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Abstract: The stress-strain state of road covering in the course of operation is considered. 

It is assumed that the cross section of the covering has arbitrary number of rectilinear 

cracks. Force interaction of the wheel (roller) and road covering with rough upper surface 

is investigated. Using the perturbation method and the method of singular integral 

equations the contact problem of the pressing of the wheel (roller) in the road surface was 

solved. The stress intensity factors for the vicinity of the cracks vertices are found. 
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1 Introduction 

Timely detection of various damages of road covering is of particular importance 

for providing reliable and safe functioning of road transport. In this connection the 

defects as cracks are of significant interest. Setting of the norms of admissible 

presence of defects, choice of the methods and periodicity of defectoscopic 

control of road is an important problem for increasing durability of road covering. 

While evaluating durability of road covering of motor roads it is necessary to 

proceed from possibility of presence of the most dangerous unrevealed defects in 

coverings. In this connection, the initial defects should be accepted to be equal to 

sensitivity limit of the used defectoscopic device. 

Real surfaces of roads differ by the presence of roughnesses that are the 

unavoidable consequence of technological process. In spite of smablness of 

geometric distortions in the form of surface roughness, their role in friction, wear 

and fracture and etc. is very great [1-3]. Therefore, investigation of the roughness 

geometry itself for strength and the relation of roughness with the characteristics 

of physical-technical phenomena (friction, wear, fracture) generated by it are very 

significant. In this connection development of design models of investigation of 

parameters of road covering fracture is a very urgent problem [4-12]. 
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2 Formulation of the Problem 

Consider the stress-strain state of road covering during operation process. Let the 

cross section of the road covering have N rectilinear internal cracks of length 2lk 

(k=1,2,...,N) (Fig. 1). It is assumed that the cracks are open and not filled. 

For calculating the stress-strain state of the road covering near the rolling surface, 

in this case we arrive at the following contact problem of fracture mechanics. 

Let us consider force interaction of the wheel and covering. Taking into account 

that the sizes of the contact area while contacting with covering are small 

compared with typical linear size of road covering in the plan, in the statement and 

solution of the contact problem the covering may be replaced by an elastic strip of 

thickness h situated on an elastic base in the form of elastic half-plane. 

We model the material of the covering by an elastic medium with mechanical 

characteristics E1 (elasticity modulus), 1 (Poisson ratio). Accordingly, we model 

the elastic base by elastic medium with mechanical characteristics E2, 2. As a 

rule, the external surface of road covering has roughnesses of rolling surface. 

Let us consider the following contact problem for an elastic strip with elastic base 

in the form of a half-plane. A wheel under the arbitrary system of forces is pressed 

into an elastic strip with internal cracks and rough upper surface. We can assume 

that normal force Pk (clip force) and moment M is applied to each unit of the 

length of the contact area. The base of the hard wheel is characterized by a rather 

smooth function f(x). 

It is required to determine the laws of contact stress and stress intensity factors 

distribution in the vicinity of the cracks tips. 

Denote by q(x) and (x) normal and tangential stresses, respectively, applied to the 

boundary of the half-plane (base of the covering). Denote the wheel’s pressure on 

the covering by p(x), the segment [a1,a2] will be the contact area. In addition to 

normal forces (pressure) )0,()( xxp
y

 , the tangential stresses xy(x,0) 

connected with contact pressure by the Amonton-Coulomb law 

 xpf
xy
  

where f is the friction factor of the pair wheel-road covering, are also act in the 

contact area a1  x  a2. 

Consider some realization of the roughness of the external surface of the road 

rolling 1L . Represent the boundary of the external contour 1L , in the form 

 xy   

We will assume the contour 1L  close to the rectilinear form assuming only small 

deviations of the line L1 from the straight line у = 0. 
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Figure 1 

Calculation scheme of a contact fracture mechanics problem 
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On the base what has been said above, we write the boundary conditions of the 

considered contact problem of fracture mechanics in the form 

for  y = (x)        n = 0,   nt = 0      exterior to the contact area                        (1) 

for  y = (x)    vn = f(x) + x + C,    nt = fn     on the contact area                 (2) 

for y = – h           
III

)()(
xyyxyy

ii   ,   
III

)()( ivuivu                         (3) 

 n = 0;   nt = 0   on the cracks faces 

Here it is accepted that in the external surface area of the covering where the 

wheel is pressed, the dry friction forces occur; exterior to the contact area the 

surface of covering is free from external forces. The cracks faces are free from 

external loads. Stresses and displacements (perfect coupling conditions) are equal 

on the interphase of medium (covering and elastic base); 1i  is an imaginary 

unit; C is the translation of penetration (wheel), α is a turning angle of the 

penetrator; )()()( xxfxf   . Furthermore, the following additional conditions 

hold: 

 
2

1

a

a

k
dttpP ,          

2

1

a

a

dttptM                                                                         (4) 

3 The Case of One Crack 

As it was accepted that the functions (x) and (x) are small quantities, we can 

write the equation of the upper contour of the covering as follows: 

y =  (x) = H(x)                                                                                                    (5) 

where  is a small parameter for which we can accept the greatest height of the 

roughness of the upper surface of the road covering related to the thickness of the 

covering. 

Expand the stress tensor components x, y, xy in series in small parameter of  

 )1()0(

xxx
 ,  )1()0(

yyy
 ,  )1()0(

xyxyxy
           (6) 

Expanding in series the expressions for the stresses in the vicinity y = 0, we find 

the values of the stress tensor components for y = (x). 

Using the perturbations method, allowing what has been said, we get the 

following conditions: for the covering in a zero approximation 
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for    y = 0      0)0( 
y

 ,  0)0( 
xy

      exterior to the contact area                           (7) 

)()0()0( xp
y

 ,   )()0()0( xfp
xy

     on the contact area 

0)0( 
n

 ,   0)0( 
nt
       on the cracks faces                                                            (8) 

for    y = – h    )()0()0( xq
y
 ,  )()0()0( x

xy
                                                           (9) 

for the covering in a first approximation 

for    y = 0    N
y
)1( ,     T

xy
)1(      exterior to the contact area                       (10) 

)()1()1( xpN
y

 ,   )()1()1( xfpT
xy

    on the contact area 

0)1( 
n

 ,    0)1( 
nt
      on the cracks faces                                                            (11) 

for    y = – h    )()1()1( xq
y
 ,    )()1()1( x

xy
                                                         (12) 

for elastic base in a zero approximation 

for    y = – h     )()0()0( xq
y
 ,    )()0()0( x

xy
                                                       (13) 

in a first approximation 

for    y = – h      )()1()1( xq
y
 ,     )()1()1( x

xy
                                                      (14) 

Here        
y

H
dx

d
N

y

xy








)0(

)0(2


 ,      
y

H
dx

dH
T

xy

yx





)0(

)0()0(


 ,              (15) 

the quantities N and T are known on the base of zero solution )0(

x
 , 

)0(

y
 , 

)0(

xy
  and 

the function H(x) describing the rough contour of the upper surface of road 

covering. 

Because of smallness of the small parameter , in what follows we will be 

restricted in expansions (6) by the terms to the first order of smallness inclusively, 

with respect to . 



Sh. Hasanov et al. Modeling of Stress-Strain State of Road Covering with Cracks 

 – 220 – 

Knowledge on the stress intensity factor allowing in the considered case to 

investigate the ultimate state of road covering and their durability on their base is 

of significant interest for predicting fracture. 

According to perturbations method, the stress intensity factors for the vicinity of 

the cracks tip are found as follows 

 )1(

I

)0(

II
KKK  ,   )1(

II

)0(

IIII
KKK   

Here )0(

I
K , )0(

II
K  are the stress intensity factors for a zero approximation, )1(

I
K , 

)1(

II
K  for a first approximation, respectively. 

In the center of the rectilinear crack locate the origin of the local system of 

coordinates x1O1y1 whose axis x1 coincides with the linear crack and forms the 

angle 1 with the axis x (Fig. 1). The stress-strain state of road covering, at each 

approximation satisfies the system of differential equations of plane theory of 

elasticity. 

Use the superposition principle. Then we can represent the stress and strain state 

of a two-layer body with a crack in the form of the sum of two states. The first 

state will be determined from the solution of contact problem (1)-(3) for a two-

layer body in unavailability of a crack. The second state is determined from the 

solution of a boundary value problem for a cracked covering with forces on the 

faces determined by the first stress state. The first state for each approximation in 

unavailability of a crack is known [13]. 

The boundary conditions of the second problem are of the form: 

in a zero approximation 

for   0
1
y      )(

1

)0()0(

1
xp

y 
 ,    )(

1

)0(

1

)0(

11
xp

yx
     

11
lx                           (16) 

for   0y       0)0( 
y

 ,   0)0( 
xy

  

for   hy       0)0( 
y

 ,       0)0( 
xy

        x                                       (17) 

in a first approximation 

for    0
1
y      )(

1

)1()1(

1
xp

y 
 ,   )(

1

)1(

1

)1(

11
xp

yx
       

11
lx                          (18) 

for    0y       0)1( 
y

 ,     0)1( 
xy

  
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for    hy      0)1( 
y

 ,      0)1( 
xy

          x                                          (19) 

Here )(
1

)0( xp


, )(
1

)0(

1
xp  and )(

1

)1( xp


, )(
1

)1(

1
xp  are normal and tangential stresses 

arising in continuous covering along the axis x1 in zero and first approximations, 

respectively, from the application of the given loads relieving stress on the 

covering boundary. The quantities )(
1

)0( xp


, )(
1

)0(

1
xp  and )(

1

)1( xp


, )(
1

)1(

1
xp  are 

determined from the relations of [13]. The boundary conditions of problem (16)-

(17) are written by means of Kolosov-Muskheleshvili formulas [14] in the form of 

a boundary value problem for finding two analytic functions )(z  and )(z  

for   y = 0         0)()()()(
0000

 zzzzz                                           (20) 

for   y = –h       0)()()()(
0000

 zzzzz  

for   0
1
y       )()()()()(

1

)0(

101011010
xfxxxxx  , 

where   )()()(
1

)0(

11

)0(

1

)0( xipxpxf 


. 

We will seek the complex potentials )(
0

z  and )(
0

z  in the form [15] 


 




2

0

0

0

)(

2

1
)(

k

l

l k

k

k

k
zt

dttg
z


                                                                                   (21) 

 
























k

k

k

k

l

l

k

k

i

k

k

k

k

i
dttg

zt

eT

zt

tg
ez )(

)(

2

1
)( 0

2

02

0

2

0






 

where  0

k

i

k
zteT k 


,   0

k

i

k
zzez k 

 
,  0

10
 ,  00

0
z ,  ihz 0

2
,  

0
l ,  


2

l . 

Satisfying by functions (21) boundary conditions (20), after some transformations 

we get the system of three integral equations 

    














dtxtLtgxtKtg
xt

tg
2,0

0

22,0

0

2

0

0 )()(
)(

                                              (22) 

    




1

1

,)(,)(
1,0

0

11,0

0

1

l

l

dtxtLtgxtKtg    x  
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    














dtxtLtgxtKtg
xt

tg
0,2

0

00,2

0

0

0

2 )()(
)(

                                            (23) 

    




1

1

,)(,)(
1,2

0

11,2

0

1

l

l

dtxtLtgxtKtg     x  

    















 
 

1

1

1

1

,)(,)(
)(

1,1

0

11,1

0

1

0

1

l

l

l

l

dtxtLtgxtKtg
xt

tg
                                          (24) 

      




dtxtLtgxtKtg ,)(,)(
0,1

0

00,1

0

0  

      xfdtxtLtgxtKtg 0

2,1

0

22,1

0

2
,)(,)(  





,       
1
lx   

The quantities 
nk

K , 
nk

L  (k,n=0,1,2) are not cited because of their bulky form. 

From the system of three singular integral equations (22)-(24) we exclude the two 

functions )(0

0
tg  and )(0

2
tg . Substituting the functions )(0

0
xg  and )(0

2
xg  found 

from the solution of integral equations (22) and (23), after some transformations 

we get one complex singular integral equation for the unknown function )(0

1
xg  

     )(,)(,)(
)( 0

11

0

111

0

1

0

1

1

1

1

1

xfdtxtStgxtRtg
xt

dttg
l

l

l

l


 



     
1
lx                        (25) 

We don’t cite expressions for the functions  xtR ,
11

 and  xtS ,
11

 because of their 

bulky form (they have the form similar to (V. 41) in the book [16]). 

To the singular integral equation (25) for the internal crack we add the additional 

condition 






1

1

0)(0

1

l

l

dttg                                                                                                    (26) 

providing the uniqueness of displacements in tracing the contour of the crack in a 

zero approximation. 
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Under additional condition (26), the complex singular integral equation (25) is 

reduced to the system of M algebraic equations with respect to approximate values 

of the desired function )(
1

0

1
xg  at the nodal points. For obtaining the system of 

algebraic equations at first in integral equation (25) and condition (26) we reduce 

all the integration intervals to one interval [–1, 1] by means of change of variables 


1
lt  , 

1
lx    

11
, lxlt  . Look for the solution of the singular integral 

equation in the form 

2

*

10

1

1

)(
)(









g
g                                                                                                   (27) 

where )(*

1
g  is a function bounded in the interval [-1,1]. 

Using the quadrature formulae of Gauss type [16, 17], the singular integral 

equation (25) with condition (26) reduces to the system of M algebraic equations 

for defining the M unknowns  
m

tg *

1
 (m=1,2,…,M) 

     )(,)(,)(
1 0

1

1111

*

11111

*

11 r

M

m

rmmrmm
xfxltlStgxltlRtgl

M




                                  (28) 




 
M

m

m
tg

1

1
0)( ,   

M

m
t

m
2

12
cos


 ,  

M

r
x

r


cos  (r=1,2,…,M–1) 

For the stress intensity factors in a zero approximation, we have 

 1
010II0I
  gliKK                                                                                     (29) 

where   
M

m
tg

M
g

m

M

m

m

4

12
cot)()1(

1
1

0

1

0


 



   

  
M

m
tg

M
g

m

M

m

mM

4

12
tan)()1(

1
1

0

1

0


 



   

In a first approximation 

     )(,)(,)(
1

1

1

*

1

*

11 r

M

m

rmmrmm
xflxltStglxltRtgl

M




                                          (30) 
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



M

m

m
tg

1

*

1
0)( ,       

 
2

*

1

1

1 







g
g  

For the stress intensity factors in a first approximation we have 

 1
110II0I
  gliKK                                                                             (31) 

where    
M

m
tg

M
g

m

M

m

m

4

12
cot)()1(

1
1

1

1

1


 



      

  
M

m
tg

M
g

m

M

m

mM

4

12
tan)()1(

1
1

1

1

1


 



   

Knowing the stress intensity factors, by means of brittle fracture criterion [18, 19], 

for the generalized normal discontinuity 

c
KKK

IIII

2

2
sin3

2
cos

2
cos 








 


,     

2

II

2

II

2

II

4

8
2

K

KKK
arctg







         (32) 

where the 
c

K
I

 is a characteristic fracture toughness of the material and is 

determined experimentally; the sign “+” corresponds to the values of 0
I
K , the 

sign “-” to the values of 0
I
K . 

Find the limit values of the external load by attaining of which the crack will be in 

limit-equilibrium state. 

While solving algebraic systems by the Gauss method with the choice of the 

principal element, the number of Chebyshev nodal points was assumed to be equal 

to M=30. 

Asphalt concrete covering of road of type 1 was accepted in place of an example 

of calculation. Calculations on definition of stress intensity factors were carried 

out. The graph of dependence of stress intensity factors on dimensionless length of 

the crack were represented in Figs. 2-3. Here the curve I corresponds to the 

smooth contour of road; curve 2 for  













 1

2
cos

1
x

L
Ax

p

















 1

4
cos

2
x

L
A

p


, 

where A1, A2 are the amplitudes of the constituents of two-hump roughness, 

Vtx  , V is the velocity of motion in road with the components of length Lp and 

joining roughnesses, t is time; the curve 3 for 
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  


















0

sincos
n pp

n
x

L

n
Bx

L

n
Ax


 , where An, Bn are non-correlated random 

variables satisfying the conditions 0
n

A , 0
n

B , 
nnn

DBDAD  . 

At calculations it was accepted E1=3.210
3
 МPa, 1=0.16, 1=/4, and the crack’s 

center at the point О1 (0.05h; – 0.25h). 

The results of calculations of stress intensity factors for the crack of opening mode 

(mode I) 0
1
 from dimensionless length of the crack for different combinations 

of materials of covering and base are represented in Fig. 4. The road’s surface is 

assumed to be smooth. 

 

Figure 2 

Dependences of the stress intensity factor KI, on dimensionless length of the crack l1/h 

The analysis of calculations allow to make the following conclusions: a) if 

1
21
GG  (G is shear modulus of the material), then for constant external load Pk 

and for the fixed values of other parameters of the problem, the stress intensity 

factor KI increases according to increase of the crack’s length. In this case there 

may happen fracture of the covering if the external load is such that the critical 

length of the crack is less than the length of the crack of the layer containing it. b) 

if 1
21
GG , then under constant external load and fixed values of other 

parameters of the problem, the dimensionless stress intensity factor  hPK
k


I

 

at first increases according to increase of the crack’s length, and then beginning 

with some value hl
1

, it slowly decreases. 
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Figure 3 

Dependences of the stress intensity factor KII, on dimensionless length of the crack l1/h  

 

Figure 4 

Dependence of the stress intensity factor KI, on dimensionless length l1/h of the longitudinal crack 

In this case, there may happen retardation or arrest of the crack. The indicated 

event happens when the crack’s vertex is close to the interface of media since in 

this case the influence of elastic base shows itself. 
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4 The Case of Arbitrary Number of Cracks in the 

Road Covering Cross Section 

In the center of cracks (Fig. 1) locate the origin of local systems of coordinates 

xkOkyk whose axes xk coincide with the lines of cracks and from angles k with the 

axis x. It is accepted that the cracks faces are free from external loads. The 

boundary conditions for the case under consideration are of the form (1)-(4). The 

stated problem is reduced to the sequence of boundary value problems in zero and 

first approximations. 

At each approximation we use the superposition principle. We can represent the 

stress-strain state of a two-layer body with cracks in the form of the sum of two 

states. The first state will be determined from the solution of a wear contact 

problem on pressing out of a wheel into the road covering surface at unavailability 

of cracks. The second state is determined from the solution of a boundary value 

problem for a strip weakened by an arbitrary system of rectilinear cracks with the 

forces on the faces determined by the first stress state. 

In a zero approximation, the boundary conditions of the second problem have the 

form 

for  0
k

y  )()0()0(

kky
x

k
  ,       )()0()0(

kkyx
x

kk
    (k=1,2,…,N)               (33) 

for  0y  0)0( 
y

 ,      0)0( 
xy

  

for  hy   0)0( 
y

 ,      0)0( 
xy

  

in a first approximation 

for  0
k

y  )()1()1(

kky
x

k
  ,        )()1()1(

kkyx
x

kk
       (k=1,2,…,N)            (34) 

for  0y  0)1( 
y

 ,       0)1( 
xy

  

for  hy   0)1( 
y

 ,       0)1( 
xy

  

Here )()0(

kk
x  and )()0(

kk
x  are normal and tangential stresses arising in the 

continuous strip along the axis yk in a zero approximation from the application of 

the given loads; )()1(

kk
x  and )()1(

kk
x  also arise in the continuous strip along the 

axis yk in a first approximation from the given loads on road covering. 

The quantities )()0(

kk
x  and )()0(

kk
x  and )()1(

kk
x , )()1(

kk
x  are found from the 

relations of [13]. 

Consider zero approximation (33). We look for the complex potentials in the form 



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0

0

)0( )(
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1
)(
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l k
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k
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dttg
z


                                                                                 (35) 
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where   0

k

i

k
zteT k 


,   0

k

i

k
zzez k 

 
. 

Having defined the stresses on the axis xn from Kolosov-Muskheleshvili formula 

[14], and substituting them into boundary conditions (33), after some 

transformations we get the system of N + 2 integral equations 
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For convenience, in (37), (38), (39) and in what follows the index xn is omitted. 

From the system of N+2 singular integral equations we exclude the two unknown 

functions )(0

0
tg  and )(0

1
tg

N
. 

After some transformations we get a system N singular integral equations of the 

problem under consideration in a zero approximation 
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After substituting functions M0,k(u,x),  N0,k(u,x),  MN+1,k(u,x),  NN+1,k(u,x) into (43), 

the kernels ),( xtr
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 and ),( xts
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 will be represented by triple integrals. After 

integration these expressions may be represented by one-fold integrals. 
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Note that the functions ),( xtr
nk

 and ),( xts
nk

 are regular. They determine the 

influence of the boundaries of the strip on stress state near the cracks vertices. To 

the system of singular integral equations (41) for the internal cracks we should add 

the following additional conditions 


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k

k

l

l

k
dttg 0)(0

          Nk ,...,2,1                                                            (46) 

Using the procedure for converting a system to an algebraic [16, 17], the system 

of singular integral equations (41) with conditions (46) is reduced to a system of 

NM algebraic equations for determining the NM unknowns )(0
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If in (47) we pass to complexly conjugate values, we get one more NM algebraic 

equations. 

For the stress intensity factors in the vicinity of the cracks tips, in a zero 

approximation we find: 
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at the left vertex of the crack 
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Now consider the solution of problem (34) in a first approximation. 

Behaving as above, we get a system of singular integral equations of a first 

approximation 
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To the system of singular integral equations (50) we should add the additional 

equalities 
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As in a zero approximation, the system of complex singular equations (50) with 

conditions (51) by means of the algebraization procedure [16, 17] is reduced to the 

system of NM algebraic equations with respect to NM unknown )(1

mk
tg  

(k=1,2,…,N; m=1,2,…,M): 
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If in (52) we pass to complexly conjugate values, we get one more NM algebraic 

equations. 

For the stress intensity factors in the vicinity of the cracks tips in a first 

approximation we get 

at the right vertex of the crack 
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at the left vertex of the crack 


M

m
tg

M
liKK

mn

M

m

mM

nnn
4

12
tan)()1(

1 1

1

)1(

II

)1(

I


 



                            (54) 

Finally, for the stress intensity factors we have 
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Conclusions 

Experimental data of practice of exploitation of the pair “road covering-elastic 

base” convincingly shows that by designing new constructions of motor roads it is 

necessary to take into attention the cases when in road covering there may arise 

cracks. The existing methods of strength analysis of road coverings ignore this 

circumstance. Such a situation makes impossible to design road coverings of 

minimal specific consumption of materials under guaranteed reliability and 

durability. In this connection, it is necessary to realize the limiting analysis of the 

pair “road covering-base” in order to establish that the presupposed initial cracks 

located unfavorably will not grow to catastrophic sizes and will not cause fracture 

during the rated service life. The size of the initial minimal crack should be 

considered as a design characteristics of the covering material. 

Based around the suggested design model taking into account crack-like defects in 

road covering, a method for calculating the fracture parameters of road covering 
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with regard to real roughness surface of the road is developed. The elaborated 

calculation method, by means of definition of stress intensity factors, allows to 

predict the growth of available cracks in road covering, to take into account not 

only separately each realization of the roughness profile (deterministic approach) 

and also to carry out statistic description of surface roughnesses of the road by 

realization of a random function, to evaluate different factors (constructive, 

technological, operational) for road covering strength. 

Numerical realization of the obtained dependences allows to solve the following 

practically important problems: 

1) definition of critical sizes of a crack under known loads, stresses and fracture 

toughness. These informations may be used by developing requirements to 

decision abilities of the used methods of defectoscopy. 

2) definition of critical level of stresses depending on external loads and 

parameters of brittle strength. 

These informations may be used by developing technological processes for 

lowering the level of residual stresses. 
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