangle, in their symmetrical and asymmetrical 

forms are presented in Fig. 5. An influence of the standard deviation of mutation 

on “shift” of expected steady states from the optimum in a landscape of unimodal 

asymmetrical Gaussian fitness function is shown in Fig. 6. 

Independently of the fitness form, initially diversified population converges 

rapidly (in two–three generations) and forms a cluster with a radius close to σ, as 

in Fig. 2, Fig. 5 d-f, and Fig. 7 d-f. When the initial population is homogeneous, it 

becomes instantly diversified by the mutation operator and, in the following 

generations, forms the cluster as well (Fig. 5 a-c), (Fig. 6), (Fig. 7 a-c), (Fig. 8 a). 
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a) b) 

  

Figure 3 

Distances between successive states ds for five trajectories starting from different initial states given in 

Fig. 2. a) σ=0.1; b) σ=0.2 

In the case of an initially homogeneous population, 
0 0 0 0

1 2 3x x x x   , thus

0 0 0

1 2 3( ) ( ) ( )q x q x q x  , and it is possible to calculate directly on the expected 

values using (5)–(7): 

01 0

1 | 0.85 ,E x x     s  (8) 

01 0

2 | ,E x x   s  (9) 

01 0

3 | 0.85E x x     s . (10) 

Coordinate 
2x  remains unchanged, while the other two differ from their initial 

positions by about σ — a homogeneous population is spread out by the operation 

of mutation. The case will be also discussed later on. 

 

a) b) 

  

Figure 4 

a) Distances between successive states and the optimum do for five trajectories starting from 

different initial populations plotted in Fig. 2 and specified in Fig. 3, for σ=0.1 and σ=0.2.  

b) A steady state distance from the optimum do versus σ 
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a) b) c) 

   

d) e) f) 

   

Figure 5 

Evolution of expected values of three-element populations in the landscapes of unimodal symmetrical 

(a, d) and asymmetrical (b, c, e, f) fitness functions: a)-c) triangle; d)-f) Gaussian; σ=0.2 

a) b) c) 

   

Figure 6 

Influence of standard deviation of mutation on “shift” of expected steady states in a landscape of 

unimodal asymmetrical Gaussian fitness function: a) σ=0.2; b) σ=0.3; c) σ=0.5 

When unimodal fitness function is symmetrical, 1 | iE x  s and 3 | iE x  s  are 

situated symmetrically on the slopes of the function in equal distances from the 

optimum, while 2 | iE x  s  is located at the optimum (which is good news for the 

optimum seekers) (Fig. 5 a, d). Asymmetry in the fitness landscape affects the 

expected states: they are shifted towards the slope with a “bigger mass”: the 

greater the asymmetry, the greater the displacement (Fig. 5 b, c, e, f). Moreover, 

the magnitude of the shift depends on σ: the attraction strength increases along 

with the value of σ (Fig. 6). 
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a) b) c) 

   
d) e) f) 

   

Figure 7 

Evolution of expected values of three-element populations in a landscape of bimodal Gaussian fitness 

functions. Homogenous initial population (a-c) lies in a basin of attraction of the local (a, c) and the 

global (b) optimum. Random initial population (d-f) in a basin of attraction of the local (d, e) and the 

global (f) optimum. Functions represent different distances between optima: a), b), d) d=1.5;  

c), e), f) d=2; σ=0.2 

Now, let us discuss the case of bimodal fitness functions. The considered 

functions have got two basins of attraction corresponding to the local and the 

global optimum. Evolution of expected values of three-element populations in a 

landscape of bimodal Gaussian fitness functions with different distances between 

optima d for homogenous and random initial populations are shown in Fig. 7. 

Expected states trajectories for uniformly distributed initial states are presented in 

Fig. 8a, followed by Euclidean distances between successive states and the 

optimum in Fig. 8b. 

The expected population converges to the vicinity of one of the optima and its 

trajectory depends both on the initial population state and σ. As to the evolution of 

expected states over unimodal fitness landscape (cf. Fig. 2), additional 

observations for homogeneous initial state can be noted: 

– Immediately, in the first generation, population is diversified and its 

expected state is pushed away from the identity line (jumps of 

trajectories), 

– Subsequent states are located along the evolutionary channel; the 

channel is more distinct than in the case of initially diversified 

population (Fig. 2), 
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– Distances between consecutive states in the channel are small and 

converge to zero, 

– Trajectories converge to the local/global optimum when starting within a 

basin of attraction of the local/global optimum (Fig. 7 a-c), (Fig. 8a), 

– Distances between subsequent states and the optimum decrease rapidly 

(Fig. 8b), 

– Distances of steady states from related optimum are the same for local 

and global ones. 

A border between basins of attraction of both optima, displayed in Fig. 9, is 

situated on the saddle and its accurate position depends on a distance between 

optima d and on the standard deviation of mutation σ. With the increasing value of 

σ, the strength of the global optimum attraction intensifies: a population is more 

dispersed and more easily attracted. The initially diversified population (Fig. 7 d-

f) may converge to local or global optimum in the initial-state-dependent manner. 

 

a) b) 

  

Figure 8 

a) Trajectories of expected values of three-element populations starting from different homogeneous 

initial states in a landscape of bimodal fitness function. b) Distances between successive states and the 

optimum do for five trajectories given in the left panel. Two upper lines (for x
0
 = 0.35, and x

0
 = 0.5) 

correspond to trajectories attracted by the global optimum, three lower (x
0
 = 0.0, x

0
 = 0.1, x

0
 = 0.3) 

correspond to trajectories attracted by the local optimum; σ=0.2 

Analogously to unimodal fitness functions, the expected population in the steady 

state forms a cluster in the vicinity of the optimum. However, expected coordinate 

2 | iE x  s  is not located exactly at the optimum any more but it is moved by the 

influence of the other hill. The shift of population’s steady state from the optimum 

is presented in Fig. 10. A value of the shift is a function of the distance between 

optima d and the standard deviation of mutation. Clearly, the global optimum 

attracts populations much stronger than the local one, and consequently the shift 

on the local hill towards the global one is much bigger than the other way around. 
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Figure 9 

Border between basins of attraction of the global and the local optimum as a function of distance 

between optima d. Dotted line indicates saddle minimum. Homogeneous initial population, σ=0.2. 

 
a) b) 

  

Figure 10 

Shift of population’s steady state from the optimum versus distance between optima d for: a) the global 

optimum; b) the local optimum 

5 Summary 

The work presented herein for expected states of three-element populations, 

facilitates understanding of the rules of artificial evolution, hence, may be useful 

in improving efficiency of evolutionary algorithms. The following conclusions are 

justified: 

 Initially diversified (random) populations quickly converges to a cluster with 

a radius close to σ. Thus, efforts of many practitioners to widely diversify 

initial populations, in order to avoid premature convergence, may be 

abortive, 
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 Initially homogenous populations quickly disperse to a cluster with a radius 

close to σ, 

 Expected states of populations in the cluster slowly move along the 

evolutionary channel and converge to a steady state near the optimum, 

 Although the steady state is placed at some distance from the optimum, 

expected values of second coordinate 2 | iE x  s  locate the optimum for 

symmetrical fitness functions. This distance depends on the standard 

deviation of mutation, σ, and the fitness function, 

 The shift of expected population from the optimum may indicate bigger mass 

in the shift direction, i.e., asymmetry of unimodal function or a saddle in 

multi-modal landscape. These observations may be useful for identification 

of black-box or grey-box fitness functions. 

The examined behavior of three-element populations is qualitatively very similar 

to that of two-element systems [4, 5], thus we presume that obtained results can be 

extended for more numerous (but still small) populations. Preliminary simulations 

of evolution of more numerous populations in the quotient space of population 

states revealed that properties discussed herein are accurate. In the future, more 

dimensional type spaces should be examined using the population space paradigm. 

Simulations of a conventional evolution in more dimensional types spaces T 

(n > 1) confirmed a similar population behavior: unification of diversified 

population, progress along evolutionary channel and fluctuation in a neighborhood 

of the optimum. In more numerous populations and in multidimensional spaces, 

no analytical formulas for expected values exist (as in the simplified models). 

Presumably, numerical simulations will become more cumbersome, as integrals 

needed to obtain the expected values, are more complex. 

Appendix 1: Component integrals for coordinates x2 

and x3 

Component integrals for 
1
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r p

i i

p r s

b x x b x x
I p r

b
s


  



    
      
   


 


    
    

 

   
 2erfc erf , ,

2 2

i i i i

s r r pi

r

b x x b x x
x b p r s 

     
      

    
    

I  
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 
   

2
2

3

23 1
, , exp erfc

2 2 2 6

i i i i i

r s r s p

p r s

b x x b x x x
I p r s

b


  



      
       
       

 

   
 2

3erfc erf , ,
2 2

i i i i

s r r p

s

b x x b x x b
x p r s



     
      
    

     

I  

where: 

          
2

2

2 22 2 2 2, , exp erf erf di i i

r p sp r s x b x x b x x b x x x



    I , 

          
2

2

3 2 2 2 2, , exp erf erf di i i

r p sp r s b x x b x x b x x x



    I , 

and  
1

2b 


 . 

Appendix 2: Fitness functions 

Triangle fitness function with parameters A, B 

 

/ 1 for [ ,0), 0

/ 1 for [0, ),

0 otherwise

x A x A A

xf x B x B B A

   


    



. 

 

Unimodal Gaussian fitness function parameterized with A and B 

 
2

2

exp( ) for 0

exp( ) for 0

Ax x
f

Bx x
x

  
 

 
, 

for a symmetric version:   2exp( ).f axx    

 

Bimodal Gaussian fitness function composed of two unimodal hills with different 

heights (h) and distance between optima d 

  2 2

1 2exp( ) exp( ( ) ).f a x h a x dx     
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Appendix 3: Definitions of Euclidean distances ds and 

do 

The values of distances between consecutive states ds, and between consecutive 

states and the optimum do are calculated as Euclidean metrics. For the given 

coordinates of successive states s
0
, s

1
, s

2
,…, s

i
 in m-dimensional space SU, the 

optimum *x , and the number of generations i, we get:  

   
1 2

2
1 1 1

1

, ,
m

k k k k k k k

s j j

j

d s s  



 
    

 
s s s s  for 0, , 1k i   ,  

and 

   
1 2

2
* * *

1

, ,
m

k k k k

o j j
j

d s x


 
    

 
s x s x  for 0, , .k i   
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