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Abstract: A method that distinguishes between urban road environment types, based on 

traffic sign (TS) and crossroad (CR) data is presented in this paper. The types and the 

along-the-route locations of the TSs and the CRs ‒ encountered during car trips ‒ are 

recorded either by a human data entry assistant, or by an advanced driver assistance 

subsystem that has been enhanced for the purpose. A feed-forward artificial neural network 

(ANN) ‒ trained in a supervised manner ‒ carries out the classification tasks. ANNs with 

different topologies and training regimes are considered and tested for the purpose. These 

ANNs are characterized by different degrees of modularity ranging from fully modular to 

non-modular networks. The fully modular ANN consists of three functional modules. Two 

of these three were trained initially as standalone ANNs, to infer the actual road 

environment type solely from the TS and the CR data, respectively. The outputs of these two 

modules are combined via the third module. Further synapses supplement the module-level 

connections in the less modular ANNs. During the training of the full ANN, the TS and the 

CR modules are kept relatively intact, while the weights and the biases within the merger 

module can evolve. Test results for the considered ANNs are provided and compared. 

Keywords: detection of the road environment; artificial neural networks; traffic sign 

recognition systems 

1 Introduction 

The amount of real-time data measured, gathered and processed on-board high-

end road vehicles, increases continually from year to year. Such data gathering 

and data processing are carried out, for instance, by the real-time traffic sign 

recognition system (TSR) presented in [1]. The system described therein relies on 

an RGB image sequence, and a depth image sequence and GPS location, odometer 
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and map data. The depth image sequence is used for the selection of the regions-of 

interest, while template matching is applied to the color-segmented RGB image 

sequence. The latter locates the traffic signs within the image sequence. The 

system repeatedly performs a particle filter based localization of the ego-vehicle 

based on these data. The real-time implementation is achieved via the use of 

multicore processors and a number of graphics processing units. As a more recent 

example of on-board real-time data gathering and high-volume data processing, 

the object classification system proposed in [2] could be mentioned. The system 

fuses image data and the LIDAR point cloud data. Furthermore, it uses a deep 

convolutional neural network that is fed with pixel-level depth data ‒ obtained via 

point cloud up-sampling ‒ and RGB color image data. In our view, the increasing 

trend of the real-time data gathered and processed on-board is partly explainable 

with ‒ but also permits and calls for ‒ a richer set of on-board environment 

perception capabilities, much richer than it was customary, say, a decade ago. 

The need for a more detailed perception of the environment arises in a wide range 

of road environments and traffic situations. Notably, it arises in urban environ-

ments. For instance, the narrow and possibly blocked streets ‒ typical in historical 

town-centers ‒ require due attention, clear perception and fast decision making 

[3]. Furthermore, a profound understanding/model of the road environment is 

indispensable in the ever-growing and increasingly hectic road traffic at major 

urban junctions for human drivers and for smart/semi-autonomous/autonomous 

road vehicles alike. In case of smart road vehicles, the information concerning the 

key components of the road and vehicle environment is made available to the 

drivers in the form of advanced driver assistance functions; while in case of semi-

autonomous/autonomous road vehicles, it is utilized by the vehicles’ own control 

system. 

The data describing the surroundings of high-end vehicles ‒ data typically col-

lected and processed on-board ‒ includes the positions, dimensions and velocities 

of the pedestrians and the vehicles using the road, as well as the positions, shapes 

and dimensions of the markings, traffic signs, traffic lights and other objects on, 

along and in the vicinity of the roads. For instance, a computer vision solution that 

classifies the road environment into urban, rural, or off-road categories based on 

color and texture features was proposed in [4]. These features were derived from 

the color and texture distributions extracted from various regions of interest. The 

features were then combined using a trained classifier approach to resolve two 

road-type classification problems. The first was the determination of the off-

road/on-road situations. The second was the multiclass road environment problem 

of determining the actual road type, namely off-road, urban, major/trunk road and 

multilane motorway/carriageway. 

From various data mentioned above, computer vision and artificial intelligence 

units on-board ‘guess’ (calculate, estimate, determine) current traffic conditions, 

the actual road and lane geometry, as well as, the traffic control status (e.g., actual 

speed limit, green light). 
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Herein, the urban road environment surrounding an ego-car is classified into one 

of the three predefined road environment categories based on traffic sign (TS) and 

crossroad (CR) data. These three road environment categories are as follows: 

downtown (Dt), industrial/commercial (Ind), and residential (Res) areas. The 

classification is carried out by an artificial neural network (ANN). Though, the 

collected data is processed in a post-collection manner, the trained ANNs could 

well be installed on-board of smart cars and operated in a real-time manner within 

the advanced driver assistance systems (ADAS). 

ANNs of different degrees of modularity are proposed and tested for the purpose 

of urban road environment classification in the present paper. The recognition 

performances of these ANNs are evaluated and compared. 

Modularity is a desired characteristic of systems of any practical purpose. Such 

systems include computerized systems and computing/ processing machinery, as 

well. ANNs are no exceptions to this rule. Modularity serves many of the well-

founded engineering demands during the life-cycle of systems (i.e., during system 

design, maintenance, validation and system renewal/update). It also promotes the 

traceability of the systems, and makes easier for the system developers and users 

to understand, follow and verify the computations carried out within. 

Modularity also promotes the reusability of programs, applications, methods, 

modules, subsystems, and even ‒ as it is the case here ‒ the tested and properly 

functioning weights and biases associated with interneuron synapses within the 

ANNs and the neurons themselves. These are to be used within modules, or 

subsystems in a more complex computing network. But modularity comes at a 

price, e.g., the processing could require several stages/layers and the precision 

could be slightly impacted. Herein, we look at ANNs exhibiting different levels of 

modularity, evaluate and compare their performance when these are employed in 

the given application context. 

To cope with the different levels of modularity, furthermore to maintain consis-

tency among the various ANNs used in our experiments, several training regimes 

‒ using the analogy of the vibrations of excited nodes within a coupled mechanical 

network ‒ were devised. These training regimes when applied to an ANN, retain ‒ 

as much as possible ‒ the weights and biases in certain well-defined parts (e.g., 

within a module, or within a subsystem) of the network. It is expected that the 

reasonably good starting values for these weights and biases ‒ if retained or 

modified with care ‒ shorten the necessary training effort in respect of the 

network. 

The aforementioned three road environment types are rather different from a 

traffic safety point of view, as it was pointed out by the authors of [5]. Because of 

these differences, the human drivers, the semi- and the fully- autonomous road 

vehicles need to look out for very different hazardous traffic situations within 

these environments. Some important accident and crash data, for different urban 

road environments in the City of San Antonio, Texas, USA, are given in the cited 
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paper. The data presented in the article, as well as, similar accident and crash data 

from other cities, e.g., accident and crash data from Xi’an (China) that was 

presented and analyzed in [6], underline the need for the ADAS function proposed 

herein. 

In a smart car driven by a human driver, the output of the road environment 

detection ADAS subsystem could be simply displayed to the driver as a short 

message (e.g., “You are now probably driving in a downtown area.”), so that the 

driver can adjust to expected traffic conditions and any foreseeable safety hazards. 

In case of semi-autonomous/autonomous vehicles, for instance, different 

voluntary speed-limits could be set for different road environments and these 

limits could be deferred to by the vehicular control system. 

The identified road environment type, on the other hand, could be utilized within 

the mentioned cooperative system architecture. For instance, the customary/stan-

dard size of the TSs may vary in different road environments (e.g., nowadays 

some very small TSs are also deployed in downtown of Budapest), and the TS size 

for the given environment category, could be beneficial for cross-checking the 

detected TS candidates. As another example for supporting, with actual road envi-

ronment information, the processing carried out within a TSR ADAS subsystem, 

one could mention the different occurrence probabilities of the various TSs. If 

several candidate TS types are identified for a particular TS encountered along the 

route, then for choosing the most likely type, these probabilities could be taken 

into consideration. 

In an advantageous implementation, the TS and CR data is gathered, processed, 

combined and used by ADAS subsystems (e.g., by a camera-based TSR system, 

or by a lane keeping assistant). These subsystems may rely on data provided by 

on-board measurement devices (e.g., LiDARs). 

The rest of the paper is structured as follows. The first subject in Section 2 is the 

need for a more robust cooperation amongst the ADAS subsystems in the context 

of road environment detection. Then achievements in the field of road 

environment perception, modeling, interpretation and representation are touched 

upon and some precursors to the proposed ADAS subsystem are mentioned 

therein. Finally, still in Section 2, the socio-economic relevance of the road and 

traffic related data is pointed out with reference to an interesting large-scale 

application of such data. In Section 3, a summary of the car-based TS and CR data 

collection work carried out in the present research is presented. In Section 4, the 

ANN-based urban road environment classifiers ‒ exhibiting different degrees of 

modularity, used in our investigations, are described and their constituent 

modules/subnetworks, as well as, the two-phase training regime used in 

conjunction with the classifiers are also described therein. In Section 5, the test 

results are presented, graphically and also in tabular form, for a particular test 

route. The results are also discussed therein. Conclusions are drawn and the future 

work is outlined at the end of this paper. 



Acta Polytechnica Hungarica Vol. 15, No. 8, 2018 

 – 87 – 

2 Related Work 

2.1 Making Good Use of the Subsystem-Level Cooperation 

within Advanced Driver Assistance Systems 

A biologically inspired system architecture that supports environmental perception 

capabilities and makes extensive use of subsystem-level cooperation is presented 

in [7]. The authors of the paper argue that within the majority of the ADAS ‒ at 

least then, i.e., in 2011 ‒ the ADAS subsystems have clearly defined 

functionalities, and work fairly independently to complete their specific tasks. In 

other words, the subsystems do not make extensive use of the results produced by 

other ADAS subsystems. Although, the loosely integrated ADAS ‒ built from 

‘individualistic’ subsystems ‒ show good performance at the implemented 

functions, such systems are stuck at a low level of abstraction and are unable to 

handle complex scenes and traffic situations in a generic way. Furthermore, the 

extension and the modification of the implemented ADAS capability is far from 

being straightforward. The biologically inspired system architecture proposed in 

their paper ‒ which incorporates a module responsible for static domain-specific 

tasks, pathways for object recognition and location/distance computations, as well 

as a module for environmental interaction ‒ warrants a higher abstraction level 

and eliminates the mentioned drawbacks, they claim. 

2.2 Road Environment Detection 

Road environment detection, perception, modeling, interpretation and represen-

tation have been targets of research for some time [7] [8]. The former paper has 

been discussed above. The authors of the latter paper list a number of current 

reliable working ADAS subsystems in production cars. In their view, the research 

activities worldwide have just started to address then, and are definitely 

addressing now, the driver assistance related environment perception problems for 

inner-city scenarios. 

The aim of these activities is to provide substantial and reliable information about 

the actual driving situation even in such complex spatial environments. As the 

authors point out in their paper, this task necessitates the application of multi-

sensor systems and advanced sensor fusion technologies. The most frequently 

used data fusion methods are either object-based, or occupancy grid-based. The 

authors present an occupancy grid-based fusion concept that is optimized for the 

environment perception task facing and posed by road vehicles. Their system 

initially separates the static and the dynamic information coming from the on-

board environment sensors (i.e., stereo cameras, radars). 
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An interesting view, with considerable insight in the field of data fusion, is presen-

ted in [9]. The authors of the paper forecast that future environment perception 

systems, including those on-board road vehicles, will rely on model-free grid--

based representations and, at the same time, on model-based object tracking 

solutions. This is because only a combination of both will meet the requirements 

of the complex ADAS. 

In regards of our present topic, the multi-layer representation of stationary inner-

city intersections presented in [3], is of great interest. The authors of the cited pa-

per, use the term ‘multi-layer’ both in a geometrical sense (to distinguish between 

ground and raised features) and in an algorithmic/computer architectural sense (to 

distinguish between the sensor- and data-specific layer, the tristate abstraction 

layer and the fusion layer). They differentiate between and/or indicate explicit and 

implicit free spaces, the ground texture, the curbs, the elevated occupancies, the 

texture+elevated occupancies, and multiple occupancies within the intersection. 

The parametric free space (PFS) map – a novel generic 2D environment 

representation suitable for automotive applications – was introduced in [10]. The 

representation proposed there is more compact than those based on common grid-

based models, and therefore, it is could be used for the purpose of automotive 

CAN transmission. The PFS map maintains explicit information about relevant 

free spaces, while setting aside data describing irrelevant free spaces. Using the 

PFS map, an arbitrarily fine spatial evaluation can be carried out in a sensor-

principle independent and real-time manner. The authors consider radar and stereo 

camera data streams in their experiments, but claim that additional sensors could 

be included in the map generation. The generation process, however, is computa-

tionally more demanding than pure grid mapping. 

In the papers discussed above, the term ‘road environment’ is used in a fairly 

narrow, more or less, geometrical sense. The term refers to the immediate/close 

surroundings of the ego-car, e.g., to the physical extent of an inner-city intersec-

tion/roundabout, of a multi-lane road segment, or of a road segment by a construc-

tion site. The authors of [11], on the other hand, use a slightly different term, 

namely ‘driving environment’, and they study the ‘critical changes’. The examples 

given there are related to the sudden changes of illumination (e.g., tunnel entry, 

tunnel exit, shadow of an overpass), but still refers to the immediate/close 

surroundings of the ego-car. 

In our view, the above papers tackle the highly relevant and practical spatial 

perception, modeling, interpretation and representation problems that arise in 

urban spaces, but miss out on dealing with the urban environment ‒ around the 

ego-car ‒ at a somewhat larger scale. Herein, the term ‘road environment’ is used 

in a more socio-economic sense and refers to larger urban spaces; this inter-

pretation is used in [12]. The authors of the cited paper also define and use a 

number of socio-economic measures characterizing the urban form and everyday 

life. These include the residential density, employment density, land use diversity, 
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intersection density, size of working-age population within a (short) driving 

distance, number of jobs accessible by car, size of working-age population within 

commute distance and the number of jobs accessible within a short transit 

commute. Looking at maps of a given city/town with the above measures noted, 

one gets a fairly good understanding of how everyday urban activities are 

conducted in that settlement. One could easily define the road environment 

categories Dt and Res in a quantitative manner based on these and similar socio-

economic measures, and could even combine these measures to come up with 

practical definitions. Herein, however, a fairly simple and a somewhat subjective 

categorization of these urban environments are used, which considers observable 

traits related to the residential and intersection densities. 

In respect of the third urban environment type (i.e., Ind), we refer to [13]. The 

author of this doctoral dissertation examines the spatial distribution of commercial 

activities in Montréal, Canada. In particular, the impact of spatial determinants 

pertaining to street permeability and street centrality on the character and spatial 

distribution of retail activities is investigated. Among a wide range of analyses 

carried out in respect of the ’urban tissue’, the author investigates the spatial 

characteristics of commercial streets using a morphological approach. To account 

for the different types of intersections on a commercial street, mainly T-types and 

+-types, the distances between these intersections were measured for both sides of 

the street, and the averages are produced. Such an approach could be utilized in 

precisely defining the Ind road environment category, and also the road environ-

ment data collection could be improved in this manner, as presently we do not 

distinguish between the left-hand-side and right-hand-side environments of the 

road. 

2.3 Statistical Inference and ANN-based Methods for Road 

Environment Detection 

Road environment detection (RoED) ‒ in urban areas and in the above detailed 

socio-economic sense ‒ was tackled in [14], [15] and [16]. The methods presented 

in these papers rely on TS and/or CR input data. Two different approaches of 

RoED, namely statistical inference and ANN-based classification, were presented 

in these publications. 

It should be emphasized that this algorithmic dichotomy is not unique to the 

problem at hand. The statistical and the ANN-based methods commonly applied 

in transportation research are surveyed in [17]. The authors look at the differences 

between and the similarities of these methods and provide insights on how to 

choose one from the available algorithmic palette. 

A shallow ANN was utilized to identify the actual urban road environment based 

on TS data in [16]. The urban RoED method proposed herein builds upon the 

results presented there and to a lesser extent, upon those published in [14] and 
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[15]. In fact, the ANN ‒ described in [16] ‒ that was trained and used for 

processing TS data has been re-applied herein as a functional module/subnetwork. 

In the following, this functional unit will be referred to as the TS processing 

module/ subnetwork. It is augmented with a similar module/subnetwork that 

inputs CR data and with another module that merges the outputs of the former 

two. 

Multiple functionally independent subnetworks (modules), as a part of the whole 

ANN, were used and experimented with, in [18], the paper also presented various 

training techniques for such ANNs. Some of the training techniques described 

were tested in regard to the RoED system proposed herein. 

Modularity within ANNs serves a variety of design objectives, see [19] for a good 

overview; the main motivations for turning to a modular design in this case were 

the availability of a trained ANN (i.e., reuse of a readily available software 

component), the expected reduction of the required training effort, and the 

increased understandability/traceability of the data processing. 

2.4 Road Environments, Traffic Patterns, Composition of the 

Traffic and their Socio-Economic Relevance 

Clearly, urban RoED, even in the socio-economic sense of the term as used here, 

can be carried out in a number of different ways and from different kinds of input 

data. The most obvious option is to use a navigational device and stored map data, 

such as provided by the OpenStreetMap [20], for the purpose and to rely on the 

urban area categorization given there. Nonetheless, a similar argument could be 

brought forward in conjunction with TSR, and still we see that there are many 

camera-based TSR systems on the market, and these ADAS subsystems either use, 

or do not, the ego-car’s geographical position and stored map data for data fusion 

and data corroboration purposes. 

We opted for using the TS and CR data as inputs to the RoED ADAS function as 

the TS data is readily available on-board of high-end road vehicles through the 

TSR function, while the CR data can be generated from LIDAR point clouds. We 

note here that the LIDAR-based ADAS solutions have gained popularity in the 

recent years [21] [22], and we expect to see CR detection ADAS functions in 

smart cars in the near future. Having said that, it is true that instead of looking at 

TSs and CRs, or in deed the built environment in general, RoED could be 

accomplished via observing traffic intensities, traffic patterns and the composition 

of the traffic (e.g., with respect to road vehicle types, brands, and models). 

In this context, the work presented in [23] could be mentioned here. The authors 

of the cited paper turn to the deep learning methodology for estimating the socio-

economic characteristics of approximately two-hundred US regions. Their aim, 

however, is not related to driver assistance. They extract, using deep learning-
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based computer vision techniques, the motor vehicles encountered by the Google 

cars taking Street View images. In total, several millions of Street View images 

were processed for the purpose of this major endeavor. From the extracted image 

segments/blobs, the makes, the models, and the production years of these vehicles 

were sought and identified. This data is then used for estimating various socio-

economic characteristics of the administrative regions of the studied country. 

3 Collection of Traffic Sign, Crossroad and Urban 

Road Environment Data 

In this section, a brief description of the data collection work in respect of TSs, 

CRs and urban road environments is given. More details, including route maps, as 

well as photographs of typical scenes can be found in [14] [15] [16]. In respect of 

the TS data, several car-based data collection trips were made to three urban 

settlements within Hungary, namely to Csepel1, Százhalombatta2 and Vác3. These 

locations were chosen to cover urban settlement population sizes characteristic for 

the country. It was our aim to include industrial, cultural, commercial centers for 

data collection, while trying to include both historic and modern settlements, as 

well as settlements with garden suburbs and green residential areas. For 

convenience reasons, we chose destinations that are not too far from Budapest, 

where our research institute is located. 

An Android application was used for recording the relevant TS data. The 

application automatically records the car-trajectory, and provides means to log the 

TSs. The data logged for each TS includes the TS type ‒ the types used by the 

proposed RoED are shown in Figure 1 ‒ and the TS location along the route 

covered, and the actual road environment type. As it was mentioned in the 

Introduction, three predefined road environment types were considered, namely 

                                                           
1  Csepel is the 21st district of Budapest. Some decades ago, it was a working-class 

borough with many factories. Today, Csepel contains housing estates, as well as 

middle-class garden suburbs. It has approximately 85,000 inhabitants. (Excerpts from 

https://en.wikipedia.org/wiki/Csepel) 
2  Százhalombatta is situated about 30 km from Budapest, along national motorway No. 

6. It has about 18,000 inhabitants. Looking at the modern industrial town today, it is 

hard to believe that the settlement has about 4,000-year-old history. (Excerpts from 

http://www.1hungary.com/info/szazhalombatta/) 
3  Vác is a town in Pest county with about 35,000 inhabitants. The town is located 35 

kilometres north of Budapest on the eastern bank of the Danube river. Its history dates 

back to the days of the Roman Empire. Later, in the middle ages, the town became a 

Roman Catholic bishopric. Nowadays, Vác is an educational, cultural, commercial, 

industrial and religous center of Pest county, as well as a popular summer resort. 

(Excerpts from https://en.wikipedia.org/wiki/Vác) 



Z. Fazekas et al. ANN-based Classification of Urban Road Environments from Traffic Sign and Crossroad Data 

 – 92 – 

the downtown (Dt), industrial/commercial (Ind), and residential (Res) areas. A 

data entry assistant entered the data describing the TSs seen along the route, as 

well as categorized and recorded the actual road environment according to their 

best judgment. 

 

Figure 1 

The TS types used by the proposed RoED system; the different shades of the background signify the 

Dt, Ind and Res road environments, respectively, in which the given signs prevail 

Eight TS types were identified in [14] as occurring frequently in urban areas and 

prevailing in one of the three urban environment types mentioned above. In Fig. 1, 

these TS types are shown in groups corresponding, from left to right, to Dt (dark 

grey background), Ind and Res road environment types (black and light grey 

backgrounds, respectively). Frequent occurrences of the two Dt TSs suggest that 

one is driving in a Dt area, those of the four Ind TSs indicate with some pro-

bability an Ind area, while the two Res TSs are indicative, again with some 

probability, of a Res area. 

For the purpose of our study, the CR data was added in a post-trip manner to the 

trajectory data. It was done by collating the recorded trajectory with the 

intersection data extracted from the road layer of a public geographical infor-

mation system provided by [20]. 

Five CR categories were considered for the purpose of RoED, namely the T-

shaped CRs, the +-shaped CRs, the complex CRs, the roundabouts (all these 

without traffic lights), and any CRs controlled by traffic lights. Examples of these 

CRs are shown, from left to right, in Figure 2. These CR categories had been used 

in [15] for detecting change, with properly tuned Page-Hinkley change detectors, 

in the character of the urban road environment sweeping past the ego-car 

collecting data. 

 

Figure 2 

Instances of CR categories used by the proposed RoED system, namely instances of T-shaped,  

+-shaped, complex CRs, roundabouts ‒ all these without traffic lights ‒ and CRs controlled by traffic 

lights 

It should be noted that in an advantageous implementation of the proposed RoED 

system, the TS and CR data should be gathered, combined and processed by 

ADAS subsystems. The processing could easily be carried out in real-time, both 

for the change detection approach and for ANN-based RoED. 
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4 Urban Road Environment Classifiers Making Use 

of ANNs Exhibiting Different Degrees of 

Modularity 

4.1 TS-Processing Module/Subnetwork 

An ANN with one hidden layer was chosen for detecting the type of the actual 

urban environment solely from TS data in [14]. The ANN presented therein, as 

well as, its variants described and used herein, were implemented, trained and 

tested in the simulation environment Simbrain. The features and capabilities of 

this simulation environment are presented in [24]. Simbrain has a number of pre-

defined ANN-models, including the backpropagation model used in the present 

work, and instances of these models can be easily created, trained and tested. 

      
   a                 b 

Figure 3 

The modular RoED system with separate TS and CR modules (a) and the non-modular RoED system 

with TS and CR subnetworks connected via a merging module and via additional synopses (b) 

The trained ANN is reused herein, as a module and a subnetwork, see Figures 3a 

and 3b, respectively, for the purpose of TS-processing within the full ANNs that 

consider both TS and CR data. 

The input features of the TS-processing ANN and also of the TS-processing mo-

dule/subnetwork, within the full ANNs, are the average distances between con-

secutive relevant TSs (of any sort) over the last 250, 500, 1000 and 2000 meters of 

the trajectory, and the number of occurrences of the typical TSs pertaining to each 

of the considered three road environments, again over the mentioned path-lengths. 

That is, there are in total 16 neurons in the input layer of the TS-processing mo-

dule as can be verified in Figure 4. (The same number of neurons are used in the 

non-modular ANN by the TS-processing subnetwork.) Figure 4 shows the inner 

structure of the (trained) modular ANN for RoED and the three modules shown in 

Figure 3a, can be identified therein. 
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Figure 4 

The inner structure of the (trained) modular ANN for RoED 

The input features are calculated for consecutive route-segments of 50 meters of 

the car trajectory. These features are used both in the individual training and 

testing of the TS-processing module/subnetwork, and in training and testing of the 

full ANN. The network weights and biases computed in the standalone phase are 

retained for the full ANN and only a limited and controlled modification is 

allowed during the final training. After appropriate training, the TS-processing 

ANN ‒ used herein as module/subnetwork, could achieve a 67.3% agreement with 

the ground truth data, for a particular route in Csepel. 

4.2 CR-Processing Module/Subnetwork 

An ANN with the same topology as the TS-processing ANN described above (cf. 

the left and right modules formed by the lower layers of the full ANN shown in 

Figure 4) that also relies on the same multiscale approach embodied in the input 

features was set up for detecting the type of the actual urban environment solely 

from CR data. 

The CR data consists of the type and the location of each intersection along the 

route. The input features to the CR-processing ANN are the average distances 

between consecutive CRs (of any sort) over the mentioned path-lengths, and the 

number of occurrences of the typical intersection types for each of the road 

environment types again over the above path-lengths. 

The T-shaped crossings are ‘slightly typical’ to Res areas, the +-shaped and the *-

shaped (i.e., more than four-legged) crossings are ‘slightly typical’ to Dt areas, 

while the roundabouts and the traffic light-controlled crossings are ‘slightly 

typical’ to Ind areas. The above described CR-processing ANN is used herein as a 

module and a subnetwork ‒ see Figures 3a and b, respectively ‒ for the purpse of 

CR-processing within the full ANNs. 

Similarly to the training of the TS-processing module/subnetwork, the CR 

module/subnetwork was trained separately, using a supervised learning approach, 

via backpropagation. The resultant weights and biases within the module/ 

subnetwork were retained for the full ANN and only a limited and controlled 
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modification was allowed during its final training. After appropriate training, the 

CR-processing ANN, used here as module/subnetwork, could achieve a 59.7% 

agreement with the ground truth data, for a test route in Csepel. 

4.3 ANNs for Processing TS and CR Data Jointly 

In Figures 3a and b, the inner structures of the two main types of the full ANNs 

that were used in our experiments are presented schematically A supervised lear-

ning approach was used, as both input data (i.e., TS and CR data) and the desired 

output (i.e. the actual urban road environment type) were known, and the desired 

output was available as reference data. In Figure 4, the trained version of the full 

modular ANN, i.e. the one sketched in Figure 3a, is shown using the Simbrain 

simulation environment. 

Each of the two, full ANNs, comprises three functional modules/subnetworks: two 

of these feed into the third one. The two feeding modules/subnetworks process, 

exclusively/primarily, the TS and the CR data, respectively. The input signals, 

marked collectively with grey rectangles in Figures 3a and b, are fed into the 

ANNs at the bottom, while the classification results, marked with grey rectangles 

and arrows, concerning the current urban environment types, appear at the top of 

the modules/subnetworks. 

The TS and CR data logs provide two separate ‘views’ on the actual urban road 

environment, while the third module combines the outputs of the other two modu-

les/subnetworks, and produces a final road environment guess. In Figures 3a and 

4, the TS and CR modules interact only through the merger module, while in Fi-

gure 3b, apart from the interaction via the merger module, there are also synapses 

between the neurons of the TS and CR processing subnetworks. These synapses 

are collectively marked by the two green parallelograms in the figure. The detailed 

graphical representation of the non-modular ANN is omitted from this paper. 

Initially, each of the full ANNs in Figure 3a and b comprise only an individually 

trained TS-processing module and an individually trained CR-processing module. 

In each of the two networks, the aforementined modules are augmented with a 

merger module, which is then trained through backpropagation, but without modi-

fying the TS and CR modules. This training of the merger module is referred to as 

initial training of the full ANN. After this initial training, the full ANN achieved a 

63.7% agreement with the ground truth road environment type data on a particular 

test route in Csepel. This agreement value falls between the agreement values4 

computed for the individual modules; i.e., it falls between 67.3% for the TS-pro-

cessing module/ANN and 59.7% for the CR-processing module/ANN. 

                                                           
4 These agreement values were given in Subsections 4.1 and 4.2, respectively. 
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5 Urban Road Environment Detection Results 

Following the initial training, a two-phase training regime was carried out. The 

training parameters, the training errors and the test agreements for the modular full 

ANN, shown in Figures 3a and 4, trained according to this regime are given in 

Table 1. 
Table 1 

First-stiff-then-loose training regime used for the modular full ANN 

Parameter 

setting 

Learning 

rate 

Momen-

tum 

Training 

error  

Agree-

ment  

Test stripe 

shown below 

A1 0.0250 0.0900 11.7% 56.1%  

A2 0.2500 0.9000 12.1% 56.1%  

B1 0.0050 0.0180 15.5% 49.6%  

B2 0.0500 0.1800 14.2 % 57.9 %  

C1 0.0010 0.0036 13.9% 59.3%  

C2 0.0050 0.0180 14.8% 55.8%  

D1 0.0002 0.0072   3.5% 71.9%  

D2 0.0010 0.0036   3.1% 68.7%  

According to this regime, a stiff training phase is followed by a loose training 

phase. The stiff training phase modifies all three modules (i.e., the TS-processing, 

the CR-processing and the merger modules) in a controlled manner, which is then 

followed by a loose training phase that modifies only the weights and biases with-

in the merger. 

The stiff training phases with different parameter settings are referred to as A1, 

B1, C1 and D1. See Table 1 for the concrete parameters. Each of these concrete 

training phases were then followed by loose training phases, namely A2, B2, C2 

and D2, respectively. The parameter settings for these concrete training phases are 

also given in Table 1. 

Similar data for the full ANN shown in Figure 3b trained according to the men-

tioned two-phase training regime are presented in Table 2. The rows of the table 

correspond to full non-modular ANNs with increasing percentages (i.e., 20%, 

40%, 60% and 80%) of synapses, with the new synapses randomly added to the 

existing ones, between the neurons of the TS-, and CR-processing subnetworks. 

Table 2 

First-stiff-then-loose training of the ANN with additional synapses 

TS-CR  

synapses 

Stage Learning 

rate 

Momen-

tum 

Training 

error  

Agree-

ment  

Test stripe 

shown below 

20%  stiff 0.0025 0.009 07.9% 69.4%  

20% loose 0.0250 0.090 06.3% 68.3%  

40% stiff 0.0025 0.009 03.1% 73.4%  

40% loose 0.0250 0.090 06.5% 73.0%  
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60% stiff 0.0025 0.009 05.6% 74.1%  

60% loose 0.0250 0.090 14.0% 43.2%  

80% stiff 0.0025 0.009   3.0% 76.3%  

80% loose 0.0250 0.090 19.1% 63.7%  

In Figure 5, the test results for the full ANNs, corresponding to the parameter 

settings and training stages tagged in Tables 1 and 2, are compared to the ground 

truth data in respect of a particular test route in Csepel. (Note that all the lower test 

stripes within the pairs shown in the figure are the same, i.e., the ground truth road 

environment categorization of the test route. It is just repeated so that the test 

results are easier compared with the ground truth.) 

From the top to the bottom, the test stripes for the following parameter settings 

and training stages appear in the figure: parameter setting D of the modular ANN 

after the stiff training phase, the non-modular ANN with 20% of the possible TS-

CR synapses after the stiff training phase, the non-modular ANN with 40% of the 

possible TS-CR synapses after stiff training followed by loose training phase, the 

non-modular ANN with 80% of the possible TS-CR synapses after stiff training 

phase. 

The results shown in Tables 1 and 2 indicate that the agreements with the ground 

truth road environment types may considerably improve, via the application of the 

proposed two-phase training regime, compared to the agreements achieved by the 

full ANNs after just the initial training. Still, one finds that even the best 

agreement values are around 75%, i.e., they are not that high. Clearly, better re-

sults can be gained via using GPS and reliable map data used together. This evi-

dent RoED approach was mentioned, together with some other RoED alternatives, 

in Subsection 2.4. 

   
Figure 5 

The road environment types manually recorded along a test route in Csepel, and those inferred by the 

full ANNs in different training phases (see the text for details) 
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In our view, when one evaluates the agreement values shown in Tables 1 and 2, 

one should bear in mind what sort of raw input data is available, in the presented 

application scenario, for the road environment classification. The raw input data 

series, generated by the car-based TS and CR data collection in respect of the road 

infrastructure, can be thought of as a realization of a marked random point process 

with TS and CR types appearing as marks for the along-the-route locations. The 

locations are characterized only by the path-length covered by the ego-car. Based 

on the raw input data series, the average distances between TSs and CRs, as well 

as the number of TS and CR occurrences over certain path-lengths, see Sub-

sections 4.1 and 4.2 for details, are calculated by some circuitry (not shown in the 

figures). This derived/aggregated data are used then as input data by the TS-, and 

CR-processing modules/subnetworks. The marked random point process 

generating the raw input data is modeled with a marked Poisson point process in 

[15]. 

In our view, the TS and CR data described above is fairly basic, it lacks important 

road details (e.g., number of lanes and road widths are not known) that could be 

beneficial in determining the actual road environment type, but which are much 

more time-, and resource-consuming to collect, and are impractical to use on-

board, at the present time. Considering the simplicity of the raw data series, the re-

sulting agreement values seem reasonable, perhaps even surprisingly high. 

Conclusions and further work 

The problem of identifying the actual urban road environment type, sweeping past 

an ego-car, based on TS and CR data was tackled in this paper. ANNs exhibiting 

different degrees of modularity and having been trained according to a two-phase 

regime were considered and tested for the purpose. In the modular case, shown in 

Fig. 3a, the TS and CR modules were first trained individually and then were put 

together with the help of a merger module. The aim was to complement the 

capabilities of the processing modules and bring about improved classification 

results for the full network.  

The considered non-modular ANN layout is shown in Fig. 3b. In this case, some 

additional synapses between the TS-processing and the CR-processing sub-

networks are activated in a random manner and used in the processing. In both 

cases, improvements of the initial classification performance were achieved for 

certain parameter settings. 

The input data used, was gathered in a small-scale data collection exercise. It is 

certain that a larger collection of TS and CR data from diverse regions and 

countries would be essential for real automotive application of the RoED system. 

Defining and using more urban road environment types could also extend the 

usability of the approach. Also, adding more CR types and corresponding input 

features could also be valuable for future research. 
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