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Abstract: New vector description of kinetic pressures on shaft bearings of a rigid body 
nonlinear dynamics with coupled rotations around no intersecting axes is first main result 
presented in this paper. Mass moment vectors and vector rotators coupled for pole and 
oriented axes, defined by K. Hedrih in 1991, are used for obtaining vector expressions for 
kinetic pressures on the shaft bearings of a rigid body dynamics with coupled rotations 
around no intersecting axes. A complete analysis of obtained vector expressions for kinetic 
pressures on shaft bearings give us a series of the kinematical vectors rotators around both 
directions determined by axes of the rigid body coupled rotations around no intersecting 
axes. As an example of defined dynamics, we take into consideration a heavy gyro-rotor-
disk with one degree of freedom and coupled rotations when one component of rotation is 
programmed by constant angular velocity. For this system with nonlinear dynamics, series 
of graphical presentation transformations in realizations with changes of eccentricity and 
angle of inclination (skew position) of heavy rigid body-disk in relation to self rotation axis  
are presented, as well as in realization with changing orthogonal distance between axes of 
coupled rotations. Angular velocity of  kinetic pressures components in vector form are 
expressed by using angular acceleration and angular velocity of component coupled 
rotations of gyrorotor-disk. 

Keywords: coupled rotation; no intersecting axes; deviational mass moment vector; 
rotator; kinetic pressures; kinetic pressure components; nonlinear dynamics; gyrorotor-
disk; eccentricity; angle of inclination, deviation kinetic couple; fixed point; graphical 
presentations; three parameter analysis 
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1 Introduction 

No precisions and errors in the functions of gyroscopes caused by eccentricity and 
unbalanced gyro rotor body as well distance between axes of rotations are reason 
to investigate determined task as in the title of our paper. 

The classical book [1] by Andonov, Vitt and Haykin contain a classical and very 
important elementary dynamical model of heavy mass particle relative motion 
along circle around vertical axis through it’s center. Nonlinear dynamics and 
singularities lead to primitive model of the simple case of the gyro-rotor, which 
represent an useful dynamical and mathematical model of nonlinear dynamics. 

Using K. Hedrih’s (See Refs. [2-11]) mass moment vectors and vector rotators, 
some characteristics vector expressions of linear momentum and angular 
momentum and their derivatives for rigid body single rotation, were obtain 
physical and dynamical visible properties of the complex system dynamics and 
their kinetic parameters in vector form for single rotation. There are vector 
components of the shaft bearing kinetic pressures with opposite directions and 
same intensity that present deviational couple effect containing vector rotators, 
whose directions are same as kinetic pressure components on corresponding rotor 
shaft bearings (for detail see Refs. [2] and [5]). 

The definitions of mass moment vectors coupled to the pole and the axis [2-9], 
[12] are introduced in the foundation of this vector method. The main vector is 

  dmn
V

def
O

n  


 ,,)(J of the body mass inertia moment at the point  OA   for 

the axis oriented by the unit vector and there is a corresponding vector )(O
n


D  of 

the rigid body mass deviational moment for the axis through the point (see 
References [2] and [5-6]). 

This vector approach is very suitable to obtain new view to the properties of 
dynamics of pure classical system dynamics investigated by numerous generations 
of the researchers and serious scientists around the world. We proof this approach 
in our published reference [12]. In Introduction of this paper [12] a short reviews 
of the basis of the subjective selected references about original research results of 
dynamics and stability of gyrostats was given. Then is reason that we didn’t made 
any reviews of the papers about gyroscopes. 

Passing through the content of the numerous published scientific paper, we can 
see that no results concerning behavior of the kinetic pressure directions and 
intensity depending of the nonlinear dynamic regimes. Then, our aim is to 
investigate kinetic pressures and deviation kinetic couple appearing to the shaft 
bearings of the rigid body coupled rotations around two no intersecting axes. Two 
our References [12] from (2008 and 2010) contain short presentation of the kinetic 
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pressure to the gyrorotor self rotation bearings and rotators, as well as presentation 
of the nonlinear dynamics of the heavy gyro-rotor, but not completed. 

This is reason that we take into a large consisderation and investigation three 
parameters analysis of the vector expressions of shaft bearing kinetic presures and 
their cmponents based on our previous results on applications vector method and 
published in our References [12]. This paper contan new rezults based on the 
previous our results. 

Organizations of this paper based on the vector method applications with use of 
the mass moment vectors and vector rotators for describing vector expressions of 
kinetic pressures of the shaft bearings, of the rigid body coupled rotations around 
two no intersecting axes and corresponding kinetic deviation couple appearing by 
opposite kinetic pressures to shaft bearings and shaft bearing reactions. 

Dynamics of a gyro-rotor with one degree of freedom and coupled rotations when 
one component of rotation is programmed by constant angular velocity is 
considered, as an example. For this system of nonlinear dynamics, the series of 
graphical presentation of the kinetic pressures of the shaft bearing of a rigid body 
self rotation are presented. 
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Figure 1 

A rigid body coupled rotations around two no intersecting axes. System is with two degrees of mobility 

and one degrees of freedom, where 1  and 2  are rheonomic and generalized coordinates. Vector 

rotators 01R


, 011R


and 022R


 are presented.ssential connections 
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2 Model of a Rigid Body Rotation Around Two Axes 
without Intersection 

Let us to consider rigid body coupled rotations around two no intersecting axes, 
presented in Figure 1. Ffirst axis is oriented by unit vector 1n


 with fixed position 

and second axis is oriented by unit vector 2n


 which is rotating around fixed axis 

with angular velocity 111 n


  . Axes of rotation are no intersecting axes. Rigid 

body is positioned on the moving rotating axis oriented by unit vector 2n


and 

rotate around self rotating axis with angular velocity 222 n


   and around fixed 

axis oriented by unit vector 1n


 with angular velocity 111 n


  . All geometrical  

parameters are presented in Fgure 1. 

When any of three main central axes of rigid body mass inertia moments is not in 
direction of self rotation axis, then we can see that rigid body is scew positioned to 
the body self rotation axis. The angles of rigid body central main inertia axes 
inclinations acording self-lf rotation axis are i , 2,1i . These angles are angles 

of scew position of rigid body to the body self rotation axis. When center C  of 
the mass of rigid body is not on body self rotation axis of rigid body rotation, we 
can say that rigid body is scew positioned. Eccentricity of body position is normal 
distance between body mass center C  and axis of self rotation and it is defined 

by   22 ,, nne C

  . Here C


 is vector position of mass center C  with origin 

in point O2, and position vector of mass center with fixed origin in point O1 is 

COC rr 


 . 

3 Vector Equations of Dynamic Equlibrium of Rigid 
Body Coupled Rotations around Two No 
Intersecting Axes 

By using theorems of linear momentum and angular momentum with respect to 
time, we can write two equations of dynamic equilibrium of the considered rigid 
body coupled rotations about two no intersecting axes, presented in Figure 1, in 
the following equations (for detail see Ref. [17] and Appendix): 

   
        














Pi

i
iAmBNAN

Pi

i
iAmBNAN

O
n

O
n

O
n

FFFFGFFFFG

nMrn
dt

d

1
222

1
11

1210220110101
2

2

2

2

2

1
,2,




 SSRSRR

K 
          (1) 



Acta Polytechnica Hungarica Vol. 10, No. 7, 2013 

 – 155 – 

     

   
   

       

       


















Pi

i
iiAmABNBANA

C

Pi

i
iiBNBC

O
n

O
n

O
n

O
n

O
nC

O

FrFrFrFr

GrFrFGr

nnnn

nMrnnnMr
dt

d

1
,0220220220

,0
1

,011,0

)(
2

)(
12

)(
221

)(
11

)(
121

2
011212121012

,,,,

,,

,,

,2,,,,,,,,

2

2

2

1

2

2

2

1

2

2

1






















DRDRJ,J,

J
L

 (2)             

where iF


, Pi ...,3,2,1  are active forces and G


 is weight of gyro rotor, 1AF


 and 

1BF


 are reactive forces of fixed axis shaft bearing reactions and 2AF


 and 2BF


 are 

forces of self rotation shaft bearing reactions. From previous obtained vector 

equations, it is not difficult to obtain kinetic pressures to both shaft bearings, 1AF


 

and 1BF


, as well as 2AF


 and 2BF


 on both shafts bearings as well as two 

differential equations along 1  and 2  of the rigid body coupled rotations about 

two no intersecting axes, and to obtain time solutions of unknown generalized 

coordinate 1  and 2 , or if we know these coordinate to find unknown external 

active forces. 

For the case that axes are perpendicular some terms in previous vector expressions 
and vector equations are equal to zero, but these equations are nonlinear along 

angle coordinates 1  and 2 , and coupled by generalized coordinates, 1  and 

2 , and their derivatives, and also, by forces of shaft bearings reactions. 

Two vector equates (1) and (2) are valid for rigid body coupled rotations around 
no intersecting axes, as well for the case intersecting axes as its special case. Also, 
these equations are valid for the system dynamics with two degrees of mobility, 
and for three different cases. 

4 Vector Rotators of Rigid Body Coupled Rotations 
around Two No Intersecting Axes 

We can see that in previous vector equations (1) and (2) terms for derivative of 
linear momentum and angular momentum contain two sets of the vector rotators: 































0

0
11

2
1

0

0
1101 ,,,

r

r
nn

r

r
n




R ,    
 

 

 

  














2

1

2

1

2

1

2

1 ,1
2
11011 O

n

O
n

O
n

O
n n

















S

S

S

S
R              (3)                         

2121012012 22   RR


                                                                            (4) 



Katica R. (Stevanoviċ) Hedrih et al. New Vector Description of Kinetic Pressures on Shaft Bearings  
 of a Rigid Body Nonlinear Dynamics with Coupled Rotations around No Intersecting Axes 

 – 156 – 

      

 

 

  














2

2

2

2

2

2

2

2 ,2
2
22022 O

n

O
n

O
n

O
n n

















S

S

S

S
R 

,   
  
  2

2

2

2

,

,
2

1

1
21012 O

n

O
n

n

n








S

S
R                                 (5) 

First two vector rotators 01R


 and 011R


are orthogonal to the direction of the first 

fixed axis and third vector rotator is orthogonal to the self rotation axis. But, first 

vector rotator 01R


 is coupled for pole 1O  on the fixed axis and second and third 

vector rotators, 011R


and 022R


, are coupled for the pole 2O  on self rotation axis 

and for corresponding direction oriented by directions of component angular 
velocities of coupled rotations. Intensities of two first rotators are equal and are 
expressed by angular velocity and angular acceleration of the first component 
rotation, and intensity of third vector rotators is expressed by angular velocity and 
angular acceleration of the second component rotation, and they are in the 

following forms: 4
1

2
101101   RR  and 4

2
2
2022   R . 

Lets introduce notation 01 , 011  and 022  denote difference between 

corresponding component angles of rotation 1  and 2  of the rigid body 

component rotations and corresponding absolute angles of rotation of pure 

kinematics vector rotators about axes oriented by unit vectors 1n


and 2n


. These 

angular velocities of relative kinematics vectors rotators 01R


,
011R


and
022R


 

which rotate about corresponding axis in relation to the component angular 
velocities of the rigid body component rotations are: 
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In Figure 1 Vector rotators 01R


, 011R


and 022R


 are presented. 

We can see that in previous vector expression (2) for derivative of angular 
momentum are introduced vector rotators in the following vector form: 
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Vector rotators 
1R
  (a*) and 

2R
  (b*) in relations to corresponding mass moment vectors 
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, and their corresponding deviational components 
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)( 2
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n
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as well as to corresponding 

deviational planes. (c*) Model of heavy gyro rotor with two component coupled rotations around 
orthogonal axes without intersections 

 

The first 
1R


is orthogonal to the fixed axis oriented by unit vector 1n


 and second 

2R


is orthogonal to the self rotation axis oriented by unit vector 2n


. Intensity of 

first rotator 1R


 is equal to intensity of previous defined rotator 01R  and intensity 

of second rotator 2R


 is equal to intensity of previous defined rotator 
022R  

defined by expressions (7). In Figure 2 vector rotators 1R


 (in Figure 2 a*) and 2R


 

(in Figure 2.b*) in relations to corresponding mass moment vectors )( 2

1

O
n


J and 

)( 2

2

O
n


J , and their corresponding deviational components )( 2

1

O
n


D and )( 2

2

O
n


D as well as 

to corresponding deviational planes are presented. Vector rotators 1R


 and 2R


 are 

pure kinematical vectors first presented in reference [18,19] as a function on 

angular velocity and angular accelerationin a form 0
2 RRR




 wu  . 

Rotators from first set are rotated around through pole 2O  and axis in direction of 

first component rotation angular velocity and depend of angular velocity 1  and 

angular acceleration 1 . There are two vectors of such type and all trees have 

equal intensity. Rotators from second set are rotated around axis in direction of 

second component rotation and depend of angular velocity 2  and angular 

acceleration 2 . There are two vectors of such type and they have equal intensity. 
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Lets introduce notation 1 , and 2  denote difference between corresponding 

component angles of rotation 1  and 2  of the rigid body component rotations 

and corresponding absolute angles of pure kinematics vector rotators about axes 

oriented by unit vectors 1n


and 2n


 through pole 2O . These angular velocity of 

relative kinematics vectors rotators 
1R


 and 
2R


 which rotate about axes in 

corresponding directions in relation to the component angular velocities of the 
rigid body component rotations through pole 2O  are expressed as 

011011     and 022    .

                             

5 Vector Expressions of Kinetic Pressures (Kinetic 
Reactions) on Shaft Bearings of Rigid Body 
Coupled Rotations around Two No Intersecting 
Axes 

Kinetic pressures (bearing reactions with out parts reactions induced by external 
forces) on fixed shaft bearings for the case that spherical bearing is at the pole 1O  

and cylindrical in this fixed axis defined by vector position 111 nBB


   are in the 

following form: 
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

  (9) 

It is not difficult, by use system decomposition, to obtain kinetic pressures on 
body self rotation shaft bearings for the case that spherical bearing is at the pole 

2O . 

By analysis vector equations (1) and (2) and corresponding expressions (8) and (9) 
for kinetic pressures on the both shafts bearings, we can conclude that in the 
system to the both shaft bearings appear in the pair of bearings two opposite 
components of kinetic pressures with deviation couple. In fixed shaft bearings 1A  

and 1B  appear the following opposite components: 1BNF


and dev
BN

F
1


 in vector 

relation: dev
BN BN

FF
11


 , but in different points of appearance, bearings 1A  and 1B  

with distance 1B


 and build one couple,    dev
BBNBdev AN

FF
1

,, 1111


 M , 
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known under the name deviation couple, and identified in like our investigated 
system dynamics, for which we obtain the following vector expression: 

    
   12121210121
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Also, it is possible to conclude for two opposite components  of kinetic pressures 

to the self rotation shaft bearings 2BNF


 and devF2


 in vector relation: 

dev
BN BN

FF
22


 , but in different points of appearance, bearings 2A and 2B  with 

distance 2B


 and build one couple,    dev
BBNBdev AN

FF
2

,, 2222


 M , known 

under the name deviation couple, and also identified in like our investigated 
system dynamics. 

6 Dynamic of Rigid Body Coupled Rotations around 
Two Orthogonal No Intersecting Axes and with 
One Degree of Freedom 

We are going to take into consideration special case of the considered heavy rigid 
body with coupled rotations about two axes without intersection with one degree 
of freedom, and in the gravitation field. For this case generalized coordinate 2  is 

independent, and coordinate 1  is programmed. In that case, we say that 

coordinate 1  is rheonomic coordinate and system is with kinematical excitation, 

programmed by forced support rotation by constant angular velocity. When the 

angular velocity of shaft support axis is constant, ,11 const  we have that 

rheonomic coordinate is linear function of  time, 1011   t , and angular 

acceleration around fixed axis is equal to zero 01  . Special case is when the 

support shaft axis is vertical and the gyro-rotor shaft axis is horizontal, and all 
time in horizontal plane, and when axes are no intersecting at normal distance a . 
So we are going to consider that example presented in Figure 2c*. The normal 
distance between axes is a . The angle of self rotation around moveable self 

rotation axis oriented by the unit vector 2n


 is 2  and the angular velocity 

is 22   . The angle of rotation around the shaft support axis oriented by the unit 

vector 1n


 is 1  and the angular velocity is constat1 . The angular velocity of 

rotor is 
22112211 nnnn


  . The angle 2 is generalized coordinates in 

case when, we investigate system with one degrees of freedom, but system have 
two degrees of mobility. Also, without loose of generality, we take that rigid body 
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is a disk, eccentrically positioned on the self rotation shaft axis with eccentricity 
e , and that angle of skew inclined position between one of main axes of disk and 
self rotation axis is  , as it is visible in Figure 2c*. 

For that example, differential equation of the heavy gyro rotor-disk self rotation of 
reviewed model in Figure 2 for the case coupled rotations about two orthogonal no 

intersecting axes by using (2), after multiplying scalar by 2n


, and taking into 

account orthogonal between axes of coupled rotations, we can obtain in the 
following form: 

0cossin)cos( 2
2

22
2

2                                       (11) 
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r

e                 (12) 

Here it is considered an eccentric disc (eccentricity is e ), with mass m  and 
radius r , which is inclined to the axis of its own self rotation by the angle   (see 

Figure 4), so that previous constants (12) in differential equation (11) become the 
following forms: 
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 1sin
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 1sin
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22

1 






e

g ,   1sin

sin2
2 





er

ea       (13) 

Relative nonlinear dynamics of the heavy gyro-rotor-disk around self rotation 
shaft axis is possible to present by means of phase portrait method. Forms of 
phase trajectories and their transformations by changes of initial conditions, and 
for different cases of disk eccentricity and angle of its skew position, as well as for 
different values of orthogonal distance between axes of component rotations may 
present character of nonlinear oscillations. 

For that reason it is necessary to find first integral of the differential equation (11). 
After integration of the differential equation (26), the non-linear equation of the 
phase trajectories of the heavy gyro rotor disk dynamics with the initial 
conditions ,00 t    1001  t ,   1001   t , we obtain in the following form: 







 






  0202

2
02

2
22

2
2

22
02

2
2 sincos

2

1
cos2sincos

2

1
cos2          

          (14) 

The analyzed system is conservative and equation (14) is the energy integral. 
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In considered case for the heavy gyro-rotor-disk nonlinear dynamics in the 
gravitational field with one degree of freedom and with constant angular velocity 
about fixed axis, we have three sets of vector rotators. 

Three of these vector rotators 01R


, 011R


 and 1R


, from first set, are with same 

constant intensity tcons tan2
1101101  RRR


 and rotate with constant 

angular velocity 1  and equal to the angular velocity of rigid body component 

precession rotation about fixed axis, but two of these three vector rotators, 011R


 

and 1R


 are connected to the pole 2O  on the self rotation axis, and are orthogonal 

to the axis parallel direction as direction of the fixed axis. All these three vector 

rotators 01R


, 011R


 and 1R


 are in different directions (see Figures 1 and 3). Two 

of these vector rotators, 022R


 and 2R


, from second set, are with same intensity 

equal to 4
2

2
2022   R , and connecter to the pole 2O  and orthogonal to the 

self rotation axis oriented by unit vector 2n


 and rotate about this axis with relative 

angular velocity 2 defined by expression (6), in respect to the self rotation angular 

velocity 2  (see Figures 2 a*, b* and c*). 

By use expressions (3-5) and (7), we can list following series of vector rotators of 
the gyro-rotor–disk with coupled rotation around orthogonal no intersecting axes 
and with const1 : 
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in which 
~

 is angle between relative vector position C


 of rigid body mass 

center C  and self rotation axis oriented by unit vector 2n


. One of the vectors 

rotators from the third set is 012R


 with intensity 21012 2 R


 and direction: 
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0121012 2 u


R . This vector rotator is connecter to the pole 2O  and 

orthogonal to the axis oriented by unit vector 1n


 and relative rotate about this 

axis. Intensity of this vector rotator expressed by generalized coordinate 2 , angle 

of self rotation of heavy disk, taking into account first integral (29) of the 
differential equation (26) obtain the following form: 
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                               (16) 

Intensity 022R  of two of these vector rotators, 022R


and 2R


, from second set, 

depends on angular velocity 2  and  angular acceleration 2 . For the considered 

system of the heavy gyro-rotor-disk dynamics, for obtaining expressions of 
intensities of vector rotators, 022R


 and 2R


, from second set, in the function of the 

generalized coordinate 2 , angle of self rotation of heavy disk self rotation, we 

take into account a first integral (14) of nonlinear differential equation (11), and 
by using these result and previous expressions (15) of vector rotator we can write: 

*intensities of the vectors rotators, 022R


 and 2R


, connected for the pole 2O  and 

rotate around self rotation axis, in the following form: 

 

  
2

0202
2

02
2

22
2

2
22

02
2

222
2

2022022

sincos
2

1
cos2sincos

2

1
cos2cossincos 














 






 










RR

                                                           (17) 

*vector rotators orthogonal to the self rotation axes are in the following 
vector forms: 
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7 Kinetic Pressures to Shaft Bearings of Rigid Body 
Coupled Rotations around Two Orthogonal No 
Intersecting Axes and with One Degree of Freedom 

By use previous derived vector equations (1) and (2) and approach to obtaining 

vector expressions (8) and (9) for kinetic pressures, 1AF


 and 1BF


, to fixed shaft 

bearings of rigid body coupled rotations around two no intersecting orthogonal 
axes and for system with one degree of freedom, it is easy to obtain vector 

expressions for kinetic pressures 2AF


 and 2BF


(including component reactions of 

the rigid body weight) to self rotation shaft bearings, 2A and 2B , of rigid body 

coupled rotations around two orthogonal no intersecting axes and for considered 
particular example in the following form: 
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where )( 2OJ  is matrix of tensor of mass inertia moments for pole 2O . Previous 

expressions contain member which correspond to the bearing reactions of the rotor 
proper weight. After taking into account mass inertia moment vector for inclined 
disk and disk position with eccentricity of mass body center, we can write in 

scalar form components of kinetic pressures, 2AF


 and 2BF


(including component 

reactions of the rigid body weight) to on bearings, 2A and 2B , of the self rotation 

axis in the following form: 
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Previous obtained expressions (22)-(25) of the components of kinetic pressures, 

2AF


 and 2BF


 (including component reactions of the rigid body weight) to 

bearings, 2A and 2B , of the self rotation axis in scalar form , is possible present in 

the following vector form: 
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                   (27) 

Previous scalar expressions are suitable for analysis on the basis decompositions 
to the separate components with specific properties of intensity, directions, 
influence of some mass and geometrical properties and structure parameters, as 
well as angular velocities and other kinetic parameters of considered special 
example. 
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By introducing the following unit vectors 1w


, 2w


 and 3w


 

22221 cossin  vuw

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

 , 22223 sincos  vuw


                     

pressures 2AgF


 and 2BgF


(reactions of the rigid body weight)  to bearings 2A and 

2B , of the self rotation axis is possible to express in the following vector form: 
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From last forms of the pressures, 2AgF


 and 2BgF


 (reactions of the rigid body 

weight) to bearings, 2A and 2B , of the self rotation axis, we can see that is 

possible to separate component with same intensity, and opposite directions, and 
also component with same angular velocity  in one or in other directions. 

In Figure 3 some of the introduced unit vectors 2u


, 2v


, 1w


, 2w


 and 3w


 for 

analysis kinetic pressures 2BF


(including component reactions of the rigid body 

weight) to bearings, 2A and 2B , of the self rotation axis used in expressions (28) 

schematically are presented with corresponding angular velocity and directions of 
rotations. 
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Figure 3 

Schematically presentation of the unit vectors 2u


, 2v


, 1w


, 2w


 and 3w


, and their geometrical and 

kinematical relations with corresponding angular velocity and directions of rotations 
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Components kin
B

F
21

, kin
BF 22 , kin

BF 23  and kin
BF 24  of pure kinetic pressure kin

B
F

2


 to bearing 

2B , of the self rotation axis are in the following forms: 
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From previous expressions for components kin
B

F
21

, kin
BF 22 , kin

BF 23  and kin
BF 24  of pure 

kinetic pressure kin
B

F
2


 to bearing 2B , of the self rotation axis, we can conclude, 

that influence of disk position eccentricity is stronger to the components kin
BF 23  of 

pure kinetic pressure kin
B

F
2


, and that intensity of component kin

BF 22  increase, and 

intensity of the component kin
B

F
21

 decrease with increasing of disk eccentricity. 

Intensity of the pure kinetic pressure kin
B

F
2


 increase with increasing of disk 

eccentricity. 
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Figure 4 

Intensity transformation of kinetic pressure component
kin

nA
F

22
 to self rotation shaft spherical bearing 

2A  of rigid body coupled rotations around two orthogonal no intersecting axes and for system with 

one degree of freedom, in direction of the self rotation shaft axis for different disk eccentricity 

8 Graphical Presentation of Kinetic Pressures to Self 
Rotation Shaft Bearings of Rigid Body Coupled 
Rotations 

By use previous listed expressions as well as other no listed heir, and MathCad as 
a software tool, a numerical experiment was followed for analysis properties of 
the kinetic pressures and their corresponding components to the both shaft 
bearings. Selected graphical presentation is done in the Figures 4-10. All graphical 
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presentation are obtained by analytical expressions derived in previous chapters of 
this paper. 

In Figure 4a* and b( graphical presentation of intensity transformation of kinetic 

pressure component kin
nA

F
22

 to self rotation shaft spherical bearing 2A  of rigid body 

coupled rotations around two orthogonal no intersecting axes and for system with 
one degree of freedom, in direction of the self rotation shaft axis and in function 
of self rotation relative angle 2 , for different disk eccentricity, is presented. 

In Figure 5 graphical presentation of intensity transformation of kinetic pressure 

component kin
NA

F
22

 to self rotation shaft spherical bearing 2A  of rigid body coupled 

rotations around two orthogonal no intersecting axes and for system with one 
degree of freedom, in orthogonal direction to the self rotation shaft axis, in 
function of self rotation relative angle 2 , for different disk eccentricity, is 

presented. 
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Figure 5 

a* and b* Intensity of kinetic pressure component
kin

NA
F

22
 to self rotation shaft spherical bearing 2A  

of rigid body coupled rotations around two orthogonal no intersecting axes and for system with one 
degree of freedom, in orthogonal direction to the self rotation shaft axis, for different value of disk 

eccentricity 
 

In Figure 6 (a*), (c*) and (d*) the intensity of kinetic pressure component of kin
NB

F
22

 to self 

rotation cylindrical bearing 2B  of rigid body coupled rotations around two orthogonal no 

intersecting axes in direction of 2R


 and for system with one degree of freedom, in 

orthogonal direction to the self rotation shaft axis, for different value of disk angle  skew 

position is presented. In Figure 8 (b*) Intensity of the vector rotator 2R


in function of the 

value of disk angle  skew positions is  presented. 

In Figure 7 graphical presentation of intensity transformation of kinetic pressure component 
kin

NB
F

22
 to self rotation shaft cylindrical bearing 2B  of rigid body coupled rotations around 

two orthogonal no intersecting axes and for system with one degree of freedom, in 
orthogonal direction to the self rotation shaft axis, in function of self rotation relative angle 

2 , for different disk eccentricity, is presented. 
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Figure 6 

(a*), (c*) and (d*) Intensity of kinetic pressure component of 
kin

NB
F

22
 to self rotation cylindrical 

bearing 2B  of rigid body coupled rotations around two orthogonal no intersecting axes in direction of 

2R


 and for system with one degree of freedom, in orthogonal direction to the self rotation shaft axis, 

for different value of disk angle  skew position..(b*) Intensity of the vector rotator 
2R


in function of 

the value of disk angle  skew position 
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Figure 7 

Intensity of kinetic pressure component
kin

NB
F

22
 to self rotation shaft cylindrical bearing 2B  of rigid 

body coupled rotations around two orthogonal no intersecting axes and for system with one degree of 

freedom, in orthogonal direction to the self rotation shaft axis, for different value of disk eccentricity 

 
In Figure 8 graphical presentation of intensity transformation of kinetic pressure 

component kin
NB

F
22

 to self rotation shaft cylindrical bearing 2B  of rigid body 

coupled rotations around two orthogonal no intersecting axes and for system with 
one degree of freedom, in orthogonal direction to the self rotation shaft axis, in 
function of self rotation relative angle 2 , for different disk eccentricity, is 

presented. In Figure 9 intensities of kinetic pressure deviation couple to self 
rotation shaft bearings of rigid body coupled rotations around two orthogonal no 
intersecting axes and for system with one degree of freedom, in orthogonal 
direction to the self rotation shaft axis, for different value of disk eccentricity are 
presented. 
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Figure 8 

Intensity of kinetic pressure component
kin

NB
F

22
 to self rotation shaft cylindrical bearing 2B  of rigid 

body coupled rotations  around two orthogonal axes without intersection and for system with one 
degree of freedom, in orthogonal direction to the self rotation shaft axis, for different value of disk 

eccentricity. 
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Figure 9 
Intensity of kinetic pressure deviation couple to self rotation shaft bearings of rigid body coupled 

rotations around two orthogonal no intersecting axes and for system with one degree of freedom, in 
orthogonal direction to the self rotation shaft axis, for different value of disk eccentricity. 

Concluding remarks 

Complexity of the single rigid body motion with coupled rotations about no 
intersecting axes by vector method based on the mass moment vectors and vector 
rotators coupled for pole on selfrotation axis and component angular velocity axes 
is presented by sampler vector expressions them usually scalar forms in 
professional books in this area. New approach and new composition of this vector 
method open new way for applications to the multi-body system dynamics with 
coupled multi-rotations about nonintersecting axes. New vector expressions for 
linear momentum and angular momentum and their derivatives of the single rigid 
body complex motion by coupled rotations about nonintersecting axes expressed 
by new introduced mass moments vectors and their very elegant form open new 
possibility for generalizations these expressions for describing multi rigid body 
system complex motion by coupled multi-rotations about higher numbers of 
nonintersecting axes large present in many real mechanical engineering systems 
and robotic system dynamics with coupled multi-rotations. 
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