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Abstract: Herein, we research the possibilities of assisting visually impaired pedestrians 

moving in traffic situations by using camera-based detection of relevant objects in their 

immediate surroundings. Therefore, we use and adapt algorithms from the field of driver 

assistance. We present a road background segmentation based on watersheds, whose 

results are used as input for the presented crosswalk and lane detection algorithms. The 

crosswalk detection is based on the application of two 1D mean filters and the lane 

detection on local computations of the EDF (Edge Distribution Function). In our 

evaluation, the described algorithms achieved good hit rates of 99.87% (road 

segmentation), 98.64% (crosswalk detection), and 97.89% (lane detection). 
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1 Introduction 

According to [6], in 2015, worldwide 36 million people were estimated to be blind 

and 216.6 million people were estimated to have a moderate to severe visual 

impairment. Since 1990, the numbers of both groups have increased: in 

comparison to 1990, there was a rise of 17.5% in blind people and 35.5% in 

people with moderate to severe visual impairment.   

In their study from 2001, Duckett and Pratt underline the importance of mobility 

for the visually impaired: “The lack of adequate transport was described as 

resulting in many visually impaired people living in isolation. Transport was felt 
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to be the key to visually impaired people fulfilling their potential and playing an 

active role in society,” [10].  

Therefore, we research possibilities of assisting visually impaired people by using 

camera-based object detection in traffic situations in order to increase their 

independent mobility. As the amount of research in the field of Advanced Driver 

Assistance Systems (ADAS) is much higher in comparison with Assistive 

Systems for the Visually Impaired (ASVI), our research focuses on transferring 

algorithms and concepts from ADAS to ASVI.  

1.1 Previous Work 

In [19], we motivate the need for a transfer concept from ADAS to ASVI and 

present a plan for an ASVI consisting of a smartphone app and a cloud service. A 

camera as well as earphones to provide text-to-speech output are connected to the 

smartphone; expensive image processing calculations are exported to the cloud 

service. Although the system will not be built in the near future, we keep this 

system in mind as reference system during our research. Furthermore, [19] 

contains first findings regarding the transfer concept and a short description of a 

preliminary version of the crosswalk detection algorithm that we describe in detail 

in this article.  

In order to gather the needs of visually impaired people in traffic situations, we 

conducted qualitative interviews with experts and members of the target group 

using Witzel’s method of problem-centered interviews [34]. The results of the 

expert interviews are presented in [18] and [20]; a common evaluation of both 

interview types is not published yet. The evaluation of the interviews is presented 

in the form of tables, adapted from Sommerville’s software engineering book [30], 

describing the six identified traffic scenarios: (1) General orientation, (2) 

navigating to an address, (3) crossing a road, (4) obstacle avoidance, (5) boarding 

a bus, and (6) at the train station. For each traffic scenario, we recorded the vision 

use cases that could help visually impaired people in the according scenario. We 

then formed the overlap with vision use cases that are of interest in both 

considered fields, ADAS and ASVI. These are the use cases, we have to consider 

in our research: (1) Lane detection, (2) crosswalk detection, (3) traffic sign 

detection, (4) traffic light (state) detection, (5) (driving) vehicle detection, (6) 

obstacle detection, and (7) bicycle detection. Additionally, we described a 

preliminary version of the lane detection algorithm presented explicitly in this 

article in [20].  

For the evaluation of the algorithms that are developed in the course of our 

research, comparable sequences from driver and pedestrian perspective covering 

the seven identified use cases are needed. While there are many publicly available 

data sets from driver perspective, e.g. the KITTI data set [14] and the German 

Traffic Sign Detection Benchmark [16], there are few data sets from pedestrian 

perspective and no data sets with comparable material from both perspectives. 
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Therefore, we created the CoPeD (Comparable Pedestrian Driver) data set for 

traffic scenarios [21]. It is licensed under the Creative Commons Attribution 4.0 

International License
1
 and hosted publicly

2
. The data set is divided into four 

categories: (1) Lanes, (2) crossings (incl. traffic lights and crosswalks), (3) 

obstacles (incl. vehicles and bicycles), and (4) traffic signs with relevance to 

pedestrians. 

1.2 Presented Work 

The next step towards a transfer concept from ADAS to ASVI is the examination 

of the seven identified use cases with relevance in both fields concerning their 

possibilities of adaptation from ADAS to ASVI.  

The additional consideration of a road background segmentation makes it possible 

to run some detection algorithms on only a subset of the original image. 

Crosswalk and lane detection can be executed on the road image, whereas traffic 

sign and traffic light detection are carried out on the background part of the image. 

Obstacles, including vehicles and bikes, can occur in both parts of the image and 

are therefore run on the complete image. Figure 1 illustrates the procedure. This 

article focuses on the middle path of the diagram in Figure 1, meaning that we 

propose a road background segmentation and solutions for the “on-road” 

detections crosswalks and lanes. Thereby, the segmentation result is used as a 

preprocessing step for the different detection algorithms. This means that when 

integrated into an assistive system, the segmentation result is not communicated to 

the user unlike the result of the requested detection algorithm. 

The following chapter first gives an overview concerning related work for the 

topics camera-based ASVI as well as road background segmentation, crosswalk 

detection, and lane detection for ADAS and ASVI. Afterwards, we present our 

proposed ASVI solutions for these topics, each based on procedures from ADAS. 

The proposed algorithms are then evaluated on sequences from the CoPeD data 

set [21]. Finally, Chapter 4 outlines our future work.  

2 Related Work 

This chapter first gives an overview of camera-based assistance for the visually 

impaired. Then, related work of the three topics that have to be considered, 

namely road background segmentation, crosswalk, and lane detection, is cited. For 

each topic, we explain which ADAS procedures we chose for the adaptations 

presented in the following Chapter 3.  

                                                           
1
 https://creativecommons.org/licenses/by/4.0/ 

2
 http://dataset.informatik.hs-furtwangen.de/ 
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Figure 1 

Partition of detections with road background segmentation 

2.1 Camera-based Assistance for the Visually Impaired 

We describe the state of the art of camera-based assistance for the visually 

impaired in [17]. The developed systems cover a wide range: In the case of 

sufficient remaining eyesight, camera images are represented in a suitable way 

(e.g. [32]). While other systems focus on the interpretation of image content in 

certain situations (e.g. [29]), Sensory Substitution Devices (SSD) offer a 

comprehensive perception of the environment by transferring the sense of sight to 

a different sense, e.g. hearing [7] or tactile sense [1]. 

In general, ASVI consist of a capture, an image processing, and an output unit 

[17]. The research presented in this paper focuses on the processing step and does 

at this stage not take the output - the way of communicating the results with the 

user - into account.  

2.2 Road Background Segmentation 

In the 1990s, road segmentation for driver assistance using morphological 

watersheds was introduced [5]. The algorithm uses markers situated in front of the 
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car; hence, it cannot be used without adaptations on data from pedestrian 

perspective.  

From about 2008 onward, Alvarez et al. proposed road segmentation based on 

illumination-invariant models [2, 3, 4]. Their procedure poses two problems when 

used from pedestrian perspective: They use seeds in front of the car and a camera 

calibration is needed. The latter makes it difficult to use on any smartphone which 

is the platform an assistive system for the visually impaired is most likely to use.  

Other algorithms are based on neural networks (e.g. [12]), support vector 

machines (e.g. [31]), or deep learning (e.g. [25]). These machine learning 

approaches are too complex and costly to be the first step in the image processing 

chain of an assistive system for the visually impaired.  

Therefore, a road segmentation from pedestrian perspective based on Beucher et 

al.'s work using watersheds [5] is introduced in this article. 

2.3 Crosswalk Detection 

The adapted algorithm presented in the following chapter is based on the work of 

Choi et al. [9]. They introduce a combined detection of crosswalks and traffic 

lights. Their crosswalk detection is based on a 1-D mean filter in horizontal 

direction. Another example of an algorithm using the fact that crosswalks are 

horizontal structures from driver’s perspective is described in [15]. Haseloff and 

Kummert apply Fourier and Hough Transform and thus make use of the bipolarity 

and straight lines which characterize crosswalks. Zhai et al. propose a crosswalk 

detection based on MSER and ERANSAC [37].  

Furthermore, there is some research concerning crosswalk detection in the area of 

ASVI. The algorithms described in [28] and [33] are based on parallel lines that 

are extracted by Hough Transform. Cheng et al. [8] extract the bright crosswalk 

stripes by adaptive thresholding. They address challenging scenarios, such as 

partial occlusion, low contrast and distant crosswalks, and different illuminations. 

In addition, they offer an extensive literature review on crosswalk detection 

algorithms. 

2.4 Lane Detection 

In ASVI, the goal of lane detection is to help with general orientation by giving 

information about the course of the road, meaning indicating if the road goes on 

straight ahead or takes a left respectively right turn. On the other hand, in ADAS, 

lane detection is used to warn the driver if they risk to depart the lane. These lane 

departure warning systems consist of three steps, namely lane detection, lane 

tracking, and communication with the driver [24].  
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For ASVI, only the first step is of importance. According to [24], single frame 

lane detection is generally composed of four steps: (1) Image acquisition and 

preprocessing, (2) edge detection, (3) stripe identification by Hough Transform or 

Edge Distribution Function (EDF), (4) line fitting.  

As the Hough Transform is not suitable to detect even slight curves, we 

concentrate our research on using the EDF which is the histogram of the gradient 

magnitude with respect to the corresponding edge angle. The work described in 

this paper is based on the lane detection using EDF presented by Lee [23]. After 

computing the region of interest with the help of the vanishing point, edge 

extraction as well as EDF construction are carried out. Based on an EDF analysis, 

Lee identifies if the car is safely within the lane or in risk of departing the lane 

boundaries.  

3 Proposed ASVI Solutions 

In the following, we describe our proposed solutions for road background 

segmentation as well as crosswalk and lane detection. Each reported procedure is 

based on known solutions from ADAS. In the end, we present an evaluation of all 

three procedures on a subset of the CoPeD data set [21]. 

In previous publications, we focused on the differences between the underlying 

ADAS algorithms and the proposed adaptations. This article, however, 

concentrates on the mathematical details of the proposed adaptations. 

Table 1 shows the input and output variables for each procedure. It can be seen 

that road background segmentation is the foundation for the other two algorithms 

as the output from road background segmentation is used as input for crosswalk 

and lane detection.  

Table 1 

Input and output variables for road background segmentation, crosswalk detection, and lane detection 

 Road Background 

Segmentation 

Crosswalk Detection Lane Detection 

Input I: RGB Input Image. I, R I, R 

Output R: Binary image; road 

pixels are white. 

BG: Binary image; 

background pixels are 

white (𝐵𝐺 = ¬𝑅). 

CW: Binary image; 

crosswalk pixels are 

white.  

Text: Indicates if the 

road is straight or takes 

a right/left turn, 

provided any lanes are 

detected.  

In the complete chapter, (𝑥, 𝑦) refers to a pixel position in a given image of size 

𝑁 ×𝑀.  



Acta Polytechnica Hungarica Vol. 17, No. 3, 2020 

 – 131 – 

3.1 Road Background Segmentation 

The presented algorithm is based on Beucher et al.'s work [5] and consists of five 

steps: After the watershed computation (1), properties of the according catchment 

basins are determined (2). With the help of this information, the mosaic image is 

built by assigning to each pixel the mean gray value of the catchment basin it 

belongs to (3). Afterwards, we merge adjacent catchment basins if their gradient is 

below a threshold (4). Finally, a decision is made which uniform region from the 

merged mosaic corresponds to the road part of the image and a morphological 

post-processing of this region is carried out (5).  

Contrary to [5], we do not use a morphological gradient image as input of the 

watershed computation in order to reduce the number of catchment basins. To 

achieve this goal, we set some catchment basins to zero, depending on their mean 

value and mean saturation. Additionally, Beucher et al. use seeds in front of the 

car to expand the road from which is not possible in ASVI. To replace this 

procedure, we developed step (5), namely decision and morphological 

postprocessing.  

(1) Watershed Computation 

Watersheds are based on a topological interpretation of gray value images where 

the pixels, as spatial coordinates, are plotted against their intensity values. Local 

maxima are defined as watershed lines that separate the image into different 

regions. The inner parts of these regions are called catchment basins. In our 

implementation, we use the according method from Matlab’s Image Processing 

and Computer Vision Toolbox.  

In the following, we consider the notations:  

I: RGB input image, smoothed with a Gaussian Filter. 

gray: Gray value version of I. 

s: s-channel (saturation) from I converted into HSV space. 

L: Watershed image of gray. Every pixel has an assigned number k according to 

the catchment basin it belongs to. 𝐿 is set to zero for watershed lines. 

N: Number of catchment basins.  

(2) Properties of the Catchment Basins 

For every catchment basin 𝑘, 1 ≤ k ≤ N, we compute the mean intensity and 

mean saturation value: 

𝑔𝑟𝑎𝑦̅̅ ̅̅ ̅̅ ̅(𝑘) = ∑
𝑔𝑟𝑎𝑦(𝑥, 𝑦)

#{(𝑥, 𝑦)|𝐿(𝑥, 𝑦) =  𝑘}
{(𝑥,𝑦)|𝐿(𝑥,𝑦)=𝑘}
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�̅�(𝑘) = ∑
𝑠(𝑥, 𝑦)

#{(𝑥, 𝑦)|𝐿(𝑥, 𝑦) =  𝑘}
{(𝑥,𝑦)|𝐿(𝑥,𝑦)=𝑘}

 

Thereby, # stands for the number of elements in a set.  

(3) Mosaic Image 

For 𝐿(𝑥, 𝑦) = 𝑘, the mosaic image is then defined as 

𝑚𝑜𝑠𝑎𝑖𝑐(𝑥, 𝑦) =  {
𝑔𝑟𝑎𝑦̅̅ ̅̅ ̅̅ ̅(𝑘), if 𝑘 ≠ 0 ∧ �̅�(𝑘) < 𝑡ℎ𝑠 ∧ 𝑡ℎ1 < 𝑔𝑟𝑎𝑦̅̅ ̅̅ ̅̅ ̅(𝑘) <   𝑡ℎ2 

0,   else
. 

Depending on the thresholds 𝑡ℎ𝑠, 𝑡ℎ1, and 𝑡ℎ2, the value of the mosaic image is 

either set to the mean gray value or to zero.  

If 𝑚𝑜𝑠𝑎𝑖𝑐(𝑥, 𝑦) is set to zero, we simultaneously set 𝐿(𝑥, 𝑦) to zero. This means 

that the value of each pixel is set to the mean gray value of the corresponding 

catchment basin, provided mean gray value and mean saturation of the basin are in 

ranges that make them possible parts of the road. 

(4) Merged Mosaic Image 

In this step, adjacent catchment basins are merged, if the gradient between them 

falls below a threshold 𝑡ℎ𝑔𝑟𝑎𝑦. Let k and l be the identification numbers of 

adjacent catchment basins. Their gradient is then defined as: 

∇(𝑘, 𝑙) = |  𝑔𝑟𝑎𝑦̅̅ ̅̅ ̅̅ ̅(𝑘) − 𝑔𝑟𝑎𝑦̅̅ ̅̅ ̅̅ ̅(𝑙)| 

If it holds that ∇(𝑘, 𝑙) < 𝑡ℎ𝑔𝑟𝑎𝑦, we update 𝑔𝑟𝑎𝑦̅̅ ̅̅ ̅̅ ̅(𝑘) and 𝑔𝑟𝑎𝑦̅̅ ̅̅ ̅̅ ̅(𝑙) to their mean 

value 

𝑔𝑟𝑎𝑦̅̅ ̅̅ ̅̅ ̅(𝑘) = 𝑔𝑟𝑎𝑦̅̅ ̅̅ ̅̅ ̅(𝑙) =  
𝑔𝑟𝑎𝑦̅̅ ̅̅ ̅̅ ̅(𝑘) + 𝑔𝑟𝑎𝑦̅̅ ̅̅ ̅̅ ̅(𝑙)

2
 

and the mosaic image to the merged mosaic image 

𝑚𝑜𝑠𝑎𝑖𝑐(𝑥, 𝑦) =  {
𝑔𝑟𝑎𝑦̅̅ ̅̅ ̅̅ ̅(𝑘), if (𝐿(𝑥, 𝑦) = 𝑘 ∨ 𝐿(𝑥, 𝑦) = 𝑙) ∧ ∇(𝑘, 𝑙) < 𝑡ℎ𝑔𝑟𝑎𝑦

𝑚𝑜𝑠𝑎𝑖𝑐(𝑥, 𝑦),   else
. 

Furthermore, we set 𝐿(𝑥, 𝑦) = 𝑘 for all {(𝑥, 𝑦)|𝐿(𝑥, 𝑦) = 𝑙}.  

We repeat this process for all adjacent catchment basins.  

(5) Decision and Morphological Postprocessing 

Let 𝑚𝑎𝑥𝑖  be the gray value that occurs most often in the merged mosaic image. 

We then define the binary road image R as: 

𝑅(𝑥, 𝑦) =  {
1, if 𝑚𝑜𝑠𝑎𝑖𝑐(𝑥, 𝑦) =  𝑚𝑎𝑥𝑖

0,   else
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We perform morphological postprocessing by applying filling, opening, largest 

component, and closing on R.  

The background is then determined as the complement of R: 

𝐵𝑅 =  ¬𝑅 

For stability reasons, we use the union of the last 𝑛 frames as a tracking step. 

Hence, the road of the 𝑛-th frame in a sequence is defined as: 

𝑅𝑛 =⋃𝑅𝑛−𝑖

𝑛−1

𝑖=0

 

In tests, 𝑛 = 10 led to good results. 

      

      

Figure 2 

Intermediate steps of road background segmentation (cropped images):  

Original, mosaic, merged mosaic, and result 

Figure 2 shows intermediate steps of this algorithm for an example image. Even 

though, the road is not completely extracted, the segmentation counts as 

successful, because there are enough road detail to determine the road path. 

Furthermore, it is important that the bus stop sign (right side) was not extracted as 

road.  



J. Jakob et al. Camera-based On-Road Detections for the Visually Impaired 

 – 134 – 

3.2 Crosswalk Detection 

The presented algorithm is based on Choi et al.’s work [9] and preliminary 

descriptions can be found in [19] and [21]. It consists of four steps: After 

preprocessing and computing the Region of Interest (ROI) (1), horizontal and 

vertical 1-D mean filters are applied (2). The differences between original and 

filtered images are the foundation for binarization and morphological 

postprocessing (3). Finally, the two resulting masks are combined via a bitwise or 

operation and a decision is made if the remaining pixels form a crosswalk or not 

(4). According to Table 1, the original image as well as the extracted road from 

the road segmentation algorithm are the input variables for this algorithm. 

Choi et al. [9] developed their algorithm for an ADAS containing a tilted front 

camera so that the resulting images show only the road, but no background. 

Therefore, no ROI was needed in [9] and we developed the before presented road 

background segmentation as ROI. Furthermore, we added a vertical filter in order 

to be able to detect crosswalks from every angle by combining it with the 

horizontal filter. As we consider two filters, our handling of the masks differs 

from the one in [9]. Finally, Choi et al. [9] gave no detailed description of their 

postprocessing and decision step so that we had to develop our own version.  

(1) Preprocessing and ROI 

As preprocessing, we apply a Gaussian filter for noise reduction. Alternatively, we 

use the already smoothed RGB image I from the road segmentation algorithm as 

input.  

Let 𝑔𝑟𝑎𝑦 be the gray value version of 𝐼. The ROI is defined by the before 

computed road 𝑅. We therefore set the background pixels in 𝑔𝑟𝑎𝑦 to zero and 

keep the values belonging to the road: 

𝑔𝑟𝑎𝑦(𝑥, 𝑦) =  {
𝑔𝑟𝑎𝑦(𝑥, 𝑦), if 𝑅(𝑥, 𝑦) = 1

0, else
 

(2) 1-D Mean Filters 

Choi et al. [15] propose a horizontal 1-D mean filter to detect crosswalks, because 

from driver’s perspective crosswalks are horizontal structures. For pedestrians, 

however, crosswalks appear in every possible angle. Therefore, we use an 

additional 1-D mean filter in vertical direction. By combining the two filters, we 

are able to detect crosswalks occurring in any angle.  

In order to respect the ROI, pixels having the value zero are excluded from the 

computation. With that, we get the result for filtering in horizontal respectively 

vertical direction as 𝐺𝑥 and 𝐺𝑦: 
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𝐺𝑥(𝑥, 𝑦) =  ∑
𝑔𝑟𝑎𝑦(𝑥 + 𝑘, 𝑦)

#{(𝑥 + 𝑘, 𝑦)| − 𝑠 ≤ 𝑘 ≤ 𝑠 ∧ 𝑔𝑟𝑎𝑦(𝑥 + 𝑘, 𝑦) ≠ 0}

𝑠

𝑘=−𝑠

, 

𝐺𝑦(𝑥, 𝑦) =  ∑
𝑔𝑟𝑎𝑦(𝑥, 𝑦 + 𝑙)

#{(𝑥, 𝑦 + 𝑙)| − 𝑠 ≤ 𝑙 ≤ 𝑠 ∧ 𝑔𝑟𝑎𝑦(𝑥, 𝑦 + 𝑙) ≠ 0}

𝑠

𝑙=−𝑠

. 

The size of the filter is in both cases (2 ⋅ 𝑠 + 1). 

(3) Binarization and Morphological Postprocessing 

We compute the differences between the original image 𝑔𝑟𝑎𝑦 and the filtered 

results 𝐺𝑥 and 𝐺𝑦 as 𝐷𝑥 and 𝐷𝑦: 

𝐷𝑥(𝑥, 𝑦) = |𝑔𝑟𝑎𝑦(𝑥, 𝑦) − 𝐺𝑥(𝑥, 𝑦)| 

𝐷𝑦(𝑥, 𝑦) = |𝑔𝑟𝑎𝑦(𝑥, 𝑦) − 𝐺𝑦(𝑥, 𝑦)| 

By applying a threshold 𝑡ℎ, we get the masks 𝑀𝑥 and 𝑀𝑦: 

𝑀𝑥(𝑥, 𝑦) = {
1, if 𝐷𝑥(𝑥, 𝑦) > 𝑡ℎ  

0, else
 

𝑀𝑦(𝑥, 𝑦) = {
1, if 𝐷𝑦(𝑥, 𝑦) > 𝑡ℎ  

0, else
 

Afterwards, we perform closing followed by opening with a larger structuring 

element on both masks independently.  

(4) Bitwise or Operation and Decision 

Before combining the two masks, we delete components that cover less than 

1.5 % of the image. We then unite the two masks to one mask 𝑀 by applying a 

pixelwise or operation: 

𝑀(𝑥, 𝑦) =  𝑀𝑥(𝑥, 𝑦) ∨ 𝑀𝑦(𝑥, 𝑦) 

The largest component 𝐶𝑊 of 𝑀 is a crosswalk candidate, provided it also 

exceeds the 1.5 % mark. The decision is made based on two values: The extent of 

𝐶𝑊 indicating the relative number of pixels that are set inside a box surrounding 

𝐶𝑊 and the ratio between minor and major axis length of 𝐶𝑊. 

If both, ratio and extent, are higher than thresholds 𝑡ℎ𝑟 and 𝑡ℎ𝑒, 𝐶𝑊 is considered 

a crosswalk. Otherwise, no crosswalk is present and 𝐶𝑊 is set to zero.   

Figure 3 shows intermediate results of the crosswalk detection algorithm for an 

example image. The figure only shows intermediate steps for vertical direction, 

because the crosswalk in this example is a vertical structure. Therefore, the 

horizontal mask is zero and the vertical mask is identical with the result. 
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Figure 3 

Intermediate steps of the presented crosswalk detection (cropped images):  

Original, vertical filter, vertical mask, and result 

3.3 Lane Detection 

The presented algorithm is based on Lee’s work [23] and a short description was 

published in [20]. Six subsequent steps are carried out: After preprocessing and 

computing the ROI based on the road background segmentation (1), we divide the 

ROI into a total of eight subimages (2). For every subimage, we compute (3) and 

analyze (4) the EDF, resulting in an angle for every subimage. Afterwards, the 

angles are interpolated (5) and the course of the road ahead is decided (6) based on 

the concavity of the interpolated function.  

Lee’s ROI computation [23] is based on the vanishing point. Because we cannot 

use this procedure in ASVI, we use the before extracted road as ROI. In contrast, 

EDF computation and analysis were mostly taken from [23]. The partition into 

subimages and the decision step were newly developed by us. As the purposes of 

lane detection differ for ADAS and ASVI, there are no according steps in [23]. 

Interpolation by linear parabolic fitting is carried out similarly to [24], but was 

adapted to the presented procedure.  

(1) Preprocessing and ROI 

This step is analogous to the before presented crosswalk detection algorithm. 

Additionally, the first row of the road 𝑅 containing a non-zero entry is computed 

as 𝑚𝑖𝑛𝑦. 
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(2) Partition into Subimages 

We divide the image from the bottom of the image to 𝑚𝑖𝑛𝑦 into eight parts. From 

bottom to top, the first two subimages consist of one fourth of the available rows, 

the next two of one eighth, and the last four of one sixteenth.  

The following two steps are carried out for each of the eight subimages. This will 

be indicated with the index 𝑗, where 𝑗 = 1 refers to the subimage at the bottom 

which is the one closest to the user. 

(3) EDF Computation  

We compute the gradient 𝐺𝑗(𝑥, 𝑦) = (𝐺𝑗𝑥(𝑥, 𝑦), 𝐺𝑗𝑦(𝑥, 𝑦))
𝑇

, 𝑗 = 1, … ,8, by 

convolving the image with the Sobel masks: 

𝐻𝑥 = (
−1 0 1
−2 0 2
−1 0 1

) 

𝐻𝑦 = 𝐻𝑥
𝑇  

The magnitude 𝑀𝑗(𝑥, 𝑦) is then defined as  

𝑀𝑗(𝑥, 𝑦) = √𝐺𝑗𝑥
2 (𝑥, 𝑦) + 𝐺𝑗𝑦

2 (𝑥, 𝑦), 𝑗 = 1,… ,8 

and the angle 𝛼(𝑥, 𝑦) is computed as 

𝛼(𝑥, 𝑦) = tan−1 (
𝐺𝑗𝑦(𝑥, 𝑦)

𝐺𝑗𝑥(𝑥, 𝑦)
) , 𝑗 = 1,… ,8, 

so that the result is in the range [1,180]. The degree values are rounded to 

integers.  

Before determining the EDF, we compute the 97%-quantile of 𝑀 and set the 

values below it to zero. The EDF is then definied as: 

𝐸𝐷𝐹𝑗(𝑖) =  ∑ 𝑀(𝑥, 𝑦), 𝑖 = 1,… ,180

𝑖=𝛼(𝑥,𝑦) 

, 𝑗 = 1, … 8 

(4) EDF Analysis  

First, we smooth 𝐸𝐷𝐹 𝑗 , 𝑗 = 1, … ,8, with a 1D-filter of size 15. Afterwards, we 

compute the relative value of the highest peak 𝑝𝑗 ∈ [0,1], 𝑗 = 1, . . ,8 and its 

position 𝜃𝑗𝜖[1,180], 𝑗 = 1,… ,8. In case of no occurring peak, we set 𝑝𝑗 = 0 and 

𝜃𝑗 = 180. 
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(5) Interpolation: Linear Parabolic Fitting 

For interpolation, we consider the lane in the first two subimges from the bottom, 

the ones closest to the user, as linear and the remaining lane as parabolic. In order 

to be able to interpolate independently from image size, we normalize the values 

to [0,1]. Furthermore, we change the axes, meaning that the x-values are defined 

according to the size computed in step (2). With that, we get the interpolation 

function  

𝑓(𝑥) =  {
𝑎 ⋅ (𝑥 − 0.5) + 𝑏, if 𝑥 ≤ 0.5

𝑎 ⋅ (𝑥 − 0.5) + 𝑏 + 𝑐 ⋅ (𝑥 − 0.5)2, else
 

and the x-values 𝑥 = (0, 0.25, 0.5, 0.625, 0.75, 0.8125, 0.875, 0.9375, 1)𝑇. 

The according y-values are computed by determining a line with angle 𝜃𝑗: 

𝑦1 = 0 

𝑦𝑗 =  𝑦𝑗−1 + (𝑥𝑗 − 𝑥𝑗−1) ⋅ tan(𝜃𝑗−1 − 90) , 𝑗 = 2,… ,9 

It is necessary to subtract 90 from the angle, because we rotated the axes. After 

computing, the y-values, we normalize them to [0,1]. 

To get the interpolation function 𝑓, we compute the mean square error solution of 

the following overdetermined system of equations:  

(

 
 
 
 
 
 
 

𝑥1 − 0.5 1 0
𝑥2 − 0.5 1 0
𝑥3 − 0.5 1 0

𝑥4 − 0.5 1 (𝑥4 − 0.5)
2

𝑥5 − 0.5 1 (𝑥5 − 0.5)
2

𝑥6 − 0.5 1 (𝑥6 − 0.5)
2

𝑥7 − 0.5 1 (𝑥7 − 0.5)
2

𝑥8 − 0.5 1 (𝑥8 − 0.5)
2

𝑥9 − 0.5 1 (𝑥9 − 0.5)
2)

 
 
 
 
 
 
 

⋅ (
𝑎
𝑏
𝑐
) =

(

 
 
 
 
 
 

𝑦1
𝑦2
𝑦3
𝑦4
𝑦5
𝑦6
𝑦7
𝑦8
𝑦9)

 
 
 
 
 
 

 

(6) Decision 

There are four possible outcomes for the algorithm: The input image does not 

contain lanes, the road goes straight ahead, or it takes a right or left turn.  

First, we determine if the image contains lanes by checking if the mean value of 

the highest peaks �̅� =
1

8
∑ 𝑝𝑗
8
𝑗=1  is within a certain range [𝑡ℎ𝑝𝑙𝑜𝑤 , 𝑡ℎ𝑝ℎ𝑖𝑔ℎ].  

This is based on the idea that there is a characteristic amount of pixels belonging 

to the lane boundaries that indicate the direction. In tests, these pixels made up 

between 1.4% and 3% of the subimage.  
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If �̅�  lies outside the specified range, the output text is set to ‘No lane detected’.  

Otherwise, we check the course of the road by examining the parameter 𝑐 from the 

interpolation function and the variance of the 𝜃-values �̿� =  
1

7
⋅ ∑ (𝜃𝑗 − �̅�)

8
𝑗=1 , 

where �̅� is the mean 𝜃 value. In general, a negative 𝑐 value means that the 

parabola is concave down and the road takes a right turn; accordingly, a positive 

value of 𝑐 means that the parabola is concave up and the road takes a left turn. The 

higher the absolute value of 𝑐, the tighter the curve of the road; the lower the 

absolute value of 𝑐, the straighter the road. At the same time, the variance of the 

angles within the image is higher when the curve is tighter. With this knowledge, 

we set up a four-step process to determine the course of the road depending on 

several thresholds: 

(1) If |𝑐| < 𝑡ℎ𝑐𝑙𝑜𝑤, the output text is ‘Straight ahead’. 

(2) If 𝑡ℎ𝑐𝑙𝑜𝑤 ≤ |𝑐| < 𝑡ℎ𝑐𝑚𝑖𝑑, the output is determined as: 

text =  {

′Straight ahead′, if �̿� < 𝑡ℎ𝑣𝑎𝑟ℎ𝑖𝑔ℎ

′Left turn′ , if �̿� ≥ 𝑡ℎ𝑣𝑎𝑟ℎ𝑖𝑔ℎ⋀𝑐 > 0

′Right turn′, else

 

 

(3) If 𝑡ℎ𝑐𝑚𝑖𝑑 ≤ |𝑐| < 𝑡ℎ𝑐ℎ𝑖𝑔ℎ, the output is determined as: 

text =  {

′Straight ahead′, if �̿� < 𝑡ℎ𝑣𝑎𝑟𝑙𝑜𝑤

′Left turn′ , if �̿� ≥ 𝑡ℎ𝑣𝑎𝑟𝑙𝑜𝑤⋀𝑐 > 0

′Right turn′, else

 

 

(4) If |𝑐| ≥ 𝑡ℎ𝑐ℎ𝑖𝑔ℎ, the output is determined as: 

text =  {
′Left turn′, if 𝑐 > 0
′Right turn′, else

 

To increase the robustness, we compute the mean values of �̅� and �̿� for the last 15 

frames and set the output text to the one occurring the most in the last 15 frames.  

Figure 4 shows the interpolated function for an example image. In general, the 

interpolated function does not match the course of the road exactly, but is a good 

approximation and has identical concavity.  

3.4 Evaluation 

The three before described algorithms were implemented in Matlab Version 

R2017b using the Image Processing and Computer Vision Toolbox. The output of 

the road segmentation was used as input for the ROI computation of crosswalk 

and lane detection. 
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Figure 4 

Lane detection: Original (cropped image) and interpolated function.  

Blue lines mark the subimages. 

The algorithms were tested on a subset of the CoPeD data set [21]. In the 

following, we give the relative path to the used sequences inside the folder that 

can be downloaded from the CoPeD website (Link: see Chapter 1): 

- Crosswalk with traffic (CW w/ traffic), first 243 frames:  

CoPeD\2 Crossings\Pedestrian\ Pedestrian_Crosswalk_Traffic.mp4 

- Crosswalk without traffic (CW w/o traffic), first 195 frames:  

CoPeD\2 Crossings\Pedestrian\ Pedestrian_Crosswalk_NoTraffic.mp4 

- Straight, 74 frames:  

CoPeD\1 Lane Detection\Pedestrian\Others\ Pedestrian_Straight_2.mp4 

- Left, 489 frames: 

CoPeD\1 Lane Detection\Pedestrian\Others\ Pedestrian_Left_2.mp4 

- Right, 585 frames: 

CoPeD\1 Lane Detection\Pedestrian\Others\ Pedestrian_Right_2.mp4 

Tables 2, 3, and 4 show the evaluation for road segmentation (Table 2), crosswalk 

detection (Table 3), and lane detection (Table 4). In the first two cases, we 

considered nine frames less than stated above, in the third case 14 frames less. 

This is because we computed the union of the last ten frames for road 

segmentation and formed the mean of different values of the last 15 frames for 

lane detection.  

For road segmentation, an over detection means that in addition to the road, 

important data belonging to the background according to Figure 1 (traffic lights 

and signs) close to the user, at least 20 × 20 pixels in size, were extracted. An 

under detection means that not enough of the road was extracted in order to detect 

the road’s markings.  

For crosswalk detection, the goal was to detect the crosswalk in all frames of the 

first two sequences and no crosswalk in the other sequences. In the case of lane 

detection, it was the other way around: For the first two sequences, the result 
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should be ‘No lane detected’ whereas for the latter three the respective course of 

the road should be determined.  

Table 2 

Evaluation Road Background Segmentation (NF: Number of Frames, CD: Correct Detection, OD: 

Over Detection, UD: Under Detection) 

 
CW w/ 

traffic 

CW w/o 

traffic 
Straight  Left  Right  Total 

NF 234 186 65 480 576 1541 

CD 234 186 65 478 576 1539 

OD 0 0 0 2 0 2 

UD 0 0 0 0 0 0 

Hit rate 100.00% 100.00% 100.00% 99.59% 100.00% 99.87% 

Table 3 

Evaluation Crosswalk Detection (NF: Number of Frames, CD: Correct Detection, ND: Not Detected if 

crosswalk is present, FP: False Positive) 

 
CW w/ 

traffic 

CW w/o 

traffic 
Straight  Left  Right  Total 

NF 234 186 65 480 576 1541 

CD 226 181 65 472 576 1520 

ND 8 5 0 0 0 13 

FP 0 0 0 8 0 8 

Hit rate 96.71% 97.37% 100.00% 98.36% 100.00% 98.64% 

Table 4 

Evaluation Lane Detection (NF: Number of Frames, CD: Correct Detection, WD: Wrong Detection) 

 
CW w/ 

traffic 

CW w/o 

traffic 
Straight  Left  Right  Total 

NF 229 181 60 475 571 1516 

CD 229 181 60 473 541 1484 

WD 0 0 0 2 30 32 

Hit rate 100.00% 100.00% 100.00% 99.58% 94.75% 97.89% 

The overall hit rates were 99.87% for road segmentation, 98.64% for crosswalk, 

and 97.89% for lane detection. It would be useful to compare the evaluations with 

results from the underlying ADAS algorithms, but this is difficult to achieve 

because they were tested on other, not publicly available data. Choi et al. [9] 

report 96.2% correctly detected, present crosswalks and 0.66% false positives for 

a data set of 21864 frames from which 1053 contain a crosswalk. In our case, the 

according numbers were with 96.9% and 0.76% in a similar range. For lane 

detection, Lee [23] tested on 1200 frames, if the car departed from the road or not. 

The reached hit rate was 96.42%. Beucher et al. [5] presented their results on a 
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small number of single frames. Even though it is not possible in all cases to 

compare our hit rates with the ones of the underlying ADAS algorithms, we can 

state that our adapted algorithms performed well and reached suitable hit rates that 

are applicable for ASVI. 

4 Future Work 

In the future, we will implement the ADAS algorithms on which the presented 

algorithms are based in order to be able to compare performance in the fields of 

ADAS and ASVI. The evaluation will be done using the CoPeD data set [21], 

which contains comparable video sequences from the driver and pedestrian 

perspectives. Implementing the ADAS algorithms is a challenging task, because 

the algorithms are in general not described in detail in the related papers.  

Another possibility to provide information about the course of the road to a 

visually impaired pedestrian, is to adapt the ADAS algorithm from [11] which 

detects arrows on the road setting out lane arrangements.  

Improving the segmentation will also improve the crosswalk and lane detection 

results. Therefore, we will consider up-to-date road segmentation algorithms using 

deep learning (e.g. [25]). 

Additionally, we will focus on the remaining paths in Figure 1 and work on ASVI 

solutions based on ADAS algorithms for obstacle, especially bike and vehicle, 

detection (e. g. [13], [22], [35]) as well as traffic light (e. g. [27]) and traffic sign 

detection (e. g. [36]). The adaptations for all considered use cases will be 

summarized in a concept for transferring ADAS algorithms to ASVI using 

methods from software engineering [30] and project management [26].  

Conclusions 

The content in this article is embedded in our project of developing a concept for 

the transfer of camera-based algorithms from ADAS to ASVI.  

In previous work, we identified a total of seven use cases that have to be 

considered. This article focuses on the detection of markings on the road, namely 

crosswalk and lane detection. In order to reduce the computational cost, we first 

introduced a road background segmentation. Thereby, crosswalk and lane 

detection can be carried out on the road only. Algorithms for traffic sign and 

traffic light detection, to be developed in the future, will be applied to the 

background part of the images, whereas obstacles will be detected in the whole 

image. 

The presented road background segmentation is based on Beucher et al.’s [4] use 

of morphological watersheds and in addition used thresholds for the mean gray 
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and saturation values of each catchment basin. Our model reached a hit rate of 

99.87%. 

The basis of our developed crosswalk detection is Choi et al.’s idea of using a 

horizontal mean filter [7]. We combined the horizontal with a vertical filter and 

defined a decision process. The recognition rate of this algorithm was 98.64%.  

The suggested lane detection used the Edge Distribution Function (EDF). Instead 

of applying the EDF to the whole image as in Lee’s ADAS work [18], we first 

divided the image into subimages of increasing sizes from bottom to top. 

Afterwards, interpolation of the angles and analysis of the according function 

returned the course of the road. Correct detections occurred in 97.89% of the 

examined frames. 

With that, we can state that the presented ASVI algorithms, adapted from relevant 

ADAS methods, achieved overall good hit rates and thus are applicable for ASVI.  

In our future work, we will first compare the performance of the presented ASVI 

algorithms with their underlying ADAS solutions and then focus on the remaining 

use cases. 
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