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Abstract: The efforts of the European Union (EU) in the energy supply domain aim to 

introduce intelligent grid management across the whole of the EU. The target intelligent 

grid is planned to contain 80% of all meters to be smart meters generating data every 15 

minutes. Thus, the energy data of EU will grow rapidly in the very near future. Smart 

meters are successively installed in a phased roll-out, and the first smart meter data 

samples are ready for different types of analysis in order to understand the data, to make 

precise predictions and to support intelligent grid control. In this paper, we propose an 

incremental heterogeneous ensemble model for time series prediction. The model was 

designed to make predictions for electricity load time series taking into account their 

inherent characteristics, such as seasonal dependency and concept drift. The proposed 

ensemble model characteristics – robustness, natural ability to parallelize and the ability to 

incrementally train the model – make the presented ensemble suitable for processing 

streams of data in a “big data” environment. 
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1 Introduction 

Generating large amounts of data has become part of our everyday life. In reality, 

human activities produce data that in recent years have rapidly increased, e.g. as 

measured through various sensors, regulation systems and due to the rapid 

development of information technologies [3]. “Big data” significantly changes the 

nature of data management as it introduces a new model describing the most 

significant properties of the data -volume, velocity and variety. Volume refers to 

the vast amounts of data requiring management, and it may not stem from the 

number of different objects, but from the accumulation of observations about these 

objects in time or in space. Velocity can be determined by the rate of acquisition 
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of streams of new data, but also by application requirements, where it is necessary 

to make a very fast prediction, as the result of a particular user's request. This will 

comprise research of methods and models for big data analysis, whether with low 

latency, or even in real time. 

In our work, we focus on stream data coming from smart metering. The smart 

meters are able to send measurements of power consumption every 15 minutes 

thus, providing new possibilities for its modelling and prediction. The most useful 

aspect of having this vast amount of data is the ability to forecast the power 

demand more precisely. This is particularly important when viewed with regard to 

the fact that the possibility to store electricity is very limited. With accurate 

predictions, the distributor can reliably deliver electricity and fulfil the power 

authorities’ regulations, which protect the distribution network from being at too 

high or too low a voltage. It also helps to flexibly react to different unexpected 

situations like large-scale blackouts. 

The number of smart meters increases rapidly every day which results in 

production of large amount of data. Classical methods can fail to process such 

amount of data in reasonable amount of time; therefore it is necessary to focus on 

parallel and distributed architectures and design methods and applications that are 

able to automatically scale up depending on the growing volume of data. 

The classical prediction methods of electricity consumption are: regression 

analysis and time series analysis models. These approaches will not be sufficient 

in the near future, as the European Union's efforts are aimed at introducing an 

intelligent network across the whole of the European Union. This fact raises new 

perspectives in modelling and predicting power demand. 

A significant feature of many real-world data streams is concept drift, which can 

be characterized as the arbitrary changes of data characteristics. The occurrence of 

concept drift in a data stream can make classical predictive techniques less 

appropriate therefore, new methods must be developed. The typical example of 

concept drift is a change of workload profile in a system for controlling the load 

redistribution in computer clusters [48] or a change of user’s interests in 

information filtering and recommendation modelling [14], [26]. In power 

engineering are concept drifts caused by change of consumers’ behaviour during 

holidays, social events, different weather conditions, or summer leaves in big 

enterprises – the biggest electricity consumers. 

This paper introduces a new approach to electrical load forecasting. It takes into 

consideration the aspect of concept drift, and is based on the principle of ensemble 

learning. It is organized as follows: the second chapter is devoted to the 

characteristics of the problem and the third contains the summary of the related 

work.  In the next chapter we describe our proposed approach (the incremental 

heterogeneous ensemble model for time series prediction). The experimental 

evaluation is presented in Chapter 5 and the overall evaluation and discussion is 

given in Chapter 6. 
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2 Characteristics of the Problem 

As mentioned earlier, after the widespread introduction of smart meters, the data 

provided will satisfy the first characteristic of Big Data based on volume. To 

analyse these data, it is appropriate to propose parallel methods that can be solved 

in distributed environments. Because electricity loads can be seen as a stream of 

incoming data, it is necessary to focus on adaptive methods that are able to learn 

incrementally. 

There are also additional important characteristics that must be taken into account 

– the presence of concept drifts and strong seasonal dependence. The values of 

any variable evolving in time, such as the electricity load, often change their 

behaviour over time. These changes may be sudden or gradual. In the literature, 

both types of changes are termed concept drift. Narasimhamurthy and Kuncheva 

[35] define the term concept as the whole distribution of the problem and 

represent it by joined distribution of data and model parameters. Then, concept 

drift may be represented by the change of this distribution [15]. Besides cases of 

concept drift when the change is permanent, one can often observe changes that 

are temporary. They are caused by the change of some conditions and after some 

time, these conditions can again change back. Moreover, seasonal changes may be 

considered to be concept drift, too. 

In electricity load measurement, two types of concept drift can appear. The first 

one is permanent or temporary change that may be caused by the change of 

economical or environmental factors. The second type of concept drift is seasonal, 

caused by seasonal changes of weather and the amount of daylight. Seasonal 

dependency can be observed as daily, weekly and yearly levels. That is why it is 

necessary to consider these two possible sources of concept drift in any model 

proposal. 

3 Literature Review 

In this section we present methods used to compute time series predictions – 

classical, incremental and ensemble approaches. 

3.1 Classical Approaches 

Classical approaches to time series prediction are represented mainly by 

regression and time series analysis. Regression approaches model the 

dependencies of target variables on independent variables. For electricity load 

prediction, the independent variables can be the day of the week, the hour of the 

day, the temperature, etc. Plenty of different regression models were presented in 

the literature, such as a step-wise regression model, a neural network and a 

decision tree [45]. 
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Because of strong seasonal periodicities in electricity load data, time series models 

are often used to make predictions. Mainly, Box-Jenkins methodology [5] with 

AR, MA, ARMA, ARIMA and derived models are applied. 

However, the classical approaches are not able to adapt to incoming streams of 

data and thus, are not suitable for electricity load demand forecasting. 

3.2 Incremental Learning 

Incremental learning algorithms are able to adapt to new emerging data. They 

process new data in chunks of appropriate size. They can possibly process the data 

chunks by off-line algorithms. 

Polikar et al. [39] defined the four desired properties of an incremental learning 

algorithm – the ability to learn new information from arriving data, the capability 

of working independently on historical data, the storage of previously learned 

knowledge, and the accommodation of new classes of data on their arrival. Minku 

[32] extends this definition and emphasizes that, in changing environments, where 

the target variable might change over time, only the useful knowledge will be 

stored. 

Most of the incremental learning algorithms we encountered in the literature are 

based on machine learning, e.g. incremental support vector machines [51] and 

extreme learning machines [17]. Recently, the incremental ARIMA algorithm was 

proposed for time series prediction [34]. 

Usually, the incremental learning algorithms alone cannot sufficiently treat 

changes in the target variable. In order to cope with a changing environment, 

groups of predictors, i.e. ensemble models, are used to achieve better predictions. 

3.3 Ensemble Learning 

Ensemble learning is an approach that uses a set of base models, where each 

model provides an estimate of a target variable – a real number for a regression 

task. The estimates are then combined to make a single ensemble estimate. The 

combination of base estimates is usually made by taking a weighted sum of base 

estimates. The idea behind it is that the combination of several models has the 

potential to provide much more accurate estimates than single models. In addition, 

they have several more advantages over single models, namely the scalability, the 

natural ability to parallelize and the ability to quickly adapt to concept drift [52]. 

A great introduction to ensemble learning can be found in [32]. 

Several empirical studies showed that the accuracy of the ensemble depends on 

the accuracy of base models and on the diversity among them [11], [12], [28]. The 

diversity of base models may be accomplished by two different approaches – 

homogeneous and heterogeneous ensemble learning [52]. In homogeneous 
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learning, the ensemble is formed by models of the same type that are learned on 

different subsets of available data. The heterogeneous learning process applies 

different types of models. The combination of homogeneous and heterogeneous 

approaches was also presented in the literature. 

The best known methods for homogeneous ensemble learning are bagging [6] and 

boosting [13]. These approaches have been shown to be very effective in 

improving the accuracy of base models. To accomplish adaptive ensemble 

learning for online stream environments, two approaches are known from the 

literature. The first one – incremental ensemble learning – learns the base methods 

from different chunks of data. The second one – the ensemble of 

online/incremental methods – uses adaptive base methods, that are updated in an 

online (after each example) or incremental (after a chunk of data is available) 

manner. Incremental ensemble learning employs non-incremental algorithms to 

provide incremental learning. Wang et al. [46] proposed a general framework for 

mining data streams using weighted ensemble classifiers. The proposed algorithm 

adapts to changes in data by assigning weights to classifiers proportional to their 

accuracy over the most recent data chunk. Another approach was published by 

Kolter and Maloof [27]. They developed a dynamic weighted majority algorithm, 

which creates and removes weighted base models dynamically based on changes 

in performance. 

Ensemble of online/incremental methods employ online/incremental base models. 

These approaches include online versions of well-established approaches such as 

online bagging and online boosting incorporating online base models [37], [38]. 

Another approach proposed by Ikonomovska et al. [24] introduces an ensemble of 

online regression and option trees. 

Heterogeneous ensemble learning represents a different way of introducing the 

diversity of base models into ensemble, with the aim of combining the advantages 

of base algorithms and to solve problems of concept drift [16], [54], [40]. 

Different models are trained on the same training dataset; in the case of stream 

data on the up-to-date data chunk. 

From the literature several combinations are also known of heterogeneous and 

homogeneous learning. Zhang et al. [55] present aggregate ensemble learning, 

where different types of classifiers are learned from different chunks of data. 

The essential part of the ensemble learning approach is the method that is used to 

combine estimates of base models. For regression problems, this is done by a 

linear combination of the predictions. The sum of the weights which are used in 

the combination is 1. The weights are computed by different methods, such as 

basic or general ensemble methods, linear regression models, gradient descent or 

by evolutionary or biologically inspired algorithms, e.g. particle swarm 

optimization or “cuckoo search” [31], [30], [50]. 
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Ensemble learning was also used to predict values of time series. Shen et al. [42] 

apply an ensemble of clustering methods to cluster 24-hour segments. Based on 

cluster labels, the segments are converted to sequences. Each testing sequence is 

matched to the training subsequences, and matching subsequences are averaged to 

make the prediction for a subsequent segment of the testing sequence. The 

predictions based on 5 different clustering methods are combined in the ensemble, 

where the weights are iteratively updated. Chitra and Uma [7] present an ensemble 

of RBF-network, k-nearest neighbour and self-organizing maps for a time series 

prediction. Wichard and Ogorzałek [47] describe the use of an ensemble method 

for their time series prediction. They use an ensemble of linear and polynomial 

models, k-nearest neighbour, nearest trajectory models and neural networks, with 

an RBF-network for “one-step- ahead” prediction. 

All of these approaches use ensembles of regression models for generating time 

series predictions. They do not take explicitly any seasonal dependence into 

account and do not use time series analysis methods to make predictions. 

4 The Incremental Heterogeneous Ensemble Model 

for Time Series Prediction 

In this section we propose the incremental heterogeneous ensemble model for time 

series prediction. The ensemble approach was chosen for its ability to adapt 

quickly to changes in the distribution of a target variable and its potential to be 

more accurate than a single method. Since we focus on time series with strong 

seasonal dependence, in ensemble models we take into account different types of 

seasonal dependencies. Models for yearly seasonal dependence need to be 

computed based on one year of data. These models can be recomputed once a 

year. The models coping with daily seasonal dependence need only data from one 

to several days and can be computed in an incremental manner. The potential of 

the proposed ensemble is its ability to deal with the scalability problems of big 

data. Predictions of base models can be computed in parallel or in distributed 

environment in order to reduce computation time and to scale up to incoming 

amount of data which makes the proposed ensemble suitable for big streams of 

data. 

The base models used in the ensemble are of two types – regression models and 

models for time series analysis. Regression models can potentially incorporate 

additional dependencies, such as temperature. Time series analysis models are 

suitable to capture seasonal effects. 
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4.1 Incorporating Different Types of Models 

The proposed ensemble model incorporates several types of models for capturing 

different seasonal dependencies. The models differ in algorithm, size of data 

chunk and training period (see Figure 1). Different algorithms are assumed in 

order to increase the diversity of the models. The size of each data chunk is chosen 

in order to capture particular seasonal variation, e.g. data from the last 4 days for 

daily seasonal dependence. However, the model that is trained on a data chunk of 

4 days’ data, can be trained again as soon as the data from the next day (using a 1-

day training period) are available. The new data chunk overlaps with the previous 

one in 3 days. 

 

Figure 1 

Schematic of ensemble learning 

The ensemble model is used to make one-day predictions. Let h be the number of 

observations that are daily available. At day t, the ensemble makes h predictions 

by the weighted average of predictions made by m base models. After the 

observations for the current day are available, the prediction errors are computed. 

Based on computed errors, the weights are updated and each base model i=1, ..., 

m, for which t fits its training period pi, is retrained on a data chunk of size si. 

Let 𝑌𝑡be the matrix of predictions of m base methods for the next h observations 

at day t: 
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integration

data 1

data 2
period 2

period 1

data m
period m

ŷ
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After observations of day t are available, the weights vector can be recomputed. 

From the prediction matrix 𝑌𝑡 and the vector of h current observations 𝑦𝑡 =
(𝑦1

𝑡 … 𝑦ℎ
𝑡 )𝑇 , the vector 𝑒𝑡 = (𝑒1

𝑡 … 𝑒ℎ
𝑡 )𝑇 of errors for m methods is 

computed. The error of each method is given by 𝑒𝑗
𝑡 = median(|𝑦𝑗

𝑡 − 𝑦𝑡|). A 

vector of errors 𝑒𝑡 is used to update the weights vector of base models in the 

ensemble. The weight for j-th method is calculated by: 

𝑤𝑗
𝑡+1 = 𝑤𝑗

𝑡 median(𝑒𝑡)

𝑒𝑗
𝑡 The advantages of the presented type of weighting is its 

robustness and the ability to recover the impact of base methods. The weighting 

and integration method is robust since it uses the median absolute error and the 

median of errors. In contrast to the average, the median is not sensitive to large 

fluctuations and abnormal prediction errors. A rescaling method, one that does not 

let the particular weights drop to zero, enables the ensemble to recover the impact 

of particular base methods in the presence of concept drift. 

4.2 Base Models 

In heterogeneous ensemble models, it is important to integrate the results of 

diverse base methods. We used 11 different algorithms. The methods are of 

different complexity, from very simple, e.g. a naïve average long-term model, to 

complex, such as support vector regression. They assume different seasonal 

dependencies, from daily to yearly. The presented base methods can be divided 

into the set of methods based on regression analysis and those based on time series 

analysis. 

4.2.1 Regression Algorithms 

Multiple linear regression (MLR) attempts to model the relationship between two 

or more explanatory variables and a response variable by fitting a linear equation 

to observed data. Rather than modelling the mean response as a straight line, as it 

is in simple regression, the model is expressed as a function of several explanatory 

variables. 

Support Vector Machines are an excellent tool for classification, novelty 

detection, and regression (SVR). It is one of the most often used models for 

electricity load forecasting. SVM is a powerful technique used in solving the main 

learning problems. We have used the method based on epsilon-regression based 

on the radial basis Gaussian kernel, and also tested it in combination with the 

wavelet transform (𝜀 = 0.08 for deterministic part and 0.05 for fluctuation part) 

[53]. 

4.2.2 Time Series Algorithms 

The autoregressive model (AR) expresses the current value of electricity load as a 

linear combination of previous electricity load values and a random white noise 
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[33]. The current value of the modelled function is expressed as a function of its 

previous n values on which it is regressed. 

Feed-forward neural networks (NNE) are biologically inspired universal 

approximation routines [22]. They were successfully used for solving prediction 

problems [43]. R package forecast [23] contains the nnetar method, which is a 

feed-forward neural network with a single hidden layer and lagged inputs, for 

forecasting univariate time series. It provides the capability to train a set of neural 

networks on lagged values for one-step forecasting. The prediction is an average 

of those neural networks predictions. Number of neurons in hidden layer was 

determined as a half of the number of input nodes plus one. 

The Holt-Winters exponential smoothing (HW) [20], [49] is a prediction method 

applied to a time series, whereby past observations are not weighted equally, as it 

is in ARMA models, but the weights decrease exponentially with time. So the data 

that are closer in time can influence the modelling more strongly. We have 

considered seasonal changes with and without any trend in triple exponential 

smoothing (we have chosen the smoothing parameters 𝛼 = 0.15, 𝛽 = 0, 𝛾 = 0.95), 

and combined this model with the wavelet transform (shrinkage method was 

chosen soft thresholding and threshold estimation was universal). The original 

load data series were decomposed into two parts - deterministic and fluctuation 

components, and then the regression of both parts was calculated separately. The 

resulting series were obtained with suitable wavelet coefficient thresholds and the 

application of the wavelet reconstruction method. 

Seasonal decomposition of time series by loess (STL) is a method [8] that 

decomposes a seasonal time series into three parts: trend, seasonal and remaining. 

The seasonal component is found by loess (local regression) smoothing the 

seasonal sub-series, whereby smoothing can be effectively replaced by taking the 

mean. The seasonal values are removed, and the remainder is smoothed to find the 

trend. The overall level is removed from the seasonal component and added to the 

trend component. This process is iterated a few times. The remaining component 

represents the residuals from the seasonal plus trend fit. 

STL decomposition works similarly to wavelet transform. For the resulting three 

time series (seasonal, trend and remainder) the result is used separately for 

prediction with Holt-Winters exponential smoothing and ARIMA model. 

The ARIMA model has been introduced by Box and Jenkins [5] and is one of the 

most popular approaches in forecasting [21]. It is composed of three parts: 

autoregressive (AR), moving average (MA), and the differencing processes.  In 

the case of non-stationary processes, it is important to transform the series into a 

stationary one and that is usually done by differentiation of the original series. 

Seasonal naïve method-Random walk (SNaive) is only appropriate for time series 

data. All forecasts are simply set to be the value of the last observation. It means 

that the forecasts of all future values are set to be equal to the last observed value. 
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A similar method is also useful for highly seasonal data, where each forecast value 

is set to be equal to the last observed value from the same season of the year (e.g., 

the same month of the previous year). 

Double seasonal exponential smoothing (TBATS) forecasting is based on a new 

state space modelling framework [10], incorporating Box-Cox transformations, 

Fourier series with time varying coefficients and ARMA error correction. It was 

introduced for forecasting complex seasonal time series that cannot be handled 

using existing forecasting models. These types of complex time series include 

time series with multiple seasonal periods, high frequency seasonality, non-integer 

seasonality and other effects. The modelling is an alternative to existing 

exponential smoothing models, and has many advantages. 

Naïve average long-term method is based on the assumption that non-seasonal 

patterns [36] and trends can be extrapolated by means of a moving-average or 

smoothing model. It is supposed, that the time series is locally stationary and has a 

slowly varying mean. The moving (local) average is taken for the estimation of the 

current value of the mean and used as the forecast for the near future. The simple 

moving average model predicts the next value as a mean of several values. This is 

a compromise between the mean model and the random-walk-without-drift-model. 

Naïve In median long-term method is an alternative to the previous method. The 

use of a moving average is not able to react in the case of rapid shocks or other 

abnormalities. In such cases a better choice is to take a simple moving median 

over the last n time series’ items. A moving average is statistically optimal for 

recovering the underlying trend of the time series when the fluctuations about the 

trend are normally distributed. It can be shown that if the fluctuations are Laplace 

distributed, then the moving median is statistically optimal [2]. 

5 Experimental Evaluation 

In this section we describe how data is used for the evaluation of the ensemble 

method; we provide details of the experiments and then we present the results. 

5.1 Data 

An experimental sample of data comes from smart meters installed in Slovakia 

that perform measurements every 15 minutes. Currently, the smart meters operate 

in around 20,000 consumers’ premises. Based on legislation, this number will 

soon be higher and the amount of incoming data will significantly increase. The 

data has the potential to become “big” and “fast”, because of its incremental and 

stream character. The consumers are small and medium enterprises. The data are 

anonymized and only postal codes are available. We created 10 samples by 

grouping customers according to regions. By doing this we simulate electricity 
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load values at secondary distribution substations. We summed the quarter-hourly 

data to predict the load of the regions. Table 1 describes the data samples. The 

studied data samples show collected values from July 1st, 2013 to February 15th, 

2015 (596 days, see Figure 2). The sudden changes in load were observed during 

holidays (e.g., summer leave, and Christmas). 

 

Figure 2 

Electricity consumption for Bratislava region over period of 596 days (in kW per 15 minutes) 

Table 1 

Description of ten data samples and their electricity loads (in kW per 15 minutes) 

postal 

code 
region 

no of delivery 

points 
average 

average per 

delivery point 

04 Košice 722 35,501.854 49.172 

05 Poprad 471 17,135.133 36.380 

07 Trebišov 382 11,571.184 30.291 

08 Prešov 580 18,671.795 32.193 

8 Bratislava 1314 119,691.911 91.090 

90 Záhorie 773 41,402.715 53.561 

92 Piešťany 706 74,340.781 105.296 

93 Dunajská Streda 594 28,196.959 47.470 

95 Partizánske 584 34,298.912 58.731 

99 Veľký Krtíš 114 2,124.887 18.639 

 

 

Figure 3 

Average weekly electricity load (without holidays) 
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The load during the typical week (see Figure 3) consists of the four segments – 

Mon, Tue—Fri, Sat and Sun. To minimize the noise in the data and to improve our 

predictors we considered only the Tue—Fri segment, i.e. the days with similar 

behaviour. 

5.2 Measures of Prediction Accuracy 

To measure prediction accuracy we utilize three measures. Mean absolute error 

(MAE) and root mean squared error (RMSE) are commonly used measures of 

prediction error in time series analysis. The main difference between RMSE and 

MAE is that RMSE amplifies large errors. Symmetric mean absolute percentage 

error (sMAPE) is an accuracy measure based on relative (percentage) errors that 

enables us to compare percentage errors for any time series with different absolute 

values: 

sMAPE =
1

𝑛
∑

|𝑦𝑡 − 𝑦𝑡|

(𝑦𝑡 + 𝑦𝑡)

𝑛

𝑡=1

 

5.3 Experiments 

To design the experiments, the best data chunk sizes for particular models were 

found experimentally. The most precise predictions for regression methods (MLR 

and SVR) were for days. Time series analysis models (AR, HW, STL+EXP, 

STL+ARIMA) coping with daily seasonality and NNE performed the best with 

data chunk size equal to 10 days. Based on its nature, SNaive needed only a 1-day 

long data chunk. Long-term double seasonal exponential smoothing (TBATS), 

incorporating two seasonal dependencies with 1 and -day periods, used data 

chunks the size of 41days – 1/3 of days of the test set. Naïve average and median 

log-term models use 1-year data chunks. In fact, in our experiments we had only 

116 days in the test set for which observations from the previous year were 

available. Thus, 116-days long data chunk was used. 

The training period for methods working with short-term seasonal dependency 

was 1 day. Models coping with yearly seasonal dependency have a 1 year period 

and since we had less than 2 years of data available, they were trained only once 

and were not further retrained. 

Since there were only available data for training (both previous 10 days and 

previous 1 year observations) for the period July 1
st
, 2014 – February 15

th
, 2015, 

these were used as a test set. Namely: only non-holiday Tue-Fri days were 

assumed. The test set consisted of 116 days each having 96 observations. Initially, 

models were trained on respective chunks from a training set with equal weights 

in the ensemble. Then, the models were incrementally retrained according to their 

periods, while subsequently adding new data from the test set and ignoring the old 

ones. 
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The experiments were provided in an R environment. We used methods from a 

standard stats package and from forecast [23] (STL+EXP, STL+ARIMA, NNE, 

SNaive and TBATS), wmtsa [9] (wavelets) and kernlab [25] (SVR) packages. 

5.4 Results 

Figures 4 and 5 illustrate the incremental training process for a single region. It 

presents predicted and measured electricity loads (Figure 4), history of weights 

(Figure 5 top) and errors (Figure 5 bottom). An interesting observation of concept 

drift can be seen at t=10 and t=22, when errors sharply rise. In the history of 

weights, sharp changes can be seen, too. The concept drift was caused by the 

summer leave in bigger enterprises, which consume most of the electricity. 

Figure 4 

Results of prediction for Bratislava region. Concept drift at times t=10 and t=22 was caused by the 

summer leave in bigger enterprises, which consume the most of the electricity. 

Tables 3 and 4 contain average errors of predictions and their standard deviations 

measured by sMAPE for every region and every base method plus the ensemble 

method. Tables show that there is no superior base method, which gives 

justification for the ensemble method, where errors are, in all tested cases, smaller. 

We used the Wilcoxon rank sum test [19] to evaluate the incremental 

heterogeneous ensemble model for time series prediction against the best base 

method. The Wilcoxon rank sum test tests the statistical hypothesis whether errors 

of the ensemble are significantly lower than errors of the best base method used in 

the ensemble. The test used is a nonparametric alternative to the two-sample t-test. 

We used this nonparametric test because errors of predictions are not normally 

distributed (tested with Shapiro-Wilk test [41] and Q-Q plot). The Base method 

with the highest weight value at the end of the testing process is considered to be 

the best base method in the ensemble. A Statistical test on significance level 𝛼= 

0.05 showed that in 9 out of 10 regions the ensemble method was significantly 
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better than the best base methods in that region (see Table 5). The p-value exceeds 

the significance level for all but one region with errors measured by MAE, RMSE 

and sMAPE. Only for the Trebišov region, evaluated by RMSE measure, was the 

ensemble evaluated as smaller, but not significantly so. 

 

 

Figure 5 

History of ensemble weights and prediction errors for Bratislava region. The legend belongs to both 

plots. The results of ensemble and following models are shown: seasonal naïve method-random walk 

(SNaive), seasonal decomposition of time series by loess plus Holt-Winters exponential smoothing 

(STL+EXP), seasonal decomposition of time series by loess plus ARIMA (STL+ARIMA), multiple 

linear regression (MLR), support vector regression (SVR), feed-forward neural networks (NNE) and 

naïve average long-term method (Long-term). 
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Table 3 

Average and standard deviation sMAPE (%) of methods, part 1.  

The best base method and the ensemble are highlighted. 

Method Bratislava Záhorie Košice Piešťany 
Dunajská 

Streda 

AR 2.328 ± 

1.45 

2.484 ± 

1.75 

2.195 ± 

1.30 

1.876 ± 

1.67 

2.485 ± 

1.58 

HW 1.901 ± 

1.46 

2.744 ± 

2.35 

2.145 ± 

1.59 

1.892 ± 

2.06 

2.342 ± 

1.83 

STL+EXP 1.663 ± 

1.54 

2.537 ± 

2.71 

1.905 ± 

1.62 

1.759 ± 

2.09 

2.159 ± 

1.86 

STL+ARIMA 1.653 ± 

1.53 

2.433 ± 

2.66 

1.833 ± 

1.60 

1.666 ± 

2.17 

2.111 ± 

1.79 

NNE 1.695 ± 

1.36 

2.136 ± 

1.88 

1.985 ± 

1.24 

1.582 ± 

1.73 

2.325 ± 

1.58 

SNaive 1.561 ± 

1.36 

2.090 ± 

1.92 

1.912 ± 

1.27 

1.554 ± 

1.72 

2.299 ± 

1.59 

MLR 1.652 ± 

1.85 

1.994 ± 

1.79 

1.845 ± 

1.34 

1.696 ± 

1.72 

2.166 ± 

1.69 

SVR 1.773 ± 

1.92 

1.948 ± 

1.80 

1.902 ± 

1.37 

1.656 ± 

1.63 

2.278 ± 

1.76 

TBATS 2.581 ± 

2.43 

2.724 ± 

2.73 

2.157 ± 

1.56 

2.791 ± 

2.46 

5.091 ± 

4.84 

Float mean 1.939 ± 

1.30 

1.789 ± 

1.34 

1.806 ± 

1.17 

1.730 ± 

1.47 

2.377 ± 

1.56 

Float med 2.627 ± 

1.46 

1.912 ± 

1.42 

1.907 ± 

1.20 

1.807 ± 

1.52 

2.441 ± 

1.55 

Ensemble 1.417 ± 

1.26 

1.796 ± 

1.64 

1.643 ± 

1.30 

1.446 ± 

1.65  

1.899 ± 

1.50 

Table 4 

Average and standard deviation sMAPE (%) of methods, part 2.  

The best base method and the ensemble are highlighted. 

Method Partizánske Prešov Poprad Trebišov 
Veľký 

Krtíš 

AR 2.351 ± 1.21 2.512 ± 

0.74 

3.005 ± 

2.03 

2.221 ± 

1.07 

5.453 ± 

2.46 

HW 2.837 ± 2.10 2.145 ± 

1.21 

2.927 ± 

2.22 

2.316 ± 

1.56 

6.983 ± 

4.00 

STL+EXP 2.584 ± 2.63 1.969 ± 

1.28 

2.729 ± 

2.50 

2.158 ± 

1.63 

5.962 ± 

3.78 

STL+ARI

MA 

2.367 ± 2.40 1.853 ± 

1.15 

2.487 ± 

2.31 

2.054 ± 

1.52 

5.712 ± 

3.49 

NNE 2.004 ± 1.43 2.077 ± 

0.91 

2.402 ± 

1.75 

2.079 ± 

1.20 

6.709 ± 

3.30 
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SNaive 1.941 ± 1.49 1.870 ± 

0.95 

2.076 ± 

1.74 

2.006 ± 

1.23 

6.781 ± 

3.36 

MLR 1.766 ± 1.33 1.568 ± 

0.73 

2.301 ± 

2.53 

1.745 ± 

0.93 

5.658 ± 

2.47 

SVR 1.806 ± 1.35 1.742 ± 

0.75 

2.408 ± 

2.68 

1.823 ± 

0.92 

5.523 ± 

2.72 

TBATS 5.017 ± 2.70 2.009 ± 

0.90 

3.544 ± 

4.27 

2.641 ± 

1.86 

5.621 ± 

3.36 

Float mean 1.723 ± 1.16 1.978 ± 

0.75 

2.565 ± 

1.27 

2.250 ± 

1.82 

6.769 ± 

2.48 

Float med 1.794 ± 1.18 2.060 ± 

0.79 

3.263 ± 

1.73 

2.296 ± 

1.68 

6.600 ± 

3.17 

Ensemble 1.704 ± 1.43 1.483 ± 

0.73 

1.973 ± 

1.74 

1.656 ± 

1.05 

5.224 ± 

2.67 

 

Table 5 

P-values for each region. The best base method compared to the ensemble method is in parentheses 

Region MAE sMAPE RMSE 

Bratislava (SNaive) 1.4*10-6 1.5*10-6 1.3*10-7 

Záhorie (SVR) 0.0284 0.0267 0.0021 

Košice (STL+ARIMA) 2.8*10-7 8.0*10-7 3.8*10-8 

Piešťany (SNaive) 1.6*10-4 1.0*10-4 1.6*10-6 

Dunajská Streda (STL+ARIMA) 0.0001 0.0001 0.0001 

Partizánske (SVR) 0.0205 0.0132 0.0015 

Prešov (MLR) 0.0046 0.0018 0.0153 

Poprad (SNaive) 2.2*10-4 2.0*10-4 2.7*10-6 

Trebišov (MLR) 0.0416 0.0324 0.0565 

Veľký Krtíš (STL+ARIMA) 0.0388 0.0411 0.0110 

We have used sMAPE measure because we tested our methods for single delivery 

point predictions, too. Single delivery points, in general, have day parts with zero 

consumption where MAPE evaluation fails. Comparison with other works dealing 

with power consumption prediction is difficult because in our work we were 

strongly focused on predictions during concept drifts. This is why direct error 

evaluation comparison is not possible. Despite it, we present some recent works of 

load forecasting, and try to compare them to our method. 

He et al. [18] used SARIMA models to forecast the electricity demand in China. 

They forecasted hourly and quarter-hourly demand for next few days ahead. The 

MAPE error of the models was about 1.5 %. Trained models were validated on 

real data. 

Xiao et al. [50] presented ensemble learning method for a day-ahead consumption 

prediction. A cuckoo search algorithm was used to find the optimal weights for 
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combining four forecasting models. Models were based on different types of 

neural networks (namely BPNN, GABPNN, GRNN and RBFNN). Half-hourly 

load data of February 2006 – 2009 in New South Wales in Australia were used for 

verification. The forecasts of the ensemble model were significantly better in 

comparison with the results of the individual models. The average MAPE was 

approximately 1.3%. 

Taylor and McSharry [44] presented an empirical study of various short-term load 

forecasting methods, i.e. ARIMA model; periodic AR model; an extension for 

double seasonality of Holt-Winters exponential smoothing; an alternative 

exponential smoothing formulation; and a method based on the principal 

component analysis (PCA) of the daily demand profiles. Selected methods were 

evaluated on half-hourly and hourly load data from 10 European countries. The 

evaluation showed that the Holt-Winters smoothing provided the best average 

daily MAPE (ca 1.5%). 

Presented works reach MAPE around 1.5%, some of them are using forecasting 

methods, which are used as base methods in our ensemble model. Forasmuch as 

our ensemble model delivers better results than single base methods, we can 

assume that it would deliver better results on presented works’ datasets. 

Conclusion 

In this paper, we propose the incremental heterogeneous ensemble model for time 

series prediction. The model was designed to make predictions for time series 

with specific properties (strong seasonal dependence and concept drift) in the 

domain of energy consumption. Its characteristics – robustness, natural ability to 

parallelize and the ability to incrementally train the model – make the presented 

ensemble suitable for processing streams of data in a “big data” environment. The 

achieved results lead us to assume that the presented approach could be a 

prospective direction in the choice of prediction models for time series with 

particular characteristics. 

In future work, we plan to incorporate dependencies into the model with external 

factors such as meteorological data and information about holidays in big 

enterprises in the different regions. Another interesting idea is to investigate 

possible correlations between different regions. These aspects should also improve 

the predictions. 
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