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Abstract: An analytical formulation based on the first-order shear deformation theory 
(FSDT) is presented for axisymmetric thick-walled heterogeneous cylinders under internal 
and external uniform pressure. It is assumed that the material is isotropic heterogeneous 
with constant Poisson's ratio and radially varying elastic modulus. First, general 
governing equations of the heterogeneous thick cylinders are derived by virtual work 
principle, and using FSDT. Then the obtained equations are solved under the generalized 
plane strain assumptions. The results are compared with the findings of both plane 
elasticity theory (PET) and finite element method (FEM). 
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1 Introduction 

Axisymmetric hollow shells are important in industries. In order to optimize the 
weight, displacement and stress distribution of a shell, one approach is to use 
shells with Functionally Graded Materials. FGMs or heterogeneous materials are 
advanced composite materials with microscopically inhomogeneous character that 
are engineered to have a smooth spatial variation of continuous properties. The 
concept of FGMs was proposed by material scientists in Japan [1]. 
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1.1 Homogeneous Cylinders 

First Lamé (1852) found the stress distribution in an isotropic homogeneous 
hollow cylinder under uniform pressure.This solution has been extensively used to 
solve many engineering problems. Naghdi and Cooper [2] started with a 
Reissner's variational theorem and included the effects of shear deformation. The 
first order displacement field for thick cylindrical shells was expressed by Mirsky-
Hermann [3] which is the extension of the Mindlin plate theory [4] and includes 
transverses shear deformation. Greenspon [5] compared the results of different 
theories of thick-walled cylindrical shells. Ziv and Perl [6] obtained the response 
of vibration analysis of a thick-walled cylindrical shell using FSDT theory and 
solved by finite difference method. Suzuki et al. [7] used the FSDT for vibration 
analysis of axisymmetric cylindrical shell with variable thickness. They assumed 
that the problem is in the state of plane stress and ignored the normal stress in the 
radial direction. Simkins [8] used the FSDT for determining displacement in a 
long and thick tube subjected to moving loads. Eipakchi et al. [9] used the FSDT 
for driving governing equations of thick cylinders with varying thickness and 
solved the equations with perturbation theory. Using FSDT, Ghannad and Zamani 
Nejad [10] present the general method for analysis of internally pressurized thick-
walled cylindrical shells with clamped-clamped ends. 

1.2 Heterogeneous Cylinders 

Heterogeneous composite materials are functionally graded materials (FGMs) 
with gradient compositional variation of the constituents from one surface of the 
material to the other which results in continuously varying material properties. 
These materials are advanced, heat resisting, erosion and corrosion resistant, and 
have high fracture toughness. The FGMs concept is applicable to many industrial 
fields such as aerospace, nuclear energy, chemical plants, electronics, 
biomaterials, and so on. Fukui and Yamanaka [11] used the PET for the derivation 
of the governing equation of a thick-walled FGM tube under internal pressure and 
solved the obtained equation numerically by means of the Runge-Kutta method. 
Horgan and Chan [12] analyzed a pressurized hollow cylinder in the state of plane 
strain. The exact solution for stresses in FGM pressure vessels alone using Lamé's 
solution was provided by Tutuncu and Ozturk [13]. They assumed material 
stiffness obeys a simple power law through the wall thickness with Poisson's ratio 
being constant. In this reference formula and plot for circumferential stress are 
incorrect. Jabbari et al. [8] have presented a general analysis of one-dimensional 
steady-state thermal stresses in a hollow thick cylinder made of FGM. Hongjun et 
al. [14] and Zhifei et al. [15] provided elastic analysis and an exact solution for 
stresses in FGM hollow cylinders in the state of plane strain with isotropic multi-
layers based on Lamé's solution. Thick-walled cylinders with exponentially-
varying material properties were solved by Tutuncu [16]. Zamani Nejad et al. [17] 
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developed 3-D set of field equations of FGM thick shells of revolution in 
curvilinear coordinate system by tensor calculus. Ghannad et al. [18] provided a 
general axisymmetric solution of FGM cylinders based on PET in the state of 
plane stress, plane strain and closed cylinder. Abedi et al. [19] obtained a 
numerical solution using finite element method and a static analysis for stresses 
and displacements in FGM parabolic solid cylinder. 

The following topics will be described; using FSDT, PET and FEM, the 
heterogeneous hollow cylinders have been solved and have been compared with 
homogenous cylinders. 

2 Governing Equations 

In the Plane Elasticity Theory (PET), axisymmetric thick cylinders with constant 
thickness and uniform pressure are analyzed by Lamé's solution in cylindrical 
coordinates. The radial displacement of this cylinder is given by: 

2
1r

Cu C r
r

= +                                                                                                         (1) 

where 1C  and 2C  are constants and r  is the radius of cylinder. Consider FGM 
circular cylindrical shell shown in Fig. 1. 

In this figure, iP  and oP  are internal and external pressures, R  is the radius of the 
middle surface and z  is the distance from the middle surface which ranges in 
such an interval as ( )2 2- h z h≤ ≤ , so one can write: 

2
1( )r

Cr R z u C R z
R z

= + ⇒ = + +
+

                                                         (2) 

If 1z R <  and by Taylor expansion: 

2 3
2

1 2 3
( ) 1r

C z z zu C R z
R R R R
⎛ ⎞= + + − + − +⎜ ⎟
⎝ ⎠

 

222 2
1 1 32

CC C z zC R C
RR R

⎛ ⎞ ⎛ ⎞= + + ++ −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

                                                (3) 

The radial displacement is: 
2

0 1 2ru u u z u z= + + +                                                                          (4) 
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This means that the displacement can be written as a polynomial of z , and 0u  is 
the displacement of the middle surface (if 0z = ). h  and L  are the thickness and 
the length of the cylinder, in which ir  and or are inner and outer radiuses of the 
cylinder. 

The general axisymmetric displacement field in FSDT can be expressed on the 
basis of axial displacement and radial displacement, as follows: 

( ) ( ) 0 ( ) ( )  ,    ,  x zU u x x z U U w x x zθφ ψ= + = = +                                     (5) 

where ( )u x and ( )w x are the displacement components of the middle surface. 
Also, ( )xφ and ( )xψ  are the functions used to determine the displacement field. 
The strain-displacement relations in the cylindrical coordinates system are: 

   

                

x z
x

xz z
z xz

U du d U wz z
x dx dx r R z R z

UU U ddw z
z z x dxdx

θ
φ ψε ε

ψε ψ γ φ

∂⎧ = = + = = +⎪ ∂ + +⎪
⎨ ∂∂ ∂ ⎛ ⎞⎪ = = = + = ++⎜ ⎟⎪ ∂ ∂ ∂ ⎝ ⎠⎩

                     (6) 

 
Figure 1 

Geometry of the cylinder 

The elastic modulus is assumed to vary as follows: 

( )
n

n
i i

i

r
E r E r E

r
⎛ ⎞

= = ⎜ ⎟
⎝ ⎠

                                                                          (7) 

By substituting r R z= +  into Eq. (7), ( )E z  is defined as: 

( )( ) +
n

ni
i n

i i

R z EE z E R z
r r
+⎛ ⎞

= =⎜ ⎟
⎝ ⎠

                                                             (8) 
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Here, iE  is Young's modulus of the inner surface and n  is inhomogeneity 
constant. In the present paper n  is assumed to range 2 2n− ≤ ≤ . Further, the 
Poisson's ratio υ  is assumed a constant. Therefore, the stress-strain relations are: 

1
( ) 1

(1 )(1 2 )
1

( )
2(1 )

x x

z z

xz xz

E z

E z

θ θ

σ ευ υ υ
σ ευ υ υ

υ υ
σ ευ υ υ

τ γ
υ

⎧ −⎧ ⎫ ⎧ ⎫⎡ ⎤
⎪ ⎪ ⎪ ⎪⎪ ⎢ ⎥= −⎨ ⎬ ⎨ ⎬⎪ ⎢ ⎥+ −⎪⎪ ⎪ ⎪ ⎪⎢ ⎥−⎨⎩ ⎭ ⎩ ⎭⎣ ⎦
⎪
⎪ =
⎪ +⎩

                                   (9) 

Similarly, these can be written as: 

(1 ) ( )( )     

1 2 1( ) ,
2 (1 )(1 2 )

i j ki

xz xz

E z i j k

E z

υ ε υ ε εσ λ

υτ λ γ λ
υ υ

⎧ − + += ≠ ≠⎡ ⎤⎣ ⎦⎪
⎨ −

= =⎪ + −⎩

                                          (10) 

In order to drive the differential equations of equilibrium, the principle of virtual 
work has been used as: 

U Wδ δ=                                                                                           (11) 

where U  is the total strain energy of the elastic body and W  is the total external 
work due to internal pressure. The strain energy is: 

( )1
2

&  , x x z z xz xz

V

U dV dV rdrd dx UU θ θθ σ ε σ ε σ ε τ γ∗∗= = = + + +
⎧⎪
⎨
⎪⎩

∫∫∫            (12) 

and the external work is: 

( ) ( ) ( )&  ,  zi i o o
S

W dS dS d dx P Ur dS r P r d dxf u f uθ θ= = =
⎧⎪ −⋅ ⋅⎨
⎪⎩

∫∫              (13) 

The variation of the strain energy is: 

( )
2 /2

0 0 /2

1
L h

h

U R U dzdxdz R
π

δ δ θ∗

−

= +∫ ∫ ∫                                                               (14a) 

( )
/2

0 /2

1
2

L h

x x z z xz xz
h

U zR dzdx
Rθ θ

δ σ δε σ δε σ δε τ δγ
π −

⎛ ⎞⇒ = + + + +⎜ ⎟
⎝ ⎠∫ ∫             (14b) 

and the variation of the external work is: 
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[ ]
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L

z
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=

⎧
−⎪

⎪
⎨
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∫ ∫

∫
                                   (15) 

By substituting Eqs. (6), (8) and (9) into Eqs. (14) and (15) and by using Eq. (11) 
and carrying out the integration by parts, the equilibrium equations and the 
boundary conditions are obtained in the form of: 

( ) ( )

( ) ( )

0 0

2 2

2 2 2

  ,   x x
x

x
i o

xz
z i o

dN dMR R RQ
dx dx

dQR N P PR h R h
dx
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dx

θ

θ

⎧ = − =⎪
⎪
⎪ − = − +− +⎨
⎪
⎪ ⎡ ⎤− − = +− +⎪ ⎣ ⎦⎩

                            (16) 

and 

[ ]0 0L
x x x xzR N u M Q w Mδ δφ δ δψ+ + + =                                               (17) 

respectively, where the axial force, bending moment and shear force resultants are 
defined as the shell theory by: 

( )

( )

( )

( ) ( )
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1
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⎧ ⎧ ⎫+⎧ ⎫
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⎩ ⎭ ⎩ ⎭⎪⎪ ⎪ ⎪ ⎪+⎩ ⎭ ⎩ ⎭⎨
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∫ ∫

∫ ∫

           (18) 

Substituting for the stress components into Eqs. (18), the equilibrium equations of 
the shell can be written in the abbreviated form: 

[ ] { } [ ] { } [ ]{ } { }

{ } { }
( )

( )

2

31 22

1

0
0

&

2

n
i

i oi

i o

d d AA Ay y y Fdx dx
u

r
y F P kPw E

h P kP

φ
λ

ψ

+

⎧
+ + =⎪

⎪
⎧ ⎫⎪ ⎧ ⎫⎪
⎪ ⎪⎨ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎪ = =⎨ ⎬ ⎨ ⎬⎪ − +⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪+⎪ ⎩ ⎭ ⎩ ⎭⎩

                                       (19) 

where o ik r r=  is the radius ratio. The above equations are a set of 
inhomogeneous linear differential equations with constant coefficients, solved by 
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using theory of ordinary differential equations [20]. These equations have the 
general and particular solutions. 

 

Figure 2 
Graphical depiction of force and moment resultants 

The general solution is in the form of { } { } mxey v=  and by substitution in 

homogeneous equations, one can calculate eigenvalues ( )im  and 

eigenvectors { }( )iv . 

[ ] [ ] [ ] { } { }2 2
31 2 1 2 3 00mxe m m AA A m A mA Av⎡ ⎤ = ⇒ =+ + + +⎣ ⎦               (20) 

Consequently the general solution is: 

{ } { }
6

1

im x
i ig

i

C ey v
=

=∑                                                                            (21) 

Finally, total solution is a summation of the general and particular solution. 

{ } { } { } { } { }
6

0
1

im x
i ig p

i

C e Ky y y v
=

= + = +∑                                                (22) 

In the state of plane strain, the solution of the cylinders in regions away from the 
boundaries is obtained. It means that the unknown vector { }y  is constant and all 
the terms which contain d dx  are removed. 

[ ]{ } { } { } [ ] { }1
3 3A Ay yF F

−= ⇒ =                                                     (23) 

The solution of Eqs. (23) can be written as follows: 
( )

[ ] ( )
1

1
3 2 2 2

n
i oi

i oi

P kPw r A
h P kPEψ λ

+
−

×

− +⎧ ⎫⎧ ⎫
=⎨ ⎬ ⎨ ⎬+⎩ ⎭ ⎩ ⎭

                                                        (24) 
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The radial displacement is: 

( )z rU w z u w R rψ ψ ψ= + ⇒ = − +                                                     (25) 

The strains are: 

0 , ,r r
x r

du u w R    plane strain
dr r rθ

ψε ε ψ ε ψ −
= = = = = +                (26) 

The maximum stress in the cylinders is: 

[ ]max (1 )n
i rE rθ θσ σ λ υε υ ε= = + −                                                          (27) 

3 Solution of the Homogeneous Cylinders 

In the isotropic homogeneous cylinders, Young's modulus and Poisson's ratio are 
constant. By setting 0n =  in Eq. (9), the elasticity modulus of homogeneous 
material is resulted. 

E cons=                                                                                            (28) 

By substituting stress components into Eqs. (18), the force and moment resultants 
have been derived as follows: 

( )

2

2

(1 )
12

(1 ) (1 )

(1 )
12

x

z

wdu h dN Eh
Rdx R dx

duN E h w h R
dx

wdu h dN Eh
Rdx R dx

θ

φλ υ υ ψ

λ υ υ α ψυ α

φλ υ υ υ ψ

⎧ ⎡ ⎤⎛ ⎞ ⎛ ⎞= − + ++⎪ ⎜ ⎟⎢ ⎜ ⎟ ⎥⎝ ⎠⎝ ⎠ ⎦⎣⎪
⎪⎪ ⎡ ⎤= + − + − −⎨ ⎢ ⎥⎣ ⎦⎪
⎪ ⎡ ⎛ ⎞ ⎤⎪ = + + −+⎜ ⎟⎢ ⎥⎦⎝ ⎠⎪ ⎣⎩

                               (29a) 

( )

3

3
2

(1 ) 2
12

(1 ) ( )
12

x
h du dM E R

R dx dx

h dM E h R w R Rhdxθ

φλ υ υψ

φλ υ υ α ψα

⎧ ⎡ ⎤⎛ ⎞= − ++⎜ ⎟⎪ ⎢ ⎥⎝ ⎠⎣ ⎦⎪
⎨

⎧ ⎫⎪ = + − − +⎡ ⎤⎨ ⎬−⎣ ⎦⎪ ⎩ ⎭⎩

                   (29b) 

2

3

(1 2 )
2 12

(1 2 )
2 12

x

xz

dw h dQ K Eh
dx R dx

h dw dM K E R
R dx dx

υ ψλ φ

υ ψλ φ

⎧ − ⎡ ⎤= + +⎪ ⎢ ⎥⎪ ⎣ ⎦
⎨

− ⎡ ⎤⎪ = + +⎢ ⎥⎪ ⎣ ⎦⎩

                                        (29c) 
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K  is the shear correction factor that is embedded in the shear stress term with an 
analogy to the Timoshenko beam theory. In the static state, for cylinders 5 6K =  
[21]. 

By substituting above relations into Eqs. (16), the matrices of coefficient and the 
vector of force are defined as: 

[ ]

3

3 3

1 3

3 3

(1 ) (1 ) 0 0
12

(1 ) (1 ) 0 0
12 12

0 0
12

0 0
12 12

hRh

h Rh

A
hRh

h Rh

υ υ

υ υ

μ μ

μ μ

⎡ ⎤
− −⎢ ⎥

⎢ ⎥
⎢ ⎥− −⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

                                    (30a) 

[ ]

3

2

3

0 0

0 0 ( 2 )
12

0 0

( 2 ) 0 0
12

h Rh
hRh

A
h Rh

hRh

υ υ

μ μ υ

υ μ

υ μ υ

⎡ ⎤
⎢ ⎥
⎢ ⎥− − −
⎢ ⎥= ⎢ ⎥−⎢ ⎥
⎢ ⎥
− −⎢ ⎥⎣ ⎦

                             (30b) 

[ ] [ ]
[ ]

3

2

0 0 0 0
0 0 0
0 0 (1 ) (1 )
0 0 (1 )(1 )

Rh
A

h R
Rh R

μ
υ α υ α

υ αυ α

⎡ ⎤
⎢ ⎥−⎢ ⎥=
⎢ ⎥− − − − −
⎢ ⎥− − −− −⎣ ⎦

                       (30c) 

{ } ( ){ }0 0 2
Ti

i o i o
r P kP h P kPF Eλ

= − + +                                            (30d) 

where, the parameters are as follows: 

2
ln ln         

2
(1 2 )

2

, o

i

R h rk k
R h r

K

α

υμ

+⎧ ⎛ ⎞= = =⎪ ⎜ ⎟−⎪ ⎝ ⎠⎨
−⎪ =⎪⎩

                                                        (31) 

In the state of plane strain, the solution is obtained by Eq. (24) as follows: 
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( )

1

2

(1 ) (1 )
2(1 ) (1 )

i oi

i o

P kPw h Rr
h P kPh R RE

υ α υ α
ψ υ α υ αλ

− − +− − − ⎧ ⎫⎧ ⎫ − ⎡ ⎤
=⎨ ⎬ ⎨ ⎬⎢ ⎥ +− − −⎩ ⎭ ⎣ ⎦ ⎩ ⎭

                       (32) 

The radial displacement on the basis of FSDT is: 

( ){
2r

2(1 )r i o
i

Eh
u h P kP

h Rλ υ α
= ⎡ −⎣−⎡ ⎤⎣ ⎦−

 

( ) ( )}2(1 ) i o i i oP k P r r kh P Pυ α⎤− − − − −⎦                                                  (33) 

4 Comparisons between FSDT and PET 

The radial displacement in the state of plane strain, on the basis of PET has been 
obtained [12] as follows 

2

2 2
(1 ) (1 2 )

( 1)
i i

r
Pr r ku

E k r
υ υ

⎡ ⎤+
= − +⎢ ⎥

− ⎣ ⎦
                                                             (34) 

For the comparison between FSDT and PET, we assume a cylinder with an inner 
radius 40ir = mm, an outer radius 60or =  mm, Young's modulus iE 200= GPa 
and Poisson's ratio 0.3υ =  under an internal pressure of 80iP =  MPa. The radial 
displacement along the thickness by both FSDT and PET has been calculated and 
plotted in Fig. 3. 

Fig. 3 shows that the radial displacement calculated by the two methods is almost 
identical at the middle surface domain and it increases at the inner surface; it is 
less than 4%  anyway. In order to evaluate the effect of the wall thickness on the 
radial displacement, Eqs. (33) and (34) are expressed on the basis of h h R= . 

( ) [ ( )2 2

2(1 )

1 2 2(1 )   ,  ln  FSDT1 2
2

iF
r

PR

Eh

h hu h h
h hλ

υ αα
υ α

−
=

−

− ⎛ ⎞+⎤+ − =− ⎜ ⎟⎦⎡ ⎤− −⎝ ⎠⎣ ⎦
   (35) 

( ) 2
2

(1 ) 1 2 2(1 2 )   ,      PET
2( 1)

iP
r

PR h hu k k
hE k

υ
υ

+ − +⎡ ⎤= − + =⎣ ⎦ −−
                         (36) 

In Fig. 4, the percentage difference between FSDT and PET radial displacements 

( )( )( )100P F P
r r rDiff u u u= ×− has been shown. This difference is increased with 

an increase in the thickness of the cylinder. The maximum difference occurs at 
1 20 16 20h R≤ ≤  and reaches15% , which is an acceptable value for the 
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analysis of thick cylinders. If the thickness of the wall equals radius of the middle 
surface ( )1 ,h = the difference reaches 25% . 

 
Figure 3 

Distribution of radial displacement in homogeneous cylinder 

 
Figure 4 

Difference percentages with respect to h h R=  

5 Solution of the Heterogeneous Cylinders 

In the isotropic heterogeneous cylinders, Poisson's ratio is constant and Young's 
modulus is calculated by inserting n in Eq. (8). In the current study, a range of 

2 2n− ≤ ≤  is employed. By substituting stress components into Eqs. (18), the 
force and moment resultants are obtained. The matrices of coefficient in Eq. (19) 
are defined as the following form: 

[ ] [ ]
[ ]

31 4 4 4 4

2 4 4

,        

    
ij ij

ij

a cSymmetric A SymmetricA

b AntisymmetricA
× ×

×

⎧ = =⎡ ⎤ ⎡ ⎤⎪ ⎣ ⎦ ⎣ ⎦
⎨

= ⎡ ⎤⎪ ⎣ ⎦⎩
                   (37) 
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Constants in above relations are: 

( ) ( )

(1 2 )  ,    ,  
2

2 1ln ln   ,  
2 2 2

o

i i

i

r rk r K
r r

R h h kk
R h krR h R h

υμ

α β

−⎧ = = =⎪
⎪
⎨ + −⎛ ⎞⎪ = = = =⎜ ⎟⎪ − + −⎝ ⎠⎩

                        (38) 

5.1 Inhomogeneity Constant of 2n = −  

Elasticity modulus on the basis of Eq. (8) is: 

( )

2

2( )
+
i iE rE z

R z
=                                                                                    (39) 

Following above, nonzero components of the symmetric matrix [ ]1 4 4
A

×
 are: 

( )
( ) ( ) ( )

2
22 33

2
44 12 21

11

34 43

1
1

1        
      

          a ( ) aR Rh
a a a ( ) h RR Rh

a ( )
a a h R

υ υ μαα
μ υ αα

α
μ α

= − =⎧ −
⎨ = = = − −−⎩

= −
= = −

  (40a) 

and nonzero components of the antisymmetric matrix [ ]2 4 4
A

×
 are: 

( )
( ) ( ) ( )

14 41

23 32

13 31
2

24 42

2

2 3  

                       b b R

b b R

b b
b b h R Rh R

υ υ α β

μα υ υα β

β
μ α βα

= − = −⎧⎪
⎨

= − = − + −⎪⎩

= − =

= − = − + − +−
 (40b) 

and nonzero components of the symmetric matrix [ ]3 4 4
A

×
 are: 

2
22 33

2 2
44 34 43

1

2 1 1 1
4 4

                                                

   

Rc c ( )
h

Rh hc ( )R ( ) c c ( )

μα υ β

α υ β υ β υβ υ β

⎧ = − = − −⎪⎪
⎨
⎪ = − + + − − = = − + −
⎪⎩

        (40c) 

and the force vector { }4 1F ×  is: 

{ } ( ){ }1 0 0 2
T

i o i o
i i

P kP h P kPF E rλ
= − + +                                         (40d) 

Finally, the radial displacement on the basis of Eq. (25) is obtained as follows: 

( ) ( )
2

2

2

1
(1 )

21 2(1 )

i
r i o i o

iE

ru rP kP P k PR
h

λ

βυβ υ
α βυ

=
⎧⎡ ⎤

− + − +⎨⎢ ⎥⎡ ⎤ ⎣ ⎦⎩−⎢ ⎥⎣ ⎦
−
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( ) ( )22
i o i o

i

P kP P k P
r
α β

⎫
+ − + + − ⎬

⎭
                                                         (41) 

5.2 Inhomogeneity Constant of 2n = +  

Elasticity modulus on the basis of Eq. (8) is: 

( )2

2( ) +i

i

EE z R z
r

=                                                                                (42) 

Following above, the nonzero components of the symmetric matrix [ ]1 4 4
A

×
 are: 

3 3 53 3
3 3

11 22 33

3 3 5 2 3 5 2 3 5

44 12 21 34 43

3(1 ) (1 )
12 804 4

3 (1 )
12 80 4 80 4 80

      

    

R h RhRh Rha a aR h R h

R h Rh R h h R h ha a a a a

υ υ μ

μ υ μ

⎧ ⎛ ⎞⎛ ⎞ ⎛ ⎞= − = − =++ +⎜ ⎟ ⎜ ⎟⎜ ⎟⎪
⎝ ⎠ ⎝ ⎠⎪ ⎝ ⎠

⎨
⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎪ = = = − = =+ + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎪ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎩

(43a) 

and nonzero components of the antisymmetric matrix [ ]2 4 4
A

×
 are: 

3 3
2 3

13 31 14 41 23 32

3 2 3 5 2 3 53
3

24 42

5
12 12

6 4 80 3 404

  

  

h Rhb b b b b bR h R h

Rh R h h R h hRh b bR h

υ υ μ

υ μ υ

⎧ ⎛ ⎞ ⎛ ⎞= − = = − = = − = −+ +⎜ ⎟ ⎜ ⎟⎪ ⎝ ⎠ ⎝ ⎠⎪
⎨

⎛ ⎞ ⎛ ⎞⎛ ⎞⎪× + = − = − ++ ++⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎪ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎩

  (43b) 

and nonzero components of the symmetric matrix [ ]3 4 4
A

×
 are: 

3
3

22 33

3 3
3 2

44 34 43

(1 )
4

(1 )
6 12

        

      

Rhc c RhR h

Rh hc R h c c R h

μ υ

υ υ

⎧ ⎛ ⎞= − = − −+⎜ ⎟⎪ ⎝ ⎠⎪
⎨

⎛ ⎞⎪ = − − − = = − +⎜ ⎟⎪ ⎝ ⎠⎩

                          (43c) 

and the force vector { }4 1F ×  is: 

{ } ( ){ }
3

0 0 2
Ti

i o i o
i

r P kP h P kPF Eλ
= − + +                                          (43d) 

Finally, the radial displacement on the basis of Eq. (25) is obtained as follows: 
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( ) ( ) ( )
4 2

2
2

22
4 2 12(1 2 )

144 6

i
r i o i o i i o

i

r

E h

Rh hu rP kP P kP Rr P k P
hR

h Rλ
υ

υ
=

⎧⎡ ⎤
+ + − +⎨ −⎢ ⎥⎡ ⎤ ⎣ ⎦⎛ ⎞ ⎩− +⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
−

( ) ( )
2 2

2 2

4 2 12i o i o
i i

R h h hR P kP R P kP
r r

⎫⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎪− + − + + + ⎬⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎪⎣ ⎦⎭

                                  (44) 

6 Numerical Analysis 

The Finite Element Method (FEM) is a powerful numerical method in shell 
analysis. An axisymmetric thick cylindrical shell is studied in the field of the 
plane elasticity. In this field, it suffices to model only the shell section. An 
axisymmetric element has been applied for modeling and meshing. The degrees of 
freedom are two translations in the radial and axial direction for each node. 

For the modeling of the FGM hollow cylinders, an innovative application for the 
multilayering of wall thickness in the radial direction has been performed. In this 
approach, N  homogenous layers which are of identical thickness and step-
variable elasticity modulus has been formed. The elasticity modulus of each layer 
is then calculated by the following relation: 

( )
1

11 1    ,   
nN

o
i

j i

k rjE E k
N r=

⎡ ⎤−
+ −= =⎢ ⎥

⎣ ⎦
∑                                                  (45) 

where N is the number of layers, n is the inhomogeneity constant and j is the 
number allocated to each layer. In our study, 20 layers have been used for 
modeling exercise. 

The nodes are free in all the elements. However, in the boundaries of 0x =  and 
x L= , to create plane strain conditions, nodes are free along the radius and the 
circumference, but are constrained along the length. 

7 Discussions 

As a case study, we consider a thick cylinder whose elasticity modulus varies in 
radial direction and has the following characteristics: 40ir = mm, 60or =  mm, 
Young's modulus of inner surface 200iE =  GPa and Poisson's ratio 0.3υ = . Fig. 
5 shows the distribution of elasticity modulus with respect to the normalized 
radius in a heterogeneous cylinder for integer values of n . 
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7.1 Internal Pressure 

In this section, consider a nonhomogeneous thick cylinder in which the inner 
surface is compressed by uniform pressure 80iP P= =  MPa and the outer surface 
is traction free. The distribution of the normalized radial displacement of this 
cylinder is depicted in Fig. 6. It is seen that for negative values of n, the 
displacements of FGM cylinders are higher than of a homogeneous cylinder. For 
positive values of n, the situation is reverse, i.e. the displacement is lower. The 
variation in the displacement of heterogeneous material is similar to that of 
homogenous material. 

 
Figure 5 

Distribution of elasticity modulus in FGM cylinder 

 
Figure 6 

Distribution of radial displacement in FGM cylinder ( 80iP =  MPa) 

Fig. 7 illustrates the distribution of normalized circumferential stress in a FGM 
cylinder. It should be pointed out that the equivalent graphs in Ref. (Tutuncu, 
2001) are incorrect. For 0n < , in the inner half of the cylinder, the amount of 
circumferential stress is higher than that of the homogeneous cylinder. In contrast, 
in the outer half, it is lower. For 0n > , the situation is reverse. In the inner half of 
the cylinder, the amount of circumferential stress is lower than that of the 
homogeneous cylinder. As opposed to this, in the outer half, it is higher. In the 
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domain of the middle surface, the behavior of a FGM cylinder is similar to 
homogenous cylinder. The numerical results of this study are presented in Tables 
1 and 2. 

 
Figure 7 

Distribution of circumferential stress in FGM cylinder ( 80iP =  MPa) 

Table 1 
Numerical results of radial displacement (Pi =80 MPa) 

Surface ur , mm
 

n= -2 n= -1 n= 0 n= +1 n= +2 
FSDT 0.054309 0.045790 0.038096 0.031266 0.025312 
PET 0.054541 0.045989 0.038272 0.031426 0.025458 Middle 

surface 
FEM 0.054559 0.045997 0.038272 0.031426 0.025458 
FSDT 0.060512 0.050984 0.042388 0.034764 0.028124 
PET 0.062163 0.052673 0.044096 0.036471 0.029811 

Inner 
surface 

FEM 0.062182 0.052680 0.044096 0.036468 0.029806 

Table 2 
Numerical results of maximum stress (Pi =80 MPa) 

Surface ,θσ MPa n= -2 n= -1 n= 0 n= +1 n= +2 

FSDT 141.35 149.30 155.62 160.00 162.36 
PET 148.99 151.08 156.16 159.31 159.81 Middle 

surface 
FEM 144.29 151.15 156.16 159.12 159.80 
FSDT 335.72 283.23 235.78 193.63 156.85 
PET 307.27 255.13 208 166.11 129.51 

Inner 
surface 

FEM 299.91 252.09 208 168.18 133.60 

7.2 External Pressure 

In this section, consider a nonhomogeneous thick cylinder in which the outer 
surface is compressed by uniform pressure oP P 80= =  MPa and the inner surface 
is traction free. 
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Figure 8 

Distribution of radial displacement in FGM cylinder ( 80oP =  MPa) 

The distribution of the normalized radial displacement of this cylinder is depicted 
in Fig. 8. It is seen that for negative values of n, the displacements of FGM 
cylinders are higher than of a homogeneous cylinder. For positive values of n, the 
situation is reverse, i.e. the displacement is lower. The variation in the 
displacement of homogenous material is similar to that of heterogeneous material. 

 
Figure 9 

Distribution of circumferential stress in FGM cylinder ( 80oP =  MPa) 

Fig. 9 illustrates the distribution of normalized circumferential stress in a FGM 
cylinder. For 0n < , in the inner half of the cylinder, the amount of 
circumferential stress is higher than that of the homogeneous cylinder. In contrast, 
in the outer half, it is lower. For 0n > , the situation is reverse. In the inner half of 
the cylinder, the amount of circumferential stress is lower than that of the 
homogeneous cylinder. As opposed to this, in the outer half, it is higher. In the 
domain of the middle surface, the behavior of a FGM cylinder is similar to 
homogenous cylinder. The numerical results of this study are presented in Tables 
3 and 4. 
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Table 3 
Numerical results of radial displacement (Po =80 MPa) 

Surface ur , mm
 

n= -2 n= -1 n= 0 n= +1 n= +2 
FSDT -0.069367 -0.058383 -0.048496 -0.039745 -0.032136 
PET -0.069714 -0.058630 -0.048672 -0.039872 -0.032228 Middle 

surface 
FEM -0.069737 -0.058640 -0.048675 -0.039871 -0.032227 
FSDT -0.072159 -0.060894 -0.050707 -0.041653 -0.033749 
PET -0.074801 -0.063030 -0.052416 -0.043005 -0.034809 

Inner 
surface 

FEM -0.074821 -0.063037 -0.052416 -0.043002 -0.034806 

Table 4 
Numerical results of maximum stress (Po =80 MPa) 

Surface ,θσ MPa n= -2 n= -1 n= 0 n= +1 n= +2 

FSDT -218.44 -228.32 -235.62 -240 -241.29 
PET -221.87 -230.20 -236.16 -239.43 -239.81 Middle 

surface 
FEM -222.03 -230.28 -236.16 -239.42 -239.80 
FSDT -453.47 -380.89 -315.79 -258.34 -208.54 
PET -411.0 -346.32 -288 -236.29 -191.26 

Inner 
surface 

FEM -401.0 -342.07 -288 -239.22 -196.04 

Conclusions 

In this research, the heterogeneous hollow cylinders have been solved by FSDT, 
PET and FEM, and have been compared with homogenous cylinders. We 
conclude that for the positive or negative values of n , the maximum stress 
increases in one half of the cylinder, and it is decreased in the other half. The 
radial displacement for positive values of n is decreases; it is however increased 
for negative values. As n  is increases, the amount of changes in both 
displacements and stresses increases too. Therefore, positive values of n  lead to a 
decrease in the displacement and stress in the inner surface. This is highly 
important for a large number of industries. 
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