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Abstract: This paper proposed a control design approach based on tensor product models 

for perching maneuvers of fixed-wing aircraft. The highly nonlinear longitudinal dynamics 

of perching maneuvers is transformed into a tensor product model. The interpolation 

technique is investigated to reduce the conservatism of the convex tensor product model. The 

properties of the time derivatives of premise membership functions are utilized in the control 

design process to further reduce the control conservatism. The proposed method is 

demonstrated with simulation results. 
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1 Introduction 

Compared to rotorcraft, fixed-wing aircraft have the advantages of longer 

endurance, larger loading capacity and higher flight speed. However, the landing 

of a conventional fixed-wing aircraft usually needs a large space (e.g. a long 

runway), which restricts the application of fixed-wing aircraft. In nature, large 

birds could decelerate rapidly by performing a post-stall maneuver and eventually 

land on branches. Inspired by this kind of effective landing maneuver of large 

birds, a new landing approach for fixed-wing aircraft, i.e. the perching maneuver 

has been proposed and drawn more and more research attentions in recent years 

[1-5]. In the process of perching maneuver, a fixed-wing aircraft needs to emulate 

the landing maneuver of large birds, which involves rapidly decelerating by 

performing a very high angle-of-attack (AoA) flight and landing precisely at a 

prescribed perch point. 
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It is a challenging task to design a controller for fixed-wing aircraft performing 

perching maneuvers, for the aircraft dynamics is highly nonlinear and 

time-varying during high AoA maneuver. Studies on the control problem of 

perching maneuvers are relatively sparse. Stability analysis has been carried out 

by using contraction theory in [2]. It is shown that deviations in initial state 

variables will lead to trajectory divergence and prevent the aircraft from reaching 

the prescribed perch point [2]. In [6], a neighboring optimal control strategy has 

been used to cope with the perturbations from nominal trajectory. However, the 

simulation results show that the tolerant perturbations are too narrow [6]. In [5] 

and [7], a novel control synthesis approach known as LQR-Trees has been used to 

enlarge allowable perturbed initial conditions. In [2], a controller based on 

sliding-mode technique has been designed to guarantee successful perching 

maneuver under perturbed initial conditions. 

The tensor product (TP) modeling method is a convenient and effective way to 

construct TP type polytopic model for nonlinear systems and therefore facilitated 

control design by enabling convex hull-based algorithms [8-11]. In this paper, the 

highly nonlinear dynamics of perching maneuvers is transformed into a linear 

parameter varying (LPV) model and then the corresponding TP modeling is 

carried out. In order to decrease the conservativeness of control design, the 

interpolation technique between two types of convex TP models has been 

investigated and the TP model with less conservativeness has been constructed. 

Based on the TP model, linear matrix inequality (LMI) stability conditions for the 

control design have derived and the system stability has been proved. In order to 

further reduce the conservatism of the controller, the control design process 

utilized the fuzzy Lyapunov functions and thusthe LMI stability conditions are 

more relaxed than conventional LMI stability conditions. 

The paper is organized as follows: the dynamics and TP modeling of aircraft 

performing perching maneuvers is presented in Section 2; in Section 3, first a 

basic control scheme is designed and the conservatism of convex TP model is 

analyzed by using the interpolation technique; then parallel distributed 

compensation control design based on fuzzy Lyapunov functions is presented; 

simulation results are shown in Section 4; finally, the results of the research are 

concluded. 

2 TP Modeling of Perching Maneuvers 

This paper is focused on the longitudinal motion of perching maneuver, for this 

high AoA maneuver is mainly related to longitudinal variables. The longitudinal 

equations of motion (EOM) of fixed-wing aircraft performing perching maneuver 

are expressed in the wind axes as 
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where , , ,V q   denote flight velocity, flight-path angle, angle of attack and 

pitch angle rate respectively; x  and h represent horizontal displacement and 

altitude of the aircraft; m  is the aircraft mass and 
yI  is the moment of inertia; T 

is the thrust; the lift L and the drag D are aerodynamic forces, and M is the 

aerodynamic moment. 

The aerodynamic forces of the aircraft in the longitudinal plane can be written as 
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where 
LC  and 

DC  denote the lift and drag coefficients of the aircraft 

respectively.   is the air density and S  is the aerodynamic surface area of the 

aircraft. The aerodynamic behavior of aircraft during perching maneuvers is 

highly nonlinear. Combining the experimental and analytic results in [1, 2] and the 

plate model theory mentioned in [12], in this work the aerodynamic coefficients 

are given as follows: 
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Assume that the aircraft uses an all-moving horizontal tail, so that it can acquire 

relatively large control moment even at low flight velocity. Then, the pitching 

moment is calculated as 
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where 
e  is the deflection angle of elevator, 

eS  represents the aerodynamic 

surface area of elevator and 
el  denotes the distance from the aerodynamic center 

of elevator to the mass center of aircraft. 
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Let  , , ,
T

V q X and  ,
T

eT u  and substitute the aerodynamic terms 

(2)-(4) into the equations of motion (1). Then the equations of motion (1) can be 

rearranged into two groups of equations as follows: 

( , )X f X u  (5) 

cos

sin

x V

h V










 (6) 

where ( )f  is a nonlinear function vector, the specific form of which can be 

easily obtained from (1)-(4) and is not presented here for brevity. 

The reference trajectory is assumed to be specified priori and described by 

( , )rrX u , where  , , ,
T

r r r r rV q X  and  ,
T

r r erT u , which satisfy 

( , )r r rX Xf u . Along the reference trajectory, the displacement variables 
rx  

and 
rh  satisfy
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. 

Then the control problem of perching maneuver is often treated as a trajectory 

tracking control problem, which means that a flight controller needs to be 

designed to make the actual states of the aircraft X and  ,x h to track the 

reference states 
rX and  ,r rx h respectively.  

Linearizing the nonlinear dynamics (5) along the reference trajectory and omitting 

the higher order terms would yield a LPV model, the system matrices of which 

are denoted as A and B. A and B depend on exogenous parameters ( , )rrX u . 

However, since ( , )rrX u  consists of six variables, it would be arduous to directly 

construct TP model. Considering that the variables in ( , )rrX u  are all functions of 

time, thus in the paper we express the system matrices A and B as functions of 

time and then we could construct the TP model by choosing the transformation 

space as  ,t tt a b . Thus the corresponding linearized model is as follows: 
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dynamics (7) depend on the variables along the reference trajectory and hence are 

time-varying. 

Next, the TP modeling method is applied to (7) to construct the TP type ploytopic 

model of the perching maneuver. For the model (7), define the transformation 

space as  ,t tt a b . Discretize the space by a grid with the size of M , where 

M  is a integer. Then the TP model transformation can be executed by using the 

TPtool Matlab toolbox [13]. The detailed procedure of this transformation method 

has been elaborated in the literatures [8-11]. The time-varying matrices in (7) can 

be approximated by a convex combination of linear-time-invariant (LTI) matrices, 

that is 
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where 
ti

A  and 
ti

B  are constant matrices; 
, tt iw  are weighting functions 

satisfying the following convex criteria [8]: 
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3 Control Design with Relaxed Stability Conditions 

3.1 Basic Controller Design and Conservatism Analysis of 

Convex TP Models 

Before studying the conservatism reduction of the TP models, a basic controller 

needs to be designed to ensure the stability of the closed-loop system. Then, the 

conservatism of different TP models can be compared through the solvability of 
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the design conditions and the control performances. The structure of the basic 

controller is shown in Figure 1. 

 

Figure 1 

The basic controller structure 

From (6) it can be known that the position tracking error satisfies the following 

relationship: 
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where ,r rx x x h h h      . Suppose that the position tracking error is 

controlled by a proportional controller as 
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However, the dynamics (11) cannot be implemented directly, for the actual flight 

speed V  and the flight-path angle   in (10) cannot responsed to commands 

immediately. Considering that the dynamics of position is slower than the flight 

speed and the flight-path angle, it is reasonable to utilize the flight speed and the 

flight-path determined from (10) and (11) (which are denoted as dV  and d  

respectively) as the reference values for the actual speed and the flight-path angle. 

dV  and d  are calculated by 
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Denote  , , ,d d d r rV q X and d d  X X X .Then from (7) and (8), the 

dynamics of dX  is obtained as 
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Note that the terms containing ( )r dX X  and its derivative in the dynamics of 

dX are neglected in (13). The speed and attitude controller is designed according 

to the parallel distributed compensation control scheme as follows: 
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Substituting (14) into (13) yields 
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The closed-loop TP model (15) can be rewritten into a compact form as 

( ( ))d dS p t  X X  (16) 

where 
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( ( )) ( ( ))
N

n n
n

S p t w p t S )  is the tensor expression of the coefficient 

matrices. Different types of convex weight functions can be chosen to derive TP 

model. Proper weight function type would decrease the conservatism of the 

system [11, 14-18]. Here the interpolation technique [11] is studied to obtain a TP 

model with less conservatism. The convex weight function types CNO and SNNN 

are considered and the corresponding convex hull expressions are as follows: 
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The discrete weighting functions of the two convex hulls as shown in (17) and (18) 

are interpolated as 

( ) ( ,G) ( ,G) ( ,G)(1 )I D SNNN D CNO D
n n nw w w        (19) 

where [0,1]   is the interpolation coefficient and the superscript D  means 

discrete weight function. 
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Then by using the pseudo tensor product model transformation, the interpolated 

convex hull can be obtained as 

( ) ( )

=1
( ( )) ( ( ))

N
I I

n n
n

S p t w p t  S )  (20) 

The gains of the parallel distributed compensation controller (14) need to be 

designed so that the closed-loop system is stable. Define a common Lyapunov 

function as 
T

d dV X P X   . The following LMIs can be derived to ensure the 

stability of the closed-loop system: 

0
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j j j j j j
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where 1, ,k J , X  is a positive definite symmetric matrix and 1X P , 

and kM  is a matrix with appropriate dimensions. The control gains are 

calculated as 
1

k kK M X  .  

In addition, pole placement techniques can be used to allocate closed-loop poles 

[19]. Define a pole region ( ) { | Re(s) 0}s      in the complex plane. 

The following LMIs guarantee that the closed-loop poles are located in region 

( ) : 

2 0, , 1, ,T T T T

j j j k k jA X X A B M M B X j k J       (22) 

Solving the LMIs (21) and (22), the control gains in (14) can be determined as 
1

k kK M X  , which guarantee both the stability and the pole location of the 

system. The maximum  (which is denoted as max ) of a closed-loop system can 

be determined by iteratively solving the LMIs (21) and (22). 

The conservatism of the convex hull (20) under different interpolation coefficients 

is analyzed by comparing the solvability of the above LMIs and max . The 

relationship between the interpolation coefficient [0,1]   and max  is 

depicted in Figure 2. In Figure 2, the zero value of max  means that the LMIs are 

not solvable in this case. 
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Figure 2 

The relationship between  and max  

It can be seen from Figure 2 that the solvability of the LMIs are influenced by the 

interpolation coefficient  . When   is in the range of  0.8,1 , the LMIs (21) 

and (22) are solvable and the controller (14) can be obtained. In addition, max  

also varies with  . The larger max  is, the faster the system responses. Thus, it 

is beneficial to choose the value of  corresponding to relatively large max in 

the range of  0.8,1 . It is reasonable to think that the convex hull (20) under this 

chosen interpolation coefficient is less conservative. 

3.2 Control Design Based on Fuzzy Lyapunov Functions 

In section 3.1, the parallel distributed compensation controller (14) is designed by 

using common Lyapunov functions. The control design conditions (21) and (22) 

are derived in this way. However, control design based on common Lyapunov 

functions usually has strong conservatism. In order to further reduce the 

conservatism of the system, in this section the control design is based on fuzzy 

Lyapunov functions. By using fuzzy Lyapunov functions the properties of the time 

derivatives of premise membership functions can be exploited and therefore the 

LMI stability conditions can be relaxed [20-22]. 

The stability conditions for the perching maneuvers are presented in the following. 
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symmetric matrices ,S Q  and matrices , ,( 1, , )kZ Y k J  satisfying the 

following LMIs: 

0, {1, , }Q J     (23) 
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where  
=1

J

i i

i

Q S Q S Q  



 



      with the symbol   indicating that the 

signs + and – must be tested. 

The local gains can be obtained as 
1

k kK Y Z  . The proof of LMI stability 

conditions (23)-(26) can be directly derived according to [22]. In LMIs (23)-(26), 

the values of i ,   and  would influence the resulting control gains and need 

to be determined according to practical situation. 

The controller designed by solving the LMIs (23)-(26) can guarantee the stability 

of the TP model. Consider that the approximation accuracy of TP model (15) is 

relatively high, and the time-varying model (7) can approximate the nonlinear 

model with relatively high accuracy if the aircraft operates near the reference 

trajectory. Thus, the designed controller is effective for the aircraft (described by 

the nonlinear model) if the aircraft operates near the reference trajectory. 

4 Simulation Case 

Simulations are carried out to demonstrate the effectiveness of the proposed 

control design method. Consider a fixed-wing aircraft with the main parameters as 

follows: 0.8 kgm  , 2=0.1 kg myI  , 2=0.25 mS  and 2=0.054 meS . 
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Considering the practical requirement that the thrust weight ratio of fixed-wing 

aircraft is less than 1 and the thrust should not below zero, the actuator constraint 

of the aircraft is set as  0,7.8NT  . The transformation space of TP modeling 

is chosen as  0,1.6st . Discretize the space by a grid with the size of 

100M  . Then the TP model transformation can be executed by using the 

TPtool Matlab toolbox [13]. There are 12 nonzero singular values, the four biggest 

ones of which are kept. The weight functions are shown in Figure 3. 

 

Figure 3 

Weight functions 

The position control gains in (11) are chosen as 1 22, 8k k    . For the LMIs 

(23)-(26), the values of i  and   are chosen as 5i   and 0.1  . The suprema 

of the time derivatives of premise membership functions are specified as: 

1 2 3 4 52.1696, 3.3704, 5.2277, 1.8306, 1.6080          

Then solve the LMIs (23)-(26) for the control gains in (14). 

The initial reference states of the aircraft are set as: 9.9736m/sV  , 0  , 

0.2455rad  , 0q  , 0x   and 0h  . Two kinds of simulation cases are 

carried out. In case 1, the initial deviation of flight speed is set as -1m/s , while in 

case 2, the initial deviation of flight speed is set as 1m/s . The initial error of 

angle of attack is set as 1 . 

In order to demonstrate the benefit of the proposed control scheme, the simulation 

results of the controller designed based on fuzzy Lyapunov function (the proposed 

control scheme) are compared with the simulation results of the controller 

designed based on common Lyapunov function. 

First, consider the simulation case 1. The response curves of the state variables are 

shown in Figure 4. It can be seen from Figure 3 that, for both kinds of controllers, 

the angle of attack increases rapidly and the flight speed decreases from 9m/s to 

about 4m/s, which is relatively slow. Figure 5 shows the trajectory history of the 

aircraft. For both kinds of controllers, the actual trajectories can track the 

reference trajectory and the final position error is relatively small and acceptable 
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considering the size of the aircraft. However, as shown in Figure 6, the thrust 

command generated by the controller based on common Lyapunov function 

exceeds the constraint  0,7.8NT  . Nevertheless, Figure 6 also shows that, for 

the controller based on fuzzy Lyapunov function, though the thrust and the 

elevator deflection do not converge to their reference curves, they are all kept 

within reasonable ranges. To some extent, this demonstrates that the proposed 

control design scheme for perching maneuvers is less conservative than the 

control design approach based on common Lyapunov functions. Thus, the 

simulation results demonstrate the effectiveness and benefit of the proposed 

controller. 

The results of simulation case 2 are shown in Figure 7. It can be seen from Figure 

7 that, similarly to the simulation case 1, the control command generated by the 

proposed controller is relatively mild, while the thrust command generated by the 

controller based on common Lyapunov function exceeds its constraint (in this case 

the thrust command is less than zero at the beginning period), though the response 

curves of the two kinds of controllers are similar. This verifies the benefit of using 

the proposed controller. 
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Figure 4 

Response curves of the state variables in case 1 

 
Figure 5 

Trajectory history in case 1 
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Figure 6 

Control inputs in case 1 
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Figure 7 

Response curves and inputs in case 2 

Conclusions 

In this paper, a tensor product model-based control design method is investigated 

for aircraft performing perching maneuvers. In order to decrease the 

conservativeness of control design, the interpolation technique between two types 

of convex TP models has been investigated and the TP model with less 

conservativeness has been constructed. The control design is carried out by using 

fuzzy Lyapunov functions, and the properties of the time derivatives of premise 

membership functions are considered in the design process. Therefore, the 

resulting LMI stability conditions are more relaxed than conventional LMI 

stability conditions. Simulation results show that the proposed control approach 

can ensure successful perching maneuvers, which demonstrates the effectiveness 

of the control design method. In addition, the simulation results of the proposed 

controller and the controller based on common Lyapunov function are compared, 

which demonstrates that the proposed controller is less conservative. 

Acknowledgement 

This work was supported by the National Natural Science Foundation of China 

(No. 61304139, 61403210). 

 



Y. Kan et al. Tensor Product Model-based Control Design with  
 Relaxed Stability Conditions for Perching Maneuvers 

 – 60 – 

References 

[1] D. M. K. K. Venkateswara Rao, H. Tang, and T. H. Go, A parametric study 

of fixed-wing aircraft perching maneuvers, Aerospace Science and 

Technology, 42: 459-469, 2015 

[2] D. M. K. K. Venkateswara Rao, and T. H. Go, Optimization, stability 

analysis, and trajectory tracking of perching maneuvers, Journal of 

Guidance, Control, and Dynamics, 37(3): 879-888, 2014 

[3] M. AliKhan, N. K. Peyada, and T. H.Go, Flight dynamics and optimization 

of three-dimensional perching maneuver, Journal of Guidance, Control, and 

Dynamics, 36(6): 1791-1797, 2013 

[4] S. Regisford, and J. VanderMey, Perching a Minimally-Actuated Micro Air 

Vehicle, 51
st
 AIAA Aerospace Sciences Meeting, Grapevine (Dallas/Ft. 

Worth Region), AIAA Paper 2013-0359, Jan. 2013 

[5] J. L. Moore, Robust post-stall perching with a fixed-wing UAV, Doctoral 

dissertation, Massachusetts Institute of Technology, 2014 

[6] S. Regisford, and Parry, An investigation into the use of neighboring 

optimal control in the solution of a perching problem, 51
st
 AIAA Aerospace 

Sciences Meeting including the New Horizons Forum and Aerospace 

Exposition, Grapevine(Dallas/Ft. Worth Region), AIAA Paper 2013-0766, 

Jan. 2013 

[7] J. Moore, R. Cory, and R. Tedrake, Robust post-stall perching with a 

simple fixed-wing glider using LQR-Trees, Bioinspiration & biomimetics, 

9(2): 1-15, 2014 

[8] P. Baranyi, TP model transformation as a manipulation tool for QLPV 

analysis and design. Asian Journal of Control, 17: 497-507, 2015 

[9] B. Takarics and P. Baranyi, Tensor-product-model-based control of a three 

degrees-of-freedom aeroelastic model. Journal of Guidance, Control, and 

Dynamics, 36: 1527-1533, 2013 

[10] P. Baranyi and B. Takarics, Aeroelastic wing section control via relaxed 

tensor product model transformation framework. Journal of Guidance, 

Control, and Dynamics, 37: 1671-1678, 2014 

[11] P. Baranyi, Y. Yam and P. Várlaki, Tensor product model transformation in 

polytopic model-based control. Boca Raton, Florida: CRC Press, 2013 

[12] R. E.Cory, Supermaneuverable perching, Doctoral dissertation, 

Massachusetts Institute of Technology, 2010 

[13] TPtool MATLAB Toolbox. Natick: MathWorks, MA, 2007 



Acta Polytechnica Hungarica Vol. 15, No. 3, 2018 

 – 61 – 

[14] P. Baranyi, The Generalized TP model transformation for T–S fuzzy model 

manipulation and generalized stability verification. Fuzzy Systems, IEEE 

Transactions on, 22: 934-948, 2014 

[15] P. Baranyi, TP-Model transformation-based-control design frameworks. 

Springer International Publishing Switzerland, 2016 (doi: 

10.1007/978-3-319-19605-3) 

[16] A. Szollosi and P. Baranyi, Influence of the tensor product model 

representation of QLPV models on the feasibility of linear matrix 

inequality. Asian Journal of Control, 18(4): 1328-1342, 2016 

[17] A. Szollosi and P. Baranyi, Improved control performance of the 3-DoF 

aeroelastic wing section: a TP model based 2D parametric control 

performance optimization. Asian Journal of Control, 19(2): 450-466, 2017 

[18] A Szollosi and P. Baranyi, Influence of the tensor product model 

representation of qLPV models on the feasibility of linear matrix inequality 

based stability analysis, Asian Journal of Control, 2017 in print 

[19] M. Chilali and P. Gahinet, H∞ design with pole placement constraints: a 

LMI approach. IEEE Transactions on Automatic Control, 41: 358-367, 

1996 

[20] J. T. Pan, T. M. Guerra, S. M. Fei, et al. Nonquadratic stabilization of 

continuous T-S fuzzy models: LMI solution for a local approach. IEEE 

Transactions on Fuzzy Systems, 20(20):594-602, 2012 

[21] B. J. Rhee, S. Won, A new fuzzy Lyapunov function approach for a 

Takagi--Sugeno fuzzy control system design. Fuzzy Sets & Systems, 

157(9):1211-1228, 2006 

[22] F. A. Faria, G. N. Silva, V. A. Oliveira, Reducing the conservatism of 

LMI-based stabilisation conditions for TS fuzzy systems using fuzzy 

Lyapunov functions. International Journal of Systems Science, 44(10): 

1956-1969, 2013 


