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Abstract: The mid-frequency component of Heart Rate Variability (HRV) is utilized in 

many studies to measure the level of mental effort in Human-Computer Interaction (HCI). 

However, the temporal resolution that can be achieved using this method is 

underestimated. For refining the specification of the exact temporal resolution of this 

method, we employed a visual search task that required elevated levels of mental effort. 

Participants had to find one difference between pairs of pictures. Each of the twelve pairs 

was followed by a congratulation screen causing a short period of relief (5-6 seconds). 

Using our method based on power spectra analysis and windowing functions, we were able 

to differentiate between the HPV mid-frequency values of the visual search and the relief 

periods. These results, along with previous findings, seem to suggest that the temporal 

resolution of 5-6 seconds can be achieved with our method, widening the range of 

applications. 

Keywords: human-computer interaction; empirical usability evaluation methods; ECG; 
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1 Introduction 

1.1 The Role of Mental Effort in Human-Computer 

Interaction 

Mental workload required by Human-Computer Interaction (HCI) (or the self-

imposed part of this mental workload, the mental effort invested by the user), as a 

measurement of “ease of use” is a key factor of usability or pragmatic aspect of 

user experience (UX) [1], [2]. The less mental effort one needs to operate a given 
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software, the better it is in terms of usability. This approach is important in 

traditional HCI researches and in related research areas as ergonomics, UX, and 

Cognitive Infocommunications (CogInfoCom) as well [1]–[6]. We emphasize that 

mental effort can be an objective basis of the usability evaluation, and, there are 

practically applicable methods, such as the Heart Rate Variability based method 

described below. In this paper, new results are published on the temporal 

resolution capability of his method: The results raise hope that this method – over 

the previously developed HRV-based methods – is capable of exploring practical 

usability issues identifying quality attributes of software elements with a temporal 

resolution of only a few seconds: this time window can be narrow enough to 

analyse the mental effort caused by such short interactions as some clicks in a 

menu, or reading a message and pushing a button, etc. 

In concordance with this, an everyday HCI is rarely characterized by sustained 

mental effort throughout the whole session. Instead, it most likely includes longer 

periods of relatively low mental effort with brief events of higher demand. Or vice 

versa, in more critical situations – such as air traffic management [7] or reading e-

learning material for an exam, etc. –, it includes longer periods of relatively high 

mental effort with brief events of lower demand (e.g., reliefs). These events are 

very important from the usability standpoint. Sudden increases in mental effort 

demand can be caused by the users’ previous experience (e.g., incompatible 

mental models) or a stage in the interaction where the mobilization of mental 

effort is unavoidable. However, they can also indicate a flaw in design that puts 

unnecessary burdens on the users. This extra load can lead to a set of errors [8], 

frustration, or higher levels of fatigue [9]. 

1.2 Measuring Mental Effort 

There are many methods available for measuring mental effort (self-imposed 

mental work stress). Task performance on primary or secondary tasks are often 

used in ergonomics [10]. Subjective rating scales, such as the NASA Task Load 

Index (NASA-TLX) [11], are also widely used. They can even be used to 

differentiate between factors influencing mental effort, such as time pressure and 

frustration. Subjective ratings, however, have their limits. If a user is asked to 

recount a longer session, there will be events that will be forgotten or remembered 

differently than as it has actually happened. Simple observation techniques can 

prove invaluable in supporting other methods. Video recordings of facial 

expressions, body movements or postures can help disambiguate findings or 

highlight previously unnoticed periods of interest. The analysis of facial 

expressions using well defined coding schemes (e.g., [12]) can support decisions 

about the cause of mental effort change. However, their temporal resolution is not 

ideal for following the constantly changing states during HCI. 
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There are also a wide palette of psychophysiology-based methods that are capable 

of measuring mental effort. Change in electrodermal activity (EDA) [13], facial 

electromyography (EMG) [14], blink rate [15], pupillometry [15]–[19], visual 

Critical Flicker Frequency (CFF) [20], or even salivary cortisol levels [20], [21] 

are capable of identifying changes in mental effort. The advantage of these 

methods is that they do not require any recollection from the user, to uncover 

potential trouble spots in HCI. 

However, most physiology-based methods are not selective enough in their output 

to be capable of measuring mental effort on their own. For example, pupil size is 

influenced by almost every external or internal event [19]. The EDA reacts much 

more profoundly to affective effects than to mental effort. To study emotions in 

HCI, our department hasexperiences with measuring EDA (Skin Conductance – 

SC) [22], [23]. 

CFF and measuring the cortisol have also been applied by colleagues [20], but 

they give an indicator for a relatively long period of several minutes to hours. 

Applying pupillometry – among the mentioned problems – is a promising method 

[19]. Eye-tracking is also promising not only for detecting the focus of the user 

during effort required events, but its metrics can reflect to the mental state [24]. 

Even intraocular pressure changes can be used to identify cumulative or 

instantaneous changes in mental effort [25]. 

Electroencephalography (EEG) can also be used to measure mental effort in HCI 

research [26], [27]. Its temporal resolution is superb or on par with the previously 

mentioned methods. It also has the advantage of being a direct measure of central 

nervous system activity while others are indirect. To measure mental effort, 

spectral parameters of certain frequency bands are used. For example, the ratio of 

the beta (~12-30 Hz) and alpha frequency bands (~8-12 Hz) can be used as an 

index of mental effort [28]. Others use different frequency bands [29] or ERP 

based approaches [30], but all seem to be promising in measuring mental effort. 

It is important to note, that to uncover the cause of those events, a single method 

will probably never be enough. To date no physiology-based method is able to 

completely eliminate other supporting techniques like observations, interviews, or 

retrospective think aloud protocol. 

1.3 ECG in Measuring Mental Effort 

Heart rate is the number of heart beats in each time interval. Heart rate usually 

increases during a mental effort demanding task, and the magnitude of its change 

can be informative to some degree [31]. However, there are more sensitive 

measures available when we are interested in the changes of mental effort. 

The variance or standard deviation of heart rate can also be used; however, these 

measures also contain influences from various physiological sources independent 
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of mental effort. The spectral analysis of Heart Rate Variability (HRV) (or its 

reciprocal expression, Heart Period Variability (HPV), where the power spectral 

density estimation is based on Interbeat Intervals (IBI)) can be used to minimize 

effects from other sources. The most frequently used IBI is based on the 

component of the electrocardiogram (ECG) recording with the biggest amplitude, 

the so-called R peaks. These time periods can be referred to as RR intervals. The 

power spectral density estimation is either based on RR intervals, or HR values. 

The most important frequency band, in case of mental effort, is the so-called Mid-

Frequency (MF) peak between 0.07-0.15 Hz. A number of studies [32]–[36] 

reported lower power in this frequency band during mental effort. Both 

sympathetic and parasympathetic activity is believed influence this component 

[37]. High peak in the Mid-Frequency Power (MFP) band may also be caused by 

movements (as the baroreflex controls the blood pressure). To separate the effect 

of the mental effort from the effect of baroreflex, a ratio of the MF component and 

the below mentioned higher frequency respiratory component can be applied [38]. 

However, in case of HCI, users typically sit continuously, and their larger muscle 

movements (e.g., stretching) eventually can be filtered from the records via video 

analysis. Furthermore, practically, some significant movements seem not to affect 

the indication of mental effort [39]. Therefore, the mental effort can be 

characterized sensitively enough by the MFP band itself, as it is shown by the 

current results presented in this paper. 

The high frequency band (0.15-0.45 Hz) represents respiratory function through 

the so-called respiratory sinus arrhythmia. It is influenced by parasympathetic 

activity. The power of low-frequency band between 0.04-0.07 Hz is related to 

thermoregulatory fluctuations of the blood vessels [40], [41]. An ultra-low 

frequency band with a range of 1.15*10-5-0.00335 Hz can also be defined and is 

believed to reflect circadian variation [42], [43]. 

There are many ways to calculate these spectral frequency measures. There are 

non-parametric methods based on Fast Fourier Transformation (FFT). Their 

advantages are their ease of computing and low processing requirements. The 

FFT-based power spectral density estimation is derived from all the data present 

in the recording [44]. This means that FFT is computed using the whole variance 

of frequency components regardless of them being at certain frequency peaks or 

not. It also requires a longer recording to achieve its best spectral resolution. An 

alternative would be parametric methods based on Autoregressive (AR) modeling. 

These methods produce smoother spectral components and give more precise 

power spectral density measures in case of shorter recordings. This property 

makes them a better candidate for use in HCI research, where often shorter time 

periods are more informative that the whole session. The AR models only use 

specified band powers for their estimation; other components are discarded as 

noise. The method described in this paper is based on a special application of AR 

spectral power computation. We discuss the analysis in Section 2.4. 
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2 Methods 

2.1 The INTERFACE Methodology 

The present study applied the INTERFACE (INTegrated Evaluation and Research 

Facilities for Assessing Computer-users' Efficiency) software evaluation 

methodology, developed by Izsó and his colleagues at the Budapest University of 

Technology and Economics (BME) [36], [40]. The strength of the methodology 

lies in recording (and later replaying and analysing) multiple channels 

simultaneously. The default setup of the INTERFACE workstation records 

various aspects of HCI. First of all, key presses, mouse clicks and, sometime, 

other events of the HCI are recorded as well as the content of the screen. 

Optimally two cameras film the participant. One focusing on the face and the 

other on the whole body. The earlier is necessary for the observation of facial 

expressions. The latter is mainly useful to spot any major movement or changes in 

posture that could have influenced the physiology channels. However, postures 

and gestures can also show the users’ metal state similarly as the facial 

expressions do. These recordings help clarify ambiguous periods observable in the 

physiology channels recordable with the current setup – in this paper, namely the 

MFP of the HPV. 

The recording of the physiological data was accomplished with the ISAX module 

(Integrated System for Ambulatory Cardio-respiratory data acquisition and 

Spectral analysis). It is a specific hardware and software solution developed by the 

Psychophysiology Research Group of Hungarian Academy of Sciences and the 

BME [40] for easy and portable physiological measurement. 

2.2 Experimental Setup and Procedure 

2.2.1 Participants 

All 11 participants (8 female) were graduate or undergraduate students at BME, 

with a mean age of 21.9 and the minimum of 19 and maximum of 26. They all had 

normal or corrected to normal vision, and reported no cases of previous 

cardiovascular surgeries or diseases. They were instructed to refrain from the 

consumption of any stimulants (coffee, cigarettes, energy drinks, etc.) for at least 

2 hours before the experiment. 

2.2.2 Electrode Placement 

A bipolar lead was used for ECG measurement. The setup of the two main 

electrodes close to the electrical axis of the heart is found most suited to maximize 
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the amplitude of the R peaks. The exploring, or positive electrode was placed on 

the sixth or seventh rib, below the left nipple. The indifferent, or negative 

electrode was placed high up on the right side of the sternum, i.e. on the right side 

of the manubrium of the sternum, close to the right clavicle, or in the left side of 

the right infraclavicular fossa. The ground electrode was located on the seventh or 

eighth rib on the left median auxiliary line (see Figure 1). Depending on the real 

electrical axis of the heart, the texture of the tissues, and the build of the person, 

other ECG electrode placements can also be chosen to maximize the magnitude of 

the R wave and minimize the artefacts caused by movements. 

 

Figure 1 

The electrode placement used for our experiment 

We used Type 2228, Ag/AgCl electrodes manufactured by 3M. The skin was 

cleaned using alcohol before electrode placement. The ECG data was recorded by 

the ISAX module. It was connected to a laptop running from battery for safety 

measures. 

2.2.3 Additional Software Used 

The video capture of the screen content with the eye-gaze paths was realized by 

Tobii Studio v.2.1.14 software – analysing the eye tracking data gained by the 

Tobii T120 equipment can be subject of further analysis in another paper. Virtual 

Dub software recorded the view of an external camera connected to a second 

computer. Additional software for recording event logs, experimenter’s notation, 

and synchronizing the records via serial wires and special button as parts of the 

INTERFACE frame system developed by our team. For statistical analyses, IBM 

SPSS Statistics 22 was used. 
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2.3 Procedure 

All participants were briefed before electrode placement. They were asked to 

abstain from any major movements during the whole session. Speech is also 

known to influence HRV, so we asked them to speak during recordings only if 

they had some trouble with the tasks. 

At the beginning of the session, all participants were asked to sit as comfortable as 

they could and relax for four minutes. The instructions of these periods were to 

seat themselves in a comfortable posture, without any movement while keeping 

their eyes open. Also, trying not to think about anything in particular, in spite of 

the known fact that it is not trivial for people untrained at this (at least trying to 

avoid thinking specific things), and ensuring them that there are no good or bad 

personal results: we have no expectations, we would only like to investigate some 

differences between this period and the next one. 

The following period consisted of a mental arithmetic task. Participants were told 

that a number will appear in the middle of the screen and they will have to count 

backwards by seven silently from this number until a question mark appears on 

the screen. We instructed them before the task that they should avoid movements 

and also avoid speech, counting aloud, or voiceless movement of mouth. In case 

they lost track, they should continue from any number they seem to remember (to 

ensure that the level of mental effort is kept up during the whole period). 

After 20 seconds of waiting, the number of 11558 appeared for five seconds. Two 

minutes later a question mark appeared on the screen. Then the participants had to 

speak out loudly the number they reached. They were given positive feedback on 

their performance. 

After a short break, participants were presented a visual search task. Twelve pair 

of pictures were displayed. The participants had to find the difference between one 

pair of pictures at a time and click on it with the left mouse button to proceed. 

Clicking anywhere else caused no effect. The pictures were created applying 

twelve holiday photos on various topics with various atmosphere, taken by Károly 

Hercegfi. Each stimulus contained duplicated pictures with only one difference 

between them. To create the differences, the pictures were edited using Adobe 

Photoshop (see Figure 2). It was either a missing or extra object or the change of 

colour of an object. If a participant had not found the difference within three 

minutes, they were given clues verbally by the instructor, to avoid the building up 

of frustration. The order of the pictures was fixed. They were either aligned left 

and right or top and bottom according to the original format of the picture. 

Once the difference was found and clicked upon, a congratulation screen appeared 

for 5-6 seconds (meantime: 5.4 s), then the next pair was loaded. The reason for 

the variability in duration comes from the JavaScript animated HTML design we 

used for this experiment. The pictures themselves were not stored on the hard 

drive of the computer running the experiment, but on a server. Because of this, 
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there was always a delay in loading the next set of pictures, however, the duration 

of the congratulation screen never exceeded six seconds. 

We expect the MFP of HPV values to be significantly lower during relaxation 

compared to mental arithmetic. This is done to illustrate that our method of 

calculation is able to separate high and low levels of mental effort using only the 

MF band. 

The main goal of this study is to examine the MFP of HPV value differences 

between a mental effort demanding task and a short relief period immediately 

after it. We expect to find significantly higher MFP of HPV values during the 

Congratulation screens opposed to the Visual search task. If we would find such a 

relationship, it would mean that the temporal resolution below 6 seconds is 

possible to achieve. 

 

Figure 2 

An example of the visual search task stimuli 

2.4 HPV Analysis 

For our goal to analyze HCI events, we need the MFP of HPV values as a quasi-

continuous function of time. Such a curve would make spotting changes in 

invested mental effort more convenient. For the estimation of power spectral 

density, we are using all-pole autoregressive (AR) modeling. To create the MFP 

profile curve, a few transformations have to be made. The main steps of our 

analysis are shown by Figures 3a and 3b. 
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Figure 3a 

Calculation of the Mid-Frequency Power (MFP) of the Heart Period Variability (HPV) for a particular 

time-window 

R peaks 
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Figure 3b 

Creation of the Mid-Frequency Power (MFP) of the Heart Period Variability (HPV) profile curve 

applying windowing technique 

The first step is to identify the R peaks, and calculate the RR interval times. A 

continuous time signal is created by using a linear interpolation. Creating a time 

series applying equidistant sampling of the RR interval function is required by the 

later spectral analysis, and is performed at 1 Hz. Prior to the AR model fitting, 

another requirement has to be fulfilled; the signal has to have a mean of zero. In 

order to do this, we subtract the mean of the whole series from each value. The 

signal is now prepared for AR model fitting. 
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In order to create a MFP profile curve, we estimate the power spectral density for 

highly overlapping 32 second wide frames (shifted repeatedly by 1 second). To 

avoid side-effects caused by truncation of the time series, we use the Hamming 

windowing procedure. The power spectral density estimation is carried out using a 

modified Burg’s algorithm and Akaike’s Final Prediction Error criteria [45] is 

used for model selection. 

The summary of the parameters used: 

 MF band: 0.07-0.15 Hz 

 Maximum model order number = 12 

 Window length = 32 sec 

 Step size = 1 sec 

3 Results 

The normal range of HRV shows great variety in the normal population. In order 

to make our data comparable between subjects we normalized the available HPV 

data. To do this, we calculated an average HPV value for every subject using the 

data recorded during the visual search task and the congratulation screens. We 

divided the original values with this average, thus we received a new set, where 1 

could be viewed as 100%, 1.6 as 160% compared to the participants personal 

average, and so on. All of the following analyses will be conducted with these 

normalized values. Due to the small sample size, we used the nonparametric 

Wilcoxon Signed Ranks Tests for most of our analysis. Pearson’s r values are also 

provided for measures of effect size. 

There was a significant difference between the relaxation (mean = 1.84, SD = 

1.32) and the mental arithmetic (mean = 0.87, SD=0.76) periods (z = -2.09; p = 

0.0185 (one-tails), r = -0,63, Figure 4). This difference was even visually evident 

in most cases, based on the MFP of HPV profile curve (Figure 5). A perfect 

relaxation would provide a curve that is relatively high the whole time, but given 

the circumstances the participants were in, it was not expected; some can easily 

relax in an experimental setup, some was disturbed by the wiring and observation, 

and the subjects were not trained to use advanced relaxation techniques. 

The difference between the MFP of HPV values of the visual search task (mean = 

1.06, SD = 0.23) and the congratulation screen (mean = 1.47, SD = 0.44) was 

significant (z = -2.223, p = 0.013 (one-tailes), r = -0.67, Figure 6). This means 

that, using this method, we were able to differentiate between periods thought to 

invoke higher and lower levels of mental effort. Hereinafter, we will present 

additional data, to support this claim. 
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Figure 4 

Boxplots of normalized MFP of HPV values for the relaxation and mental arithmetic periods. 

According to the defaults of the SPSS software, the T-bars (also called inner fences or whiskers) 

extend to 1.5 times the height of the box, or, if no case/row has a value in that range, to the minimum 

or maximum values. The circle represent an outlier (value that does not fall in the inner fences). 

 

Figure 5 

The difference between relaxation and mental arithmetic is clearly observable on the MFP of HPV 

profile curve of subject #5 in visualization style of the INTERFACE Viewer software. The upper (red) 

curve displays the RR intervals; the bottom (green) one represents the Mid-Frequency Power (MFP) 

profile curve of the Heart Period Variability (HPV). While the participant is relaxing, the MFP profile 

curve has much higher values and the RR curve has big zigzags as opposed to the mental arithmetic 

phase, where the MFP is low and the RR curve smoothens out 
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Figure 6 

Boxplots of normalized MFP of HPV values for the visual search task and the congratulation screen. 

(T-bars extend to 1.5 times the height of the box, or, if no case/row has a value in that range, to the 

minimum or maximum values. The circle represents an outlier.) 

Figure 7 shows the average values by pictures and the related congratulation 

screens. As it can be seen, the MFP of HPV values are always higher except for 

the first picture. This can be attributed to the novelty of the task, as there was no 

practice set before it. The fact that the aggregated values of the participants show 

this kind of consistency, supports our claims. We do not know of any other 

methods to date that are able to identify such short periods of change in mental 

effort levels. 

This consistency is also observable if we take a look at the values of our 

participants separately. As it can be seen in Figure 8, the MFP of HPV values 

were much higher during the congratulations screens in most cases. Only three 

participants showed a different pattern. However, these differences are minuscule 

compared to others with the expected pattern. 
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Number of the pair of picture  

Figure 7 

The average MFP of HPV values for each pair of pictures and the related congratulating screen. Only 

the first picture showed a pattern, where the average values were higher during the visual search task  

 

 

1 

Participant 

2 3 4 5 6 7 8 9 10 11 

 

Figure 8 

The mean normalized values of all visual search and relief periods by participants. Blank boxplots 

represent visual search MFP of HPV values; patterned boxplots represent the same for congratulation 

screens. (T-bars extend to 1.5 times the height of the box, or, if no case/row has a value in that range, 

to the minimum or maximum values. Circles represent outliers.) 
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4 Discussion 

Our aim was to further explore the temporal resolution capabilities of our method 

based on ECG data. A visual search task was applied that required longer periods 

of sustained mental effort, followed by short intervals of relief. We found 

significant difference in the MF power of the HPV between these two periods. 

Post hoc effect size measures were also classifiable as large, based on Cohen's 

(1992) criteria [46]. Taken together with previous results [20], [36], [40], our 

method can be considered capable of identifying problematic events in HCI that 

are no longer than few seconds. The profile curve created is also a useful tool in 

itself because it allows for the identification of periods of interest by simple visual 

inspection. In our opinion, this makes our AR model based approach easy-to-

apply, quick and informative usability evaluation tool of Human-Computer 

Interaction. 

However, as we stressed in Chapter 1.2, a single method is not sufficient to get a 

complete picture of an interaction. Some increases in mental effort are 

unavoidable, normal, or even beneficial. If the goal is to improve the rate at which 

users retain knowledge regarding the user interface, effortful recall is favourable 

[47], [48]. To identify the cause of each change in mental effort levels, other 

supporting methods such as video based observations, interviews, or retrospective 

think aloud protocol must also be applied. 

As mentioned earlier, EEG based methods promise high temporal resolution with 

great differentiating ability between different levels of mental effort [49]. In the 

near future, it might prove to be the best method of measurement. However, it also 

has some issues that have to be overcome first. To get a good estimate of power 

spectral parameters, noise levels should be kept at minimum. There are great 

filters available to identify the effects of eye-blinks on a recording [50]. It is 

noteworthy that in a more natural HCI setup (e.g., no head rest) other muscle 

activity can influence quality. Filtering out these effects requires the use of EMG 

which makes the experiment more complex and less natural for the participant. 

Even cardiovascular activity introduces noise into the EEG recording [51]. 

Independent Component Analysis is often used to remove these artefacts, but the 

component selection is often based on subjective judgement of the person 

conducting the analysis and not on specific rules. The abundance of different 

approaches that all seem to measure mental effort very well is also peculiar in 

light of significant individual differences in reactions to the increases of mental 

load [52]. In case of our ECG-based method, movement artefacts are also an issue, 

but are more easily avoided, and electrode placement leaves more room for error. 

It is also faster to set up than even a cheaper EEG cap (reliable dry electrode EEG 

systems might change that). In conclusion, we feel that at present, the ECG-based 

approach is more reliable than the EEG. 
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Apart from usability testing, our method could be applied to other fields as well. 

For example, dynamic difficulty adjustment in games based on physiology is an 

upcoming trend [53], [54]. If our aim is to create an experience that is engaging to 

the player, maybe even eliciting Flow [55], an index of mental effort can prove to 

be useful. 

We are aware that in our present study the periods of relief were short, not the 

mental effort. However, by being able to differentiate between the two, we have 

shown that the AR based method is capable of a relatively high temporal 

resolution. Our next project should aim at a more natural HCI setting, where 

longer periods of low mental effort are interrupted by short, but more demanding 

“trouble spots”. This would provide a more direct support to our claims. 
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