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1 Introduction
The Nelder-Mead simplex method [12] is a direct search algorithm for the uncon-
strained minimization problem

f (x)→min ( f : Rn→ R)

using a sequence of simplices and function evaluations of their vertices and some
related points. Since its publication, the Nelder-Mead simplex method gained high
popularity in various application areas and derivative-free optimization [16], [8],
[5], [2], [1]. The Nelder-Mead paper [12] has a citation number over 30000 (google
scholar, 30-03-2020). In spite of the great number of related papers and variants of
the original method quite a few theoretical results are known on the convergence of
the Nelder-Mead method (see [4], [7], [6]). A famous two dimensional example by
McKinnon [10] shows that Nelder-Mead simplex algorithm may fail to converge to
a stationary point of f , even if f is strictly convex and has continuous derivatives.
In this paper we also give a few new examples which provide further insights into
the convergence properties of the method. In the next section we define the Nelder-
Mead simplex method and summarize the main convergence results. In Section 3 we
analyze in detail the decision structure of the method in two dimension. In Section
4 we give a sufficient condition for a certain type of convergence behavior of the
Nelder-Mead simplex method. We apply this result to several examples in Section
5. In the last section we give two related examples for the case of repeated shrinking

– 93 –



A. Galántai A convergence analysis of the Nelder-Mead simplex method

which indicate a kind of local character of the method. It has been suspected that the
choice of the initial simplex may influence the performance of the simplex method
(for experimental results, see e.g. [13], [17]). The results presented in this paper
clearly support this assumption as well.

2 The Nelder-Mead simplex method
We use the following generally accepted form of the original method [7]. The ver-
tices of the initial simplex are denoted by x1,x2, . . . ,xn+1 ∈ Rn. It is assumed that
the vertices x1, . . . ,xn+1 are ordered such that

f (x1)≤ f (x2)≤ ·· · ≤ f (xn+1) .

Define xc =
1
n ∑

n
i=1 xi. The related evaluation points are

xr = (1+α)xc−αxn+1, xe = (1+αγ)xc−αγxn+1,

xoc = (1+αβ )xc−αβxn+1, xic = (1−β )xc +βxn+1,

where α = 1, β = 1/2, γ = 2. Then one iteration step of the method is the following.

Operation Nelder-Mead simplex method
1: Ordering f (x1)≤ ·· · ≤ f (xn+1)
Reflect if f (x1)≤ f (xr)< f (xn), then xn+1← xr and goto 1
Expand if f (xr)< f (x1) and f (xe)< f (xr),

then xn+1← xe and goto 1.
If f (xe)≥ f (xr), then xn+1← xr and goto 1.

Contract outside If f (xn)≤ f (xr)< f (xn+1) and f (xoc)≤ f (xr),
then xn+1← xoc and goto 1.

Contract inside If f (xr)≥ f (xn+1) and f (xic)< f (xn+1)
then xn+1← xic and goto 1.

Shrink xi← (xi + x1)/2, f (xi) (for all i) and goto 1

There are two rules that apply to reindexing after each iteration. If a nonshrink step
occurs, then xn+1 is discarded and a new point v ∈ {xr,xe,xoc,xic} is accepted. The
following cases are possible:

f (v)< f (x1) , f (x1)≤ f (v)≤ f (xn) , f (v)< f (xn+1) .

Let

j =
{

1, if f (v)< f (x1)
max2≤`≤n+1 { f (x`−1)≤ f (v)≤ f (x`)} , otherwise .

Hence

xnew
i = xi (1≤ i≤ j−1) , xnew

j = v, xnew
i = xi−1 (i = j+1, . . . ,n+1) .
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This type of selection inserts v into the ordering of Step 1 with the highest possible
index. If shrinking occurs, then

x′1 = x1, x′i = (xi + x1)/2 (i = 2, . . . ,n+1)

plus a reordering takes place. By convention, if f (x′1) ≤ f (x′i) (i = 2, . . . ,n), then
xnew

1 = x1.

Here we can also write x(λ ) = (1+λ )xc−λxn+1 and so

xr = x(1) = 2xc− xn+1, xe = x(2) = 3xc−2xn+1,

xoc = x
( 1

2

)
= 3

2 xc− 1
2 xn+1, xic = x

(
− 1

2

)
= 1

2 xc +
1
2 xn+1.

Lagarias, Poonen and Wright [6] defined a restricted version of the above method,
where expansion steps are not allowed.

Kelly [4], [3] developed a sufficient decrease condition for the average of the object
function values (evaluated at the vertices) and proves that if this condition is satisfied
during the process, then any accumulation point of the simplices is a critical point of
f . For other variants of the Nelder-Mead algorithm, see Tseng [15], Nazareth-Tseng
[11], Pryce-Coope-Byatt [14].

Lagarias, Reeds, Wright and Wright [7] proved that if the function f is strictly
convex on R2 with bounded level sets and the initial simplex is non-degenerate,
the function values at all simplex vertices converge to the same value. They also
proved that the simplex diameters are converging and the simplices in the standard
Nelder-Mead algorithm have diameters converging to zero ([7] Theorems 5.1, 5.2).

For the restricted version of the Nelder-Mead method, Lagarias, Poonen, Wright
[6] showed also in R2 that for any non-degenerate starting simplex and any twice-
continuously differentiable function with everywhere positive definite Hessian and
bounded level sets, the algorithm always converges to the minimizer.

In the light of the above convergence results McKinnon’s nonconvergence exam-
ple is particularly interesting (see, e.g. [6], [18]). McKinnon [10] constructed the
function

f (x,y) =
{

θφ |x|τ + y+ y2, if x≤ 0
θxτ + y+ y2, if x≥ 0

(1)

where φ , θ , τ are positive constants. This f is strictly convex and has continuous
first derivatives if τ > 1. For this function, the Nelder-Mead simplex algorithm
may fail to converge to a stationary point. In particular, with φ = 6 and θ = 60,
the counterexample works for 0 ≤ τ ≤ τ̂ , and it does not work for τ > τ̂ , where
τ̂ ≈ 3.0605.

Wright [18] raises several open questions concerning the Nelder-Mead method such
as

• Why is it sometimes so effective (compared to other direct search methods)
in obtaining a rapid improvement in f ?
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• One failure mode is known (McKinnon [10]) – but are there other failure
modes?

• Why, despite its apparent simplicity, should the Nelder-Mead method be dif-
ficult to analyze mathematically?

Our purpose here is to show other failure modes indicating the complicated conver-
gence structure or behavior of the method.

3 The Nelder-Mead method in two dimensions

Assume that f : R2 → R is continuous and the ith simplex S(i) =
[
x(i)1 ,x(i)2 ,x(i)3

]
is

such that f
(

x(i)1

)
≤ f

(
x(i)2

)
≤ f

(
x(i)3

)
for all i≥ 0. The related refection, expansion

and contraction points are denoted by x(i)r , x(i)e , x(i)oc and x(i)ic , respectively. For the

given parameters, x(0)c = 1
2

(
x(i)1 + x(i)2

)
,

x(i)r = 2x(0)c − x(i)3 , x(i)e = 3x(0)c −2x(i)3 ,

x(i)oc = 3
2 x(0)c − 1

2 x(i)3 , x(i)ic = 1
2 x(0)c + 1

2 x(i)3 .

Taking all possible cases into account, the (i+1)th iteration of the Nelder-Mead
method can be written as follows:

1. If f
(

x(i)1

)
≤ f

(
x(i)r

)
< f

(
x(i)2

)
, then S(i+1) =

[
x(i)1 ,x(i)r ,x(i)2

]
.

2a) If f
(

x(i)e

)
< f

(
x(i)r

)
< f

(
x(i)1

)
, then S(i+1) =

[
x(i)e ,x(i)1 ,x(i)2

]
.

2b) If f
(

x(i)r

)
< f

(
x(i)1

)
and f

(
x(i)e

)
≥ f

(
x(i)r

)
, then S(i+1) =

[
x(i)r ,x(i)1 ,x(i)2

]
.

3) If f
(

x(i)2

)
≤ f

(
x(i)r

)
< f

(
x(i)3

)
and f

(
x(i)oc

)
≤ f

(
x(i)r

)
, then three cases are

possible:

3a) If f (xoc)< f
(

x(i)1

)
, then S(i+1) =

[
x(i)oc ,x

(i)
1 ,x(i)2

]
.

3b) If f
(

x(i)1

)
≤ f

(
x(i)oc

)
< f

(
x(i)2

)
, then S(i+1) =

[
x(i)1 ,x(i)oc ,x

(i)
2

]
.

3c) If f
(

x(i)2

)
≤ f

(
x(i)oc

)
≤ f

(
x(i)r

)
, then S(i+1) =

[
x(i)1 ,x(i)2 ,x(i)oc

]
.

4) If f
(

x(i)r

)
≥ f

(
x(i)3

)
> f

(
x(i)ic

)
, then three cases are possible:

4a) If f
(

x(i)ic

)
< f

(
x(i)1

)
, then S(i+1) =

[
x(i)ic ,x

(i)
1 ,x(i)2

]
.

4b) If f
(

x(i)1

)
≤ f

(
x(i)ic

)
< f

(
x(i)2

)
, then S(i+1) =

[
x(i)1 ,x(i)ic ,x

(i)
2

]
.

4c) If f
(

x(i)2

)
≤ f

(
x(i)ic

)
< f

(
x(i)3

)
, then S(i+1) =

[
x(i)1 ,x(i)2 ,x(i)ic

]
.
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5) Shrinking occurs if and only if

f
(

x(i)2

)
≤ f

(
x(i)r

)
< f

(
x(i)3

)
and f

(
x(i)oc

)
> f

(
x(i)r

)
or

f
(

x(i)r

)
≥ f

(
x(i)3

)
and f

(
x(i)ic

)
≥ f

(
x(i)3

)
holds. Then S(i+1) =

[
x(i+1)

1 ,x(i+1)
2 ,x(i+1)

]
, where

{
x(i+1)

1 ,x(i+1)
2 ,x(i+1)

}
=

{
x(i)1 ,

1
2

(
x(i)2 + x(i)1

)
,

1
2

(
x(i)3 + x(i)1

)}
whose order is determined by the requirement

f
(

x(i+1)
1

)
≤ f

(
x(i+1)

2

)
≤ f

(
x(i+1)

)
.

McKinnon investigated the Nelder-Mead method concerning a repeated case 4b),
that is the behavior

f
(

x(i)1

)
≤ f

(
x(i)ic

)
< f

(
x(i)2

)
< f

(
x(i)3

)
≤ f

(
x(i)r

)
(i≥ 0) . (2)

His construction keeps one vertex (x(0)1 = (0,0)) fixed, while vertices x(i)2 and x(i)3

converge to x(0)1 .

In the next two sections we give a sufficient condition under which the Nelder-Mead
method repeats case 4c) and also show its application to several functions in various
situations. Our construction keeps two vertices (x(0)1 and x(0)2 ) fixed, while the third

one converges to the midpoint of the line segment x(0)1 x(0)2 .

4 A condition for repeated inside contraction
Here we give a sufficient condition under which the inside contraction (case 4c)

f
(

x(i)1

)
≤ f

(
x(i)2

)
≤ f

(
x(i)ic

)
< f

(
x(i)3

)
≤ f

(
x(i)r

)
(3)

is repeated.

Assume that f
(

x(0)1

)
≤ f

(
x(0)2

)
< f

(
x(0)3

)
. The points x(0)r , x(0)ic are located on the

straight line defined by the points x(0)c and x(0)3 , where x(0)c = 1
2

(
x(0)1 + x(0)2

)
. The

equation for this line is given by

ϕ (t) = (1+ t)x(0)c − tx(0)3 . (4)

For t ∈ [−1,1], we have x(0)3 = ϕ (−1), x(0)ic = ϕ
(
− 1

2

)
, x(0)c = ϕ (0), x(0)r = ϕ (1).
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If
f
(

x(0)1

)
≤ f

(
x(0)2

)
≤ f

(
x(0)ic

)
< f

(
x(0)3

)
≤ f

(
x(0)r

)
, (5)

that is

f
(

x(0)1

)
≤ f

(
x(0)2

)
≤ f

(
ϕ

(
−1

2

))
< f (ϕ (−1))≤ f (ϕ (1)) , (6)

then x(0)ic = ϕ
(
− 1

2

)
is selected in the first iteration of the Nelder-Mead simplex

method and

x(1)1 = x(0)1 , x(1)2 = x(0)2 , x(1)3 = xic = ϕ

(
−1

2

)
. (7)

Since x(0)1 and x(0)2 do not change, x(0)c also remains and the next x(1)r and x(1)ic will be
on the line segment x(t) (t ∈

[
− 1

2 ,
1
2

]
).

Let tk = 1
2k and assume that we have performed k consecutive steps so that

x(k)1 = x(0)1 , x(k)2 = x(0)2 , x(k)3 = ϕ (tk) (8)

and
f
(

x(0)1

)
≤ f

(
x(0)2

)
< f

(
x(k)3

)
. (9)

Since x(k)c = x(0)c and

x(λ ) = (1+λ )x(0)c −λx(k)3 = (1+λ )x(0)c −λ

(
(1+ tk)x(0)c − tkx(0)3

)
= (1−λ tk)x(0)c +λ tkx(0)3 ,

we have
x(k)r = x(k) (1) = (1− tk)x(0)c + tkx(0)3 = ϕ (−tk)

and

x(k)ic = x(k)
(
−1

2

)
=
(

1+
tk
2

)
x(0)c +

tk
2

x(0)3 = ϕ

( tk
2

)
.

If
f
(

x(0)2

)
≤ f

(
ϕ

( tk
2

))
< f (ϕ (tk))≤ f (ϕ (−tk)) , (10)

then

x(k+1)
1 = x(0)1 , x(k+1)

2 = x(0)2 , x(k+1)
3 = ϕ (tk+1)

(
tk+1 =−

1
2k+1

)
. (11)

If the above conditions hold for all k values (and f is a continuous function), that is

(i) f
(

x(0)1

)
≤ f

(
x(0)2

)
< f

(
x(0)3

)
;

(ii) f (ϕ (−tk))≥ f (ϕ (tk))> f
(
ϕ
( tk

2

))
≥ f

(
x(0)2

)
(tk =− 1

2k , k = 0,1, . . .),
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then x(k)3 → x(0)c , f
(

x(k)3

)
→ f

(
x(0)c

)
, while x(k)1 and x(k)2 ( f

(
x(k)j

)
= f

(
x(0)j

)
, j =

1,2) remain fixed. Hence the simplices converge the line segment x(0)1 x(0)2 , while
limk→∞ x(k)3 = x(0)c is the midpoint of this line segment. Also, the diameters of the
simplices do not converge to 0.

A sufficient condition for the requested behavior can be formulated as follows.

Theorem 1. Assume that S(0) =
[
x(0)1 ,x(0)2 ,x(0)3

]
is such that

f
(

x(0)1

)
≤ f

(
x(0)2

)
< f

(
x(0)3

)
.

If, in addition, f is such that
(a) f (ϕ (t)) is continuous on [−1,1];
(b) f (ϕ (t))≥ f (ϕ (−t)) for t ∈ [0,1];
(c) f (x(t)) is strictly monotone decreasing on [−1,0];
(d) f (ϕ (t))> f (ϕ (0)) = f

(
x(0)c

)
≥ f

(
x(0)2

)
(t ∈ [−1,1], t 6= 0),

then
f
(

x(i)1

)
≤ f

(
x(i)2

)
≤ f

(
x(i)ic

)
< f

(
x(i)3

)
≤ f

(
x(i)r

)
(12)

holds for all i = 0,1,2, . . ., x(i)3 → x(0)c , and f
(

x(i)3

)
→ f

(
x(0)c

)
.

Proof. Assume that for some −1≤ t < 0, x3 = ϕ (t) and

f
(

x(0)1

)
≤ f

(
x(0)2

)
< f (ϕ (t)) .

Then xr = ϕ (−t), xic = ϕ
( t

2

)
, and (b) and (c) imply that

f (xr) = f (ϕ (−t))≥ f (ϕ (t)) = f (x3)> f
(

ϕ

( t
2

))
= f (xic) .

Condition (d) implies that f
(

x(0)1

)
≤ f

(
x(0)2

)
< f

(
ϕ
( t

2

))
.

In the next section we apply this sufficient condition to a few functions and show
some different types of convergence behavior.

5 Examples of repeated inside contractions
Define the first function as

f (x,y) =
1
4
(x+ |x|)+ 1

2
|x−|x||+g(y) , (13)

where

g(y) =
{

0.2sin(10πy−5π) , if 0.5≤ y≤ 0.7
0 otherwise . (14)

This function is shown on the next figure.

– 99 –



A. Galántai A convergence analysis of the Nelder-Mead simplex method

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6
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Define the initial simplex vertices as x(0)1 = (0,0.5), x(0)2 = (0,0.7), x(0)3 = (0.5,0.6).

Then f
(

x(0)1

)
= 0, f

(
x(0)2

)
= 0, f

(
x(0)3

)
= 0.25, x(0)c = [0,0.6], ϕ (t) = [−0.5t,0.6]

and

f (ϕ (t)) =


|t|
4 , if t < 0

t
2 if t > 0

.

This function clearly satisfies conditions (a)-(d). Hence we have the repeated xic

behavior and the convergence x(i)3 → x(0)ic . Note that the limit point x(0)c is not a local
minimum point of f (x,y)!

Our next example is the function

f (x,y) = x2y2 +
1
ε2

(
x2 + y2)−1−

∣∣∣∣ 1
ε2

(
x2 + y2)−1

∣∣∣∣ (ε > 0) , (15)
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where ε < 1 is small enough. For ε = 0.1, this function is shown on the next figure.
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This function has a unique global minimum point at the origin and a continuum
number of non-isolated local minimum points along the x and y axes. Select the
initial vertices as x(0)1 = (0,0), x(0)2 = (0,2ε), x(0)3 = (ε,ε). Then f

(
x(0)1

)
= −2,

f
(

x(0)2

)
= 0, f

(
x(0)3

)
= ε4, x(0)c = (0,ε), ϕ (t) = (−tε,ε) and f (x(t)) = ε4t2.

Hence Theorem 1 applies. Note that x(0)1 is the global minimum point and x(0)2 is
a non-isolated local minimum point, while x(i)3 converges to x(0)c which is not a lo-
cal minimum point. As ε can be chosen arbitrarily small, this problem can occur
arbitrarily close to the global minimum point.

The third example is related to saddle points. Assume that f (x,y) is separable in
the form

f (x,y) = g(x)−h(y) , (16)

where g and h are continuous real functions, g(x) > 0 for x 6= 0, g(0) = 0, g(x)
is strictly monotone increasing for x ≥ 0, g(x) is strictly monotone decreasing for
x < 0, g(−x) ≥ g(x) (x ≥ 0), h(y) ≥ 0 for y 6= 0, h(0) = 0 and h(−y) ≥ h(y) for
y≥ 0. Select the initial vertices as x(0)1 = (0,−a), x(0)2 = (0,a) and x(0)3 = (b,0) with

a,b > 0. Then x(0)c = (0,0),

f
(

x(0)1

)
=−h(−a)≤−h(a) = f

(
x(0)2

)
≤ 0 = f

(
x(0)c

)
< g(b) = f

(
x(0)3

)
.

Since ϕ (t) = (−bt,0) and f (ϕ (t)) = g(−bt) ≥ g(bt) for t ∈ [0,1], Theorem 1
implies that x(i)3 converges to the saddle point x(0)c = (0,0). The same result holds,
if the above conditions are restricted to an open neighborhood of the origin.

This saddle point phenomenon also appears if f (x,y) is not separable. Using Theo-
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rem 1 it is easy to check this for the function

f (x,y) = x2− y2 +
1
ε2

(
x2 +(y−2ε)2

)
−1−

∣∣∣∣ 1
ε2

(
x2 +(y−2ε)2

)
−1
∣∣∣∣

+
1
ε2

(
x2 +(y+2ε)2

)
−1−

∣∣∣∣ 1
ε2

(
x2 +(y+2ε)2

)
−1
∣∣∣∣

with ε > 0 small enough and initial vertices x(0)1 = (0,2ε), x(0)2 = (0,−2ε) and
x(0)3 = (1,0). Note that x(0)1 and x(0)2 are are the two local minimum points of f .

6 A note on repeated shrinking
In the case of repeated shrinking the algorithm behaves as a contraction procedure
and the vertices of the simplex sequence converge to a common limit point. The fol-
lowing simple examples indicate that this fail safe convergence may have unwanted
consequences if we seek for the global minimum point.

Assume that f
(

x(i)1

)
≤ f

(
x(i)2

)
≤ f

(
x(i)3

)
. We use the second condition for shrink-

ing, that is

f
(

x(i)r

)
≥ f

(
x(i)3

)
∧ f
(

x(i)ic

)
≥ f

(
x(i)3

)
.

Consider the function

f (x,y) =

{ ∣∣∣ y3−3x2y
x2+y2

∣∣∣ , if (x,y) 6= (0,0)
0, if (x,y) = (0,0) .

. (17)

−5

0

5

−5

0

5
0

1

2

3

4

5

x
y

f(
x,

y)

Observe that 0 ≤ f (x,y)≤ 3 |y|, f (x,0) = 0, f
(
x,
√

3x
)
= f

(
x,−
√

3x
)
= 0, and f

has a continuum of non-isolated global minimum points.
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Let
x(0)1 = (0,0) , x(0)2 =

(
−1,
√

3
)
, x(0)3 =

(
1,
√

3
)
.

Then f
(

x(0)1

)
= f

(
x(0)2

)
= f

(
x(0)3

)
= 0, x(0)c =

(
− 1

2 ,
√

3
2

)
, x(0)r = (−2,0), x(0)ic =(

1
4 ,

3
√

3
4

)
. Since f

(
x(0)r

)
= f

(
x(0)3

)
= 0, and f

(
x(0)ic

)
= 9

√
3

14 > f
(

x(0)3

)
= 0, we

perform a shrink operation:

x(1)1 = (0,0) , x(1)2 =

(
−1

2
,

√
3

2

)
, x(1)3 =

(
1
2
,

√
3

2

)

where f
(

x(1)j

)
= 0 ( j = 1,2,3) and the previous argument can be applied again.

After the i-th iteration we have

x(i)1 = (0,0) , x(i)2 =
1
2i

(
−1,
√

3
)
, x(i)3 =

1
2i

(
1,
√

3
)
,

where f
(

x(i)j

)
= 0 ( j = 1,2,3). Then

x(i)c =
1

2i+1

(
−1,
√

3
)
, x(i)r =

(
− 1

2i−1 ,0
)
, x(i)ic =

(
1

2i+2 ,
3
√

3
2i+2

)
,

f
(

x(i)r

)
= 0 and f

(
x(i)ic

)
= 9

√
3

14 2−i > f
(

x(i)3

)
= 0. Hence we have a repeated

shrinking and the convergence x(i)2 ,x(0)3 → x(0)1 .

Consider the following modification of function (17)

f (x,y) =

{
sin
(∣∣∣ y3−3x2y

x2+y2

∣∣∣) , if (x,y) 6= (0,0)
0, if (x,y) = (0,0) .
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The modified function has non-isolated local minimum points and several global
minimum points. For this function, f (x,0) = 0, f

(
x,
√

3x
)
= f

(
x,−
√

3x
)
= 0 also

hold. Take again the initial simplex

x(0)1 = (0,0) , x(0)2 =
(
−1,
√

3
)
, x(0)3 =

(
1,
√

3
)
.

Then f
(

x(0)1

)
= f

(
x(0)2

)
= f

(
x(0)3

)
= 0, x(0)r =(−2,0), x(0)ic =

(
1
4 ,

3
√

3
4

)
, f
(

x(0)r

)
=

0, and f
(

x(0)ic

)
= sin 9

√
3

14 > f
(

x(0)3

)
= 0. So we must perform a shrinking and we

obtain a repeated shrinking with the same sequences x(i)2 , x(i)3 , x(i)c , x(i)r , x(i)ic with one

difference: f
(

x(i)ic

)
= sin

(
9
√

3
14 2−i

)
.

The obtained result is essentially the result of the previous example. However
x(i)2 ,x(i)3 converge to the local non-isolated minimizer x1, while the global minimum
of f is not achieved.

We note that the Nelder-Mead simplex algorithm is also used in the context of global
optimization (see, e.g. [9]). The last two examples indicate a kind of local character
of the method.
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