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Abstract: Parameter tuning is an important step in automatic fuzzy model identification 
from sample data. It aims at the determination of quasi-optimal parameter values for fuzzy 
inference systems using an adequate search technique. In this paper, we introduce a new 
hybrid search algorithm that uses a variant of the cross-entropy (CE) method for global 
search purposes and a hill climbing type approach to improve the intermediate results 
obtained by CE in each iteration stage. The new algorithm was tested against four data sets 
for benchmark purposes and ensured promising results. 
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1 Introduction 

Fuzzy systems have been successfully applied in a wide range of areas in this 
century and the previous. Typical fields are controllers (e.g. [32] [33] [35]), expert 
systems (e.g. [11] [24]), clustering (e.g. [9] [28] [40]), fuzzy modeling (e.g. [18]), 
management decision support (e.g. [31] [42]), time series estimation (e.g. [14]), 
etc. The proper functioning of such systems greatly depends on the underlying 
rule base. Thus, the methods used for its automatic generation and the 
determination of the rules' optimal parameters become particularly important. 

There are several methods for the automatic generation of the rule base from 
sample data. Generally, they form two main groups. The methods belonging to the 
first group (e.g. [6] [8] [41]) create the rule base in two steps. Firstly, they define 
the structure by creating an initial rule base, and next, they look for an optimal 
parameter set applying a search algorithm. The methods belonging to the second 
group (e.g. [19] [39]) differ from this approach only in their second step, when 
they allow the modification of the structure by creating new rules or deleting old 
ones. 
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In our previous work [20], we presented a comparative analysis of a global and a 
local search algorithm for parameter optimization. They were applied in the 
second step of a rule base generation conforming to the above mentioned first 
approach. As a result of the analysis, we found that the local search algorithm 
ensured a significant improvement of the system performance in case of the used 
benchmark problems. In comparison, the global search method improved the 
system performance on three out of four benchmark problems; however its 
running time was remarkably better than the local heuristic's. This prompted us to 
implement a hybrid approach, where after enhancing some parts of the two 
algorithms; we combined the quick run of the global search technique with the 
increased accuracy of the local heuristic. 

In this paper, we present this new hybrid algorithm and the results obtained by its 
application for finding optimal parameters in the case of the same benchmarking 
problems as used in [20]. The rest of this paper is organized as follows. Section 2 
presents the applied global (sec. 2.1) and local (sec. 2.2) search methods as well as 
the concept of their combination. Section 3 gives a brief review of the applied 
fuzzy inference technique. Section 4 reports the results of the tests. 

2 Parameter Tuning 

The starting point is an initial rule base created with an arbitrary method (e.g. 
based on fuzzy clustering) automatically from sample data or manually by a 
human expert. Next, by the help of parameter tuning one tries to find such values 
for the parameters of the rules that ensure a better performance for the fuzzy 
system. The performance evaluation method we applied is discussed in sec. 2.4. In 
the following three subsections we present two search techniques and their 
proposed integration. 

2.1 Cross-Entropy Method 

The Cross-Entropy (CE) method is a global search algorithm used for solving 
continuous multi-extremal and discrete optimization problems, such as buffer 
allocation [2], static simulation models [12], control and navigation [10], 
reinforcement learning [27] and others. Its original version was proposed by 
Rubinstein [34]. The method does not use the local neighborhood structure, 
instead it works as a black-box and looks for the optimal parameter values using 
an iterative approach. 

Suppose we want to find the best parameter vector p for which our black box 
yields a performance index PI(p). This parameter (p) should be between a given 
lower bound (lb) and upper bound (ub). Starting with the first iteration, an initial 
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probability parameter vector (pr0) is optimized for each parameter, for example 
pr0={0.5, 0.5, ... 0.5}. 

In each iteration step i, S(p1, p2,..., pS) samples are generated according to the 
latest pri-1 probability vector values. Performance index values are calculated for 
each generated sample, and according to its values the samples are ordered 
increasingly. After ordering the samples, one of them is chosen according to a 
parameter q for comparison. The sample with the performance index gi = PI[1-q]N 
is chosen. Using gi the new probability parameter, values are determined by 
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where I is an indicator function which returns 1 if the condition in its parenthesis 
is true, and 0 otherwise. 

The algorithm generates a series of performance index values gi which get smaller 
with each iteration, approaching the desired minimum. 

The number of the iteration cycles (niCE), the number of generated samples for 
each iteration (S), and the optimization parameter q are parameters of the method. 

2.2 Hill Climbing Type Local Search 

The local search algorithm presented in this subsection is a modified version of 
the algorithm used by the ACP [16] rule base generation method. It searches for 
better parameter values through several iterations by applying a hill climbing type 
approach. The number of iteration cycles (niHC) is a parameter of the method. 

In each cycle all parameters (in all antecedent and consequent dimensions for all 
fuzzy sets) are examined one-by-one. In the case of each parameter 2·np new 
values are calculated (see Fig. 1) and the fuzzy system is evaluated against the 
training data set for each new parameter value. Finally, that parameter value is 
kept from the 2·np + 1 (2·np new and the original one) candidates that ensures the 
best system performance. The new parameter values are calculated from the 
original one by increasing/decreasing its value as follows 
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where kp0  is the original value of the kth parameter of a fuzzy set, s is the actual 
step, and np is a parameter of the method. Owing to the possible different ranges 
of the partitions in different dimensions, the step size is calculated by 
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rcs s ⋅= , (3) 

where r is the range of the actual partition defined by its upper (r2) and lower (r1) 
bounds, 

12 rrr −= , (4) 

and cs ∈[0, 1] is the step coefficient, which is also a parameter of the method. 

Figure 1 
Original and new values of a fuzzy set’s kth parameter in case of np=3 

After calculating the new parameter values, some constraints are applied to 
preserve the validity and interpretability of the resulting fuzzy sets. These 
constraints strongly depend on the used membership function types and the 
parameterization technique. Further on we will present the constraints for the case 
of piece-wise linear membership functions and break-point type parameterization. 

1. The new (ith) parameter value must remain inside its neighbors. 

• If the new value of the actual (kth) parameter is smaller than the previous 
parameter, it will be increased to that parameter's value 
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where ns is the number of a fuzzy set's parameters. 

• If the new value is greater than the next parameter it will be reduced to 
that parameter's value 
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2. The set must remain at least partially inside the range. 

• The first parameter must always be smaller or equal to the upper bound 
of the range of the current linguistic variable (r2) 
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11 . (7) 

• The last parameter must always be greater or equal to the lower bound of 
the range of the current linguistic variable (r1) 
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Owing to the above-mentioned corrections, two or more new parameter values 
could result identical. Therefore, the duplicate values are removed from the 
parameter vector p. 

Another feature of the algorithm is that the step coefficient cs is decreased when 
the amelioration of the performance index in the course of two consecutive 
iteration cycles is smaller than the threshold value (dPItr) 

[ ]1,0, ∈⋅= ddss cccc , (9) 

where cd is the decrement coefficient. Its value, as well as the value of dPItr, are 
parameters of the algorithm. 

2.3 The Hybrid Approach 

The basic idea of the hybrid approach is that the local search method is integrated 
with the global technique as follows. The parameter tuning is started with five 
steps of the global search method presented in sec. 2.1, where after selection of the 
samples ( ){ }iii gpPIp ≥|  for each selected sample, a local search is launched 
to find better parameter values in the neighborhood of the initial values 
determined by the previous step of the CE method. The local search is performed 
by executing one, two, respectively three steps as indicated in sec. 2.2. The local 
search results in for each xi a new *

ip  value set with ( ) ( )ii pPIpPI ≥*  

performances. Next, the new *
ip  samples are used for the calculation of the 

probability parameters in (1). 

After each parameter modification and system evaluation, the whole parameter set 
(fuzzy system) and its performance measure against the training data set are saved. 
After finishing the tuning process, all saved parameter sets are tested against the 
test data set (PIte) as well. The variation of PItr and PIte give a good picture about 
the tuning process, indicating clearly in most of the cases the phenomenon of 
parameter overfitting to the train data. 

For example, supposing an error related performance index which is of type “the 
smaller the better”, Fig. 2 illustrates the variation of the performance indexes in 
the function of the number of system evaluations. 

In order to minimize the overfitting effect and get a system performing well on the 
entire input space, an overall system performance (PIov) is calculated, which takes 
into consideration both the training and the test data sets. Finally, that parameter 
set is chosen as the best one that ensures the best PIov value (indicated by an arrow 
in Fig. 2). 
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Figure 2 

Variation of the performance index in case of the train and test data and the overall performance index 
in function of the number of system evaluations 

2.4 Performance Evaluation 

The performance index (PI) expresses the quality of the approximation ensured by 
the fuzzy system using a number that aggregates and evaluates the differences 
between the prescribed output values and the output values calculated by the fuzzy 
system. We used as the performance index of the resulting fuzzy systems the root 
mean squared error, expressed in percentage, of the output variable's range. It was 
chosen because it facilitates the interpretation of the error and its benchmarking 
against the width of the variation interval of the output. It is calculated by 
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where n is the number of data points in the sample, yi is the ith output value from 
the sample, and iŷ  is the ith output value calculated by the fuzzy system. 

The overall performance indicator (PIov) of a fuzzy system takes into 
consideration the performance against both the training (PItr) and the test (PIte) 
data sets in a weighted manner, where the weighting expresses the measure of the 
whole data set’s coverage by the two samples. It is calculated by 
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where ntr and nte are the number of data points in the training and test data sets, 
respectively. 
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3 Fuzzy Inference by FRISUV 

The tuning of the fuzzy sets’ parameters can produce a sparse rule base when the 
modification of the supports is enabled in course of the tuning. A rule base is 
characterized as sparse when there is at least one possible observation for which 
none of the rule’s activation degree is greater than zero. The activation degree of a 
rule Ri [37] for an n-dimensional observation A* is 

( ) ( ) ( )( ) Rniniith niAAtAAtsR ,1,,,,, **
11, == …ϖ , (12) 

where s is an arbitrary s-norm, t is an arbitrary t-norm, Aij is the antecedent set in 
the jth dimension of the ith rule, and nR is the number of rules. 

The traditional compositional fuzzy inference methods (e.g. Mamdani [25], 
Takagi-Sugeno [36], etc.) require a full coverage of the input space by rule 
antecedents. This demand cannot be fulfilled in sparse rule bases. The recognition 
of this shortcoming led to the emergence of inference techniques based on fuzzy 
rule interpolation (e.g. [4] [7] [13] [15] [17] [21] [22] [23] [26] [29]). 

In the course of the experiments aimed at testing the new tuning method, the 
FRISUV [15] inference method was used, owing to its low computational 
complexity. The key idea of the fuzzy rule interpolation based on subsethood 
values is that it measures the similarity between the current observation and the 
rule antecedents, taking into consideration two factors: the shape similarity and 
the relative distance. 

The shape similarity between the observation and the rule antecedent sets is 
calculated separately in each antecedent dimension by the means of the fuzzy 
subsethood value. First, the examined antecedent set is shifted into the position of 
the observation. Here the reference point of the fuzzy set is used for the definition 
of its position and for the calculation of distances between sets. The fuzzy 
subsethood value in case of the ith rule and the jth dimension is 
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where ∩ is an arbitrary t-norm, and Xj is the jth dimension of the input universe of 
discourse. The individual FSVs are aggregated by an average calculation 
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The second aspect of the applied similarity measure is determined based on the 
Euclidean distance between the two points of the antecedent space defined by the 
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reference points of the fuzzy sets that describe the current observation and the 
reference points of the fuzzy sets that form the antecedent part of the current rule. 
It is a relative distance, defined by 
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where RP(.) denotes the reference point of a fuzzy set, and  xjmin and xjmax are the 
lower and upper bounds in the jth antecedent dimension, respectively. Finally, the 
similarity measure will be 

2
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FRISUV calculates the position of the conclusion adapting the Shepard crisp 
interpolation [38] 
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The method demands that all the sets of the consequent partition have the same 
shape. Thus the membership function of the conclusion will also share this 
feature. 

4 Results 

We performed tests of the hybrid algorithm on four benchmark problems. Three of 
them were real life problems, namely ground level ozone prediction [30], 
petrophysical properties prediction [41], yield strength prediction [1] [3], and the 
fourth was a synthetic function approximation problem. Testing was performed by 
executing one, two or three local search steps (np) after each five global search 
steps. Table 1 presents the test results. The number of data points (cardinality of 
the data samples) are summarized in Table 2. The overall performance indicator 
(PIov) values are contained in Table 3. 
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Table 1 
Performance of the Systems Tuned by the CE Method compared to the Hybrid Method with one, two 

respectively three local search steps after each five global search steps 

CE Method Hybrid Method 
with np=1 

Hybrid Method 
with np=2 

Hybrid Method 
with np=3 

Dataset 

Train Test Train Test Train Test Train Test 
Ozone 14.6531 13.2386 14.5919 13.1057 14.6395 13.1737 14.4234 12.8965 
Yield 
Strength 

38.2629 36.1852 26.2513 15.3209 30.0461 22.0258 31.0267 24.3468 

Well 27.4533 28.5658 14.8432 13.6063 14.9870 14.0165 14.4390 13.4913 
Synthetic 19.6862 18.2116 19.0711 18.2106 17.5059 15.7902 18.8306 18.1833 

Table 2 
Number of data points in the training (ntr) and test (nte) data sets 

Dataset ntr nte 
Ozone 224 112
Yield Strength 310 90
Well 71 51
Synthetic 196 81

Table 3 
Overall performance indicator (PIov) values 

Hybrid Method Dataset CE Method 
np=1 np=2 np=3 

Ozone 14.1816 14.0965 14.1509 13.9144
Yield Strength 37.7954 23.7920 28.2415 29.5237
Well 27.9184 14.3261 14.5813 14.0428
Synthetic 19.2550 18.8104 17.0042 18.6413

The application of the Hybrid Method resulted in improvements compared to the 
usage of the CE method on all datasets. Examining the improvements separately 
for the case of train and test data samples we can summarize the followings. 

In case of the train data samples the least improvement (0.09%) was encountered 
in case of the ozone data set and np=2, while np=3 in case of the well data set 
ensured the best improvement (47.41%). Although in two out of four cases np=3 
led to a better result, surprisingly the average improvement (20.22%) was 
observed by np=1. 

In the case of the test data samples, the improvement varied between 0.01% 
(synthetic data set and np=1) and 57.66% (yield strength data set and np=1). In the 
case of all the samples, the greatest improvement was found by the same local 
search number as in case of the train data sets. The greatest average improvement 
(27.76%) was observed by np=1. 

Evaluating the results based on the overall performance indicator (PIov), we found 
a bit narrower variation interval for the improvement( [0.60, 49.70] ) with an 
overall average improvement of 20.85%. The greatest variation of PIov’s 
improvement due to np was 15.17%, in the case of the yield strength sample. 
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Conclusions 

The test results show clearly that the Hybrid Method has great potential in 
parameter tuning, and the number of local search steps can have a significant 
influence on the achieved results. 

Further research will concentrate on further adjusting the parameters of the 
presented method and examining the relation between some features of the 
modeled phenomena and the achieved improvement measure with the help of the 
Hybrid Method. 
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