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Abstract: The aim of this paper is the numerical simulation of anisotropic mean curvature 

of graphs in the context of relative geometry, developed in [1]. We extend results in [4] to 

our problem; we prove an existence theorem and energy equality. The numerical scheme is 

based on the method of lines where the spatial derivatives are approximated by finite 

differences [2]. We then solve the resulting ODE system by means of the adaptive Runge-

Kutta-Merson method. To show the stability of the scheme we prove the discrete version of 

the energy equality. Finally, we show experimental order of convergence and results of 

numerical experiments with various anisotropy settings. 
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1 Introduction 

The paper studies the following motion law for surfaces in    denoted by  : 

                           (1)  

in a certain sense which is specified below. Both the velocity and the curvature are 

evaluated with respect to the direction given by a vector locally influenced by the 

orientation of the Euclidean normal vector to  . 

One example of the law (1) is represented by the isotropic mean-curvature flow 

given by the equation 

                (2)  

in the direction of   which is the Euclidean normal vector to  , while    the 

normal velocity,    the mean curvature, and   the forcing term. The equation (2) 

in the form of the Gibbs-Thompson law is contained in the modified Stefan 

problem. For details, we refer the reader to [9, 16]. 
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One of few anisotropic examples where the analytical solution is known considers 

a ball under the relative geometry which shrinks according to (1) with   . In 

this case we have the initial ball with radius   , normal velocity  ̇, actual curvature 

along the ball of radius   being 
 

 
. The equation (1) reads 

 ̇   
 

 
  

and has the solution 

     √  
      

This law has been intensively studied, see e.g. [4, 5, 13]. 

This paper deals with the motion by anisotropic mean curvature in relative 

geometry associated with the Finsler metric, developed in [1], which reads 

                     (3)  

Here,      denotes the normal velocity,      is the anisotropic mean curvature of 

     with respect to the Finsler metric  , and   is the forcing term. 

Deckelnick and Dziuk proved the convergence and gave the optimal error 

estimates using finite element method for graph [4, 7] and parametric case [8]. 

Haußer and Voigt [11] presented a parametric finite element approximation for a 

regularized version. Pozzi studied the anisotropic mean curvature flow in higher 

codimension in [15]. 

2 Anisotropy in Relative Geometry 

In what follows we shall first define anisotropy by means of the Finsler geometry; 

then, we shall transform the motion law (3) into graph formulation. For this 

purpose, we assume that there is a smooth function with non-vanishing gradient 

         such that 

     {[   ]    |               }  

We say that a continuous function        
  is a Finsler metric if it satisfies the 

properties 

1.   𝐶  𝛼   { }   
2.   is strictly convex, 

3.    𝜂  | |  𝜂            𝜂      
4. 𝜆|𝜂| ≤   𝜂 ≤ Λ|𝜂|    𝜂       

for two suitable constants  < 𝜆 ≤ Λ < ∞  

Associated to   we define the unit ball (also so-called Wulff shape) 
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   {𝜂    |  𝜂 ≤  }  

One can prove that a dual function         
  given by 

   𝜂      {𝜂  𝜂|𝜂    } 

is also a Finsler metric. 

For simplicity we use 𝜂 instead of 𝜂 . Then the following relations hold [3] 

  
   𝜂  

 

| |
  

  𝜂        
   𝜂  

 

| |
   

  𝜂         { }  

     𝜂    
  𝜂      |  

  𝜂

|𝜂| 
𝜂|

 

    𝜂                     

where the index 𝜂 means the derivative with respect to 𝜂. 

We define the map         as 

   𝜂  ( ̃  𝜂    
  𝜂 )     𝜂   

  𝜂     𝜂     

         

Then, the  -normal vector,  -mean curvature, and  -normal velocity of   are 

defined as 

     
         

         
   

          (4)  

               
 ̃        

         
  (5)  

      
   

         
  (6)  

By substituting the quantities (4)-(6) into the Eq. (3), we obtain the non-linear 

parabolic partial differential equation 

             (  (
 ̃        

         
)   )            (7)  

The initial and boundary conditions are given by 

 |          ̅  (8)  

                  (9)  

In our numerical experiments we use the Finsler metrics listed below. We denote 

  
 

| |
. The corresponding Wulff shapes are illustrated in Fig. 1. 
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The 4-fold anisotropy reads as 

  𝜂  |𝜂| (    (     
    

    
  ))  (10)  

The 6-fold anisotropy reads as 

  
  𝜂  |𝜂| (    (  

    
    

  
 

 
) 

   (    
    

    
       

   
   

  
  

 
)) 

(11)  

The 8-fold anisotropy reads as 

  
  𝜂  |𝜂|        

    
    

  

       
   

    
   

    
   

    
   

    
   

      
   

   
       

   
    

   
    

   
      

(12)  

The regularized   -anisotropy reads as 

  
  𝜂  ∑(𝜂 

    ∑𝜂 
 

 

   

)

 

   

 

 

  (13)  

 

  

4-fold anisotropy,         6-fold anisotropy,                      

  

8-fold anisotropy,           regularized   -norm,         

 

Figure 1 

Wulff shapes for various anisotropies 
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3 Analytical Properties 

In the following section we shall introduce some analytical results for law (7) in 

the context of relative geometry, which are due to [4, 11, 12]. We shall prove the 

energy equality and give the existence result for our problem. 

 

Theorem 1. For the solution of problem (7)-(9), one has the energy equality 

∫   (
  

         
  )

 

 
 

  
∫         
 

    

If    , then 

∫
  
 

          

 
 

  
∫         
 

    (14)  

 

Proof. Since     on   , the proof is straightforward 

 

  
∫         
 

 ∫  
 

 

        [     ]  ∫[     ]  
         

          

 

 ∫    
 

 ̃        

         
 ∫    

 

 ̃        

         
 

  ∫   (
  

         
  )

 

  

If    , we obtain the equality (14). 

 

Lemma 1. Let   �̃�     �̃�    ,    
  
        

         
, and     

   

   
. Then for the 

solution of the problem (7)-(9) with      one has the identity 

   ∑
 

   

(   

  

   
) 

 

     

 ∑    

  

   

 

   

 

 ∑       

   

      

   

      

 

 

       

  

(15)  

 

Proof. We have 

     ̃
            ∑  

 

   

      

   

  ∑  

   

   

 

   

   ∑  
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Let now compute 

∑  

   

   

 

   

 ∑  

 

   

 

   

∑
 

   

  

 

   

 ∑   

 

   

 

   

  

 

     

 

 ∑
 

   

(  

 

   

  )

 

     

 ∑
 

   

  

 

   

  

 

     

  

Since 

 

   
  ∑  

 

   

 

   

 

   

     
 

   

   ∑   

 

   

 

   

 

 

   

  

we get the identity (15). 

 

Theorem 2. Let    𝐶  𝛼and                . We assume that 

∑      
               

   ≤  

 

     

          

Let    𝐶  𝛼  ̅  satisfies the compatibility condition 

∑      
                

 

     

            

Then (7)-(9) with     has a solution      𝛼 
   

   ̅  [   ]  with    
                for all  < ∞. 

 

Proof. Similarly as in [4] we are looking for a solution of the initial boundary 

value problem 

   ∑           
   

 

     

   

but with the difference  

    �̃�     �̃�         
  �̃�      

Since    is a Finsler metric,    𝐶       holds. Moreover, since    
𝐶  𝛼   { } , we have     𝐶      . 
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Following standard lines of Theorem 4.1 in [4] and using the previous Lemma 1 

we can show there is a constant   such that for every solution    of 

  
   ∑       

       
 

 

     

                             

                      
                    

the estimate 

   
       

|  |     
       

|   | ≤   

is valid. This means (7)-(9) with     has a solution      𝛼 
   

   ̅  [   ] . 

4 Numerical Scheme 

We employed the numerical scheme based on the method of lines. The spatial 

derivatives are discretized and the time variable is left continuous. After 

discretizing the problem by finite differences in space, we solve the resulting ODE 

system by the adaptive Runge-Kutta-Merson method. We consider the 

computational domain                 and introduce the following notation: 

   
  

  

    
  

  

 

   {[       ]|                     }  
 ̅  {[       ]|                 }  
       ̅   
                

       
          

  

        
          

  

  

  ̅     
          

  

   ̅     
          

  

  

    [   
    

]  

 ̅   [  ̅ 
   ̅ 

]  

     | ̅ 
  

 

 

 

 

 



D. H. Hoang et al. Numerical Simulation of Anisotropic Mean Curvature of Graphs in Relative Geometry 

 – 106 – 

We define the following expressions 

       ∑ ∑           

    

   

    

   

    ‖ ‖ 
          

      ⌋  ∑ ∑        
    

 

    

   

  

   

  

      ⌉  ∑ ∑       
    

 

  

   

    

   

  

    ]        ⌋        ⌉  

    ]  ∑∑          

  

   

  

   

  

We then propose a semi-discrete scheme [2] 

  
      ̅  

     (   (
 ̃   ̅  

     

    ̅  
     

)   ) on          

  |        on ̅  
       on          

(16)  

This is an ODE system and existence and uniqueness of solutions are guaranteed 

by the theory of ordinary differential equations (the Picard–Lindelöf theorem). 

As the stability criterion we use the basic energy equality (14). For this purpose 

we shall now prove the discrete version of Theorem 1. 

Theorem 3. For the solution of problem (16), the following energy equality holds 

(  
  

  
 

    ̅  
     

  )
 

 
 

  
     ̅  

       ]     

If    , then 

(   
    

 

    ̅  
     

)
 

 
 

  
     ̅  

       ]     (17)  

Proof. Applying the grid version of Green’s formula as in [2], we obtain 

(  
  

  
 

    ̅  
     

  )
 

 (  
     (

 ̃   ̅  
     

    ̅  
     

))

 

 

 ( ̅   
  

 ̃   ̅  
     

    ̅  
     

] 

  ∑ ∑       
 | ̅    

    

   

  

   

  
   ̅  

     

    ̅  
     

|
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 ∑ ∑      
 | ̅    

  

   

    

   

  
   ̅  

     

    ̅  
     

|
  

 

  ∑∑      
 | ̅    

  

   

  

   

  
   ̅  

     

    ̅  
     

|
  

 

 ∑∑      
 | ̅    

  

   

  

   

  
   ̅  

     

    ̅  
     

|
  

  
 

  
     ̅  

       ]  

If    , we get the equality (17). 

5 Computational Results 

We first investigate the convergence of the numerical scheme. Then, we explore 

the long time behaviour of the anisotropic motion law (3).  

Experimental order of convergence. The computations have been performed 

over a range of different grid resolutions which allows quantifying the numerical 

convergence by the experimental order of convergence (EOC). A numerical 

solution computed on the finest grid is used to substitute the analytical solution.  

Given errors        and        for two mesh sizes   ,   , respectively, the 

    is defined as 

    
                  

          
  

The result is shown in the following table. 

Table 1 

Experimental order of convergence of the scheme (16) 

                                    

50 1/50 0.05924 - 0.01175 - 

100 1/100 0.03676 0.68843 0.00731 1.00000 

150 1/150 0.02689 0.77219 0.00511 1.00000 

200 1/200 0.02058 0.92781 0.00357 1.00000 

 

Morphology evolution. We present the solutions at different times for various 

anisotropies. Figs. 2-6 show surface evolutions under anisotropic mean curvature 

flow without the forcing term (     ). Anisotropy is shown to be crucial in the 

formation of different surface morphologies. The surface is first determined by 

symmetry of anisotropy; it then evolves towards to the flat surface. Finally, the 

effect of the forcing term   on the surface evolution is shown in Fig. 7. 
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Figure 2 

Morphology evolution for    , the 4-fold anisotropy (10) with        , 

                           at different times 
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Figure 3 

Morphology evolution for    , the 6-fold anisotropy (11) with                     , 

                           at different times 
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Figure 4 

Morphology evolution for    , the 8-fold anisotropy (12) with          , 

                           at different times 
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Figure 5 

Morphology evolution for    , the regularized    norm (13) with        , 

                           at different times 
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Figure 6 

Morphology evolution for    , the regularized    norm (13) with        , 

                                                   at different times 
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Figure 7 

Morphology evolution for  

                    (                                 )         ,  

the regularized    norm (13) with         ,                             at different times 
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Conclusion 

In the paper, we have studied the anisotropic mean curvature flow in relative 

geometry for which a global existence result has been derived. A numerical 

scheme based on the method of lines has been presented and analysed concerning 

its stability. In the numerical experiments, the influence of various anisotropy 

symmetries and the forcing term on the surface evolution has been addressed. 
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