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Abstract: This paper presents the design of a state convergence based control scheme, for a 

multi-master-single-slave nonlinear teleoperation system. The control objective is that the 

slave follows the weighted motion of the master systems, in free motion, and the master 

systems receive the scaled force feedback, while the slave system is in contact with the 

environment. To achieve the desired objectives, extended state convergence architecture is 

modified and appropriate control gains are chosen following a Lyapunov based stability 

analysis. MATLAB simulations considering a two-degree-of-freedom tri-master-single-

slave nonlinear teleoperation system are provided to show the validity of the proposed 

scheme. 
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1 Introduction 

Teleoperation refers to the control of a remote process and forms an important 

class of robotics due to its wide range of applications [1]. Typical units of a 

teleoperation system are a human operator, master manipulator, communication 

channel, slave manipulator and the environment. The working of the system is 

such that the human operator initiates the task through the use of a master 

manipulator which is installed at the local site. This task-related information is 

then transmitted over the communication channel to the remote environment 

where the slave manipulator performs the desired task. At the same time, slave 

manipulator provides a feedback, which is representative of the remote 

environment conditions, to the human operator through the master manipulator 

who then can guide the slave manipulator by adapting to the environment 

conditions. This form of teleoperation system is known as bilateral, as the 

information flows both ways as opposed to the unilateral version where the flow 

of information is from master to slave side only. Clearly, the bilateral scheme is 

more reliable because of the presence of the feedback connection which provides 

the operator with a feel of environment. On the other hand, the presence of the 

feedback connection in a bilateral system poses a great challenge mainly because 

of the time delay in the communication channel and the uncertainties of different 

units complicate the problem further. A variety of control laws have been 

proposed in literature to stabilize the bilateral systems against the time delays of 

the communication channel while providing the satisfactory task performance [2]-

[4]. The groundbreaking works on the use of transmission line theory and the 

wave variables in bilateral teleoperation systems form the basis of many other 

algorithms [5], [6]. Such a class of algorithms is collectively referred to as 

passivity paradigm for the bilateral control of teleoperation systems and by far, is 

the most popular choice for designing bilateral systems due to their strong 

robustness to time delays [7]. The other types of bilateral algorithms include 

sliding mode control [8], H∞ control [9], Lyapunov-Krasovskii functional based 

control [10], disturbance observer based control [11], adaptive control [12], 

intelligent control [13]-[15] and the state convergence based control [16], [17]. 

In recent years, another class of teleoperation system, known as multilateral 

teleoperation systems, has emerged due to the need of performing the remote tasks 

in a cooperative fashion. In order to maintain the stability and to ensure the 

satisfactory task performance in such systems, various control algorithms have 

also been proposed. Small gain theorem based approach is presented in [21] for a 

multi-master-single-slave teleoperation system where the slave system is 

influenced by the master systems according to a weighting criterion and a force 

feedback is provided equally to all the master systems. Based on the theory of 

adaptive control and wave variables, the control of an uncertain single-master-

multi-slave teleoperation system is discussed in [22] where each slave is made to 

follow the master commands in the presence of time varying delays. A disturbance 
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observer-based scheme is presented in [23] to control a multi-master-single-slave 

teleoperation system with different degrees-of-freedom. In this method, reaction 

force is estimated and a modal transformation is introduced to accomplish the 

position and force tracking tasks. A Lyapunov-based approach is presented in 

[24], [25] to design a multilateral controller for dual-master-single-slave nonlinear 

teleoperation system. The approximation ability of fuzzy logic control has been 

used in [26] to design an adaptive controller for uncertain dual-master-dual-slave 

teleoperation system. 

This paper presents the design of a time-delayed multi-master-single-slave 

nonlinear teleoperation system based on the method of state convergence. In our 

earlier work [27], we have presented an extended state convergence control 

architecture where k-master systems can cooperatively control l-slave systems. 

However, this extended state convergence method is only applicable to linear 

teleoperation systems when the communication channel offers no time delays. 

These two limitations have been addressed in this paper by considering the 

nonlinear dynamics of master/slave systems and constant asymmetric 

communication time delays. A Lyapunov-based stability analysis is presented and 

control gains of the extended state convergence method are selected to ensure the 

stability of the multilateral system against the communication time delays and to 

achieve the zero tracking error of the slave system. In order to validate the 

proposed scheme, MATLAB simulations are performed on a tri-master-single-

slave nonlinear teleoperation system. 

2 Modeling of Multilateral Nonlinear Teleoperation 

System 

We consider a nonlinear multilateral teleoperation system which is comprised of 

n-degrees-of-freedom p-master and single-slave manipulators as: 

   , , 1,2,...,j j j j j j j j j j j

m m m m m m m m m m hM q q C q q q g q F j p
   
      

 
  (1) 

   ,s s s s s s s s s s eM q q C q q q g q F
   
    

 
                  (2) 

Where  ,j n n

m sM M  ¡ ,  ,j n n

m sC C  ¡  and   1,j n

m sg g  ¡  represent inertia 

matrices, coriolis/centrifugal matrices and gravity vectors for master/slave systems 

respectively. Also,   1,j n

m sq q  ¡ , 1,j n

m sq q
 

 
 

 
¡ , 1,j n

m sq q
 

 
 

 
¡ , 

  1,j n

m s   ¡  and   1,j n

h eF F  ¡  represent the joint variables of master/slave 
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manipulators namely position, velocity, acceleration, torque and external force 

signals, respectively. In the sequel, the following properties of the master/slave 

manipulators (1)-(2) will be utilized in proving the stability of the closed loop 

teleoperation system: 

Property 1: The inertia matrices are symmetric, positive definite and bounded 

i.e., there exists positive constants l and u such that 

 0 l uI M q I      . 

Property 2: A skew-symmetric relation exists between the inertia and 

coriolis/centrifugal matrices such that   2 , 0,T nx M q C q q x x
   

     
  

¡ . 

Property 3: The coriolis/centrifugal force vectors are bounded i.e., there exists 

positive constant 
f  such that , fC q q q q

   
 

 
. 

Property 4: If the joint variables q


and q


are bounded, then the time derivative 

of coriolis/centrifugal matrices is also bounded. 

In addition to the above properties, we make the following assumptions: 

Assumption 1: The gravity force vectors for the master/slave manipulators are 

assumed to be known. 

Assumption 2: The operators are assumed to be passive i.e., there exist positive 

constants , 1,2,...,j

m j p  such that 
0

ft

j j j

m h mF q dt


   . Also, the environment 

is assumed to be passive and is modeled by a spring-damper system i.e., 

e e s e sF K q B q


   where n n

eK ¡ and n n

eB  ¡ are positive definite diagonal 

matrices. 

In addition to the above properties and assumptions, we will use the following 

lemmas in proving the stability of the multilateral teleoperation formed by (1), (2): 

Lemma 1: For any vector signals , nx y ¡ and scalar 0  , time delay T  and 

positive definite matrix 
n nK  ¡ , the following inequality holds over the time 

interval [0, tf]:  
2

0 0 0 0

2

f f ft t tT

T T TT
x K y t d dt x Kxdt y Kydt  



  

        

Lemma 2: For the vector signal nx¡ and the time delay T , the following 

inequality holds:       1/2

20

T

x t T x t x t d T x 
 

      
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3 Modified Extended State Convergence Architecture 

The authors recently proposed an extended-state convergence architecture [27] for 

k-master-l-slave delay-free linear teleoperation system, which can be modeled on 

state space. The aim of the present study is to explore the applicability of the 

extended state convergence architecture for nonlinear multilateral teleoperation 

system in the presence of asymmetric constant communication delays. For 

simplicity, a multi-master-single-slave nonlinear teleoperation system is 

considered in this paper which can be observed in literature. Further, the extended 

state convergence architecture is slightly modified by eliminating the gain terms 

ijG  which are responsible for direct transmission of operators’ forces to slave 

systems. However, all other control gain terms are kept the same. Since the 

gravity force vectors are assumed to be known, they are included in torque inputs 

and will therefore become part of the extended state convergence architecture. The 

modified state convergence architecture is shown in Figure 1 and various 

parameters defining the architecture are described below: 

j

hF : It represents the force exerted by the jth operator onto the jth master 

manipulator. 

 

Figure 1 

Modified extended state convergence architecture for multi-master-single-slave teleoperation 
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1 2

j j j

m m mK K K    : It represents the stabilizing feedback gain for the jth master 

manipulator. 
1

j n n

mK  ¡  and 
2

j n n

mK  ¡ are the state feedback gains for the jth 

master’s position and velocity signals respectively. 

1 2s s sK K K    : It represents the stabilizing feedback gain for the slave 

manipulator. 
1

n n

sK ¡  and 
2

n n

sK  ¡ are the state feedback gains for the 

slave’s position and velocity signals respectively. 

mjT : It represents the constant time delay in the communication link connecting 

the  jth master system to the slave system. 

 
sjT : It represents the constant time delay in the communication link connecting 

the slave system to the  jth master system. 

1 2

j j j

s s sR R R    : It represents the influence of the motion signals generated by 

the jth master manipulator (when operated by the jth human operator) into the 

slave manipulator. The matrices 
1

j n n

sR ¡  and 
2

j n n

sR  ¡ weights the jth master 

manipulator’s position and velocity signals respectively. 

1 2

j j j

m m mR R R    : It represents the effect of slave’s motion into the jth master 

manipulator. The slave’s position and velocity signals are weighted by the 

matrices 
1

j n n

mR ¡  and 
2

j n n

mR  ¡  to influence the jth master manipulator’s 

motion. 

4 Lyapunov-based Stability Analysis and Control 

Design 

Using the modified extended state convergence architecture of figure 1, we intend 

to achieve the following control objectives: 

Control Objective 1: The slave manipulator’s motion is the weighted effect of the 

masters’ manipulators’ motion i.e., 

   
1

lim 0
p

j

s j m
t

j

q t q t




 
  

 
        (3) 

Where 
j is a weighting factor which is used to scale the jth master manipulator’s 

motion and obeys the property:
1

1
p

j

j




 . 
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Control Objective 2: The static force reflected onto the jth operator is a function of 

the environmental force and the other operator’s applied torques i.e., 

 , , 1,2,...,,j i i j i p

h j e hF f F F          (4)  

To achieve the above objectives and to show the system stability, state 

convergence-based closed loop multi-master-single-slave nonlinear teleoperation 

system will be analyzed using a Lyapunov-Krasovskii functional technique. 

Towards this end, we first write the control inputs for the master/slave systems 

using Figure 1 as: 

     1 2 1 2 , 1, 2,...,j j j j j j j j j

m m m m m m m m s sj m s sjg q K q K q R q t T R q t T j p
 

            (5) 

     1 2 1 2

1 1

p p
j j j j

s s s s s s s s m mj s m mj

j j

g q K q K q R q t T R q t T
 

 

                            (6) 

By plugging (5) in (1) and (6) in (2) and using the assumptions 2 and 3, the closed 

loop master/slave systems can be given as: 

   1 2 1 2 , 1, 2,...,j j j j j j j j j j j

m m m m m m m m m s sj m s sj hM q C q K q K q R q t T R q t T F j p
   

         

         (7) 

   1 2 1 2

1 1

p p
j j j j

s s s s s s s s s m mj s m mj e

j j

M q C q K q K q R q t T R q t T F
  

 

          (8) 

4.1 Position Coordination Behavior 

We now show the stability analysis of the closed loop teleoperation system 

formed by (7) and (8) by introducing the following theorem: 

Theorem 4.1: By selecting the control gains of the multi-master-single-slave 

teleoperation system (7), (8) as in (9) and on the satisfaction of 

the 1p inequalities as in (10), the stability of the closed loop teleoperation 

system of (7), (8) can be demonstrated as in (11). 

1 1 2 2 1

1 1 2 2 1

, 3 , 1,2,...,

, 2 , 1,2,...,

j j

m s m s

j j j j

m s j m s j

K K K K K K j p

R R K R R K j p 

       

     
                 (9)  

Where 
n nK  ¡ and 

1

n nK  ¡ are positive definite diagonal matrices. 
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 
2

1

2

1

1 1

3 2 0, 1,2,...,
2 2

0
2 2

j sj j mj

j

mj

p p
j mj j sj

j j sj

T
K K K j p

T
K K K

  




  

 

     

   

                              (10) 

Where 
mj  , 

sj  are positive scalar constants. 

lim lim lim lim 0, 1,2,...,j j

m s m s
t t t t

q q q q j p
   

   
                        (11)  

Proof: Consider the following Lyapunov-Krasovskii functional: 

         

       

 

1

1 1 0 0

1

1 1 1

1 1 1
, , , ,

2 2 2

1
1

2

1

2
mj

p
j j j j T j j T T

m s m s s m m m m s s s s e s

j

t tp p
j T j j T j j T

j m m m h m e

j j

tp p p
T

j j j j T j

m j m s m s j m m

j j j t T

T

j s

V q q q q q q q M q q M q q K q

q Kq q F d q F d

q q K q q q K q d

q K

      

     

 

    



 

 

 

   



 
    

 

     

   





  

   

 1

1
sj

tp

s

j t T

q d 


 

 

           (12) 

By taking the time-derivative of (12) along the system trajectories defined by (7) 

and (8), and using the passivity assumption 2 along with the property 2 of the 

robot dynamics, we have: 

   

   

   

 

1 2 1 2

1

1 2 1 2

1 1

1 1

1

1

p
j T j j j j j j

m m m m m m s sj m s sj

j

p p
T j j j j

s s s s s s m mj s m mj e s e s

j j

p p
T j T j j T j

s e s j m m j m m s

j j

p
T j

j s s m

j

V q K q K q R q t T R q t T

q K q K q R q t T R q t T K q B q

q K q q Kq q K q q

q K q q

 

 

  



   

 

  

 





 
       

 

 
       

 

     

 



 

 

    

   

1 1

1 1

1 1

1 1

p p
j T j j T j

j m m j m mj m mj

j j

p p
T T

j s s j s sj s sj

j j

q K q q t T K q t T

q K q q t T K q t T



 

   

 

   

 

  

   

 

 

      (13) 

After simplifying and grouping the terms in (13), we get: 
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    

  

 

 

1 1

1 1

1 1

1 1

2 1 2 1

1 1 1

2

1

p p
j T j j j T j

m m m m m s sj j s

j j

p p
T T j j j

s s j s s s m mj j m

j j

p p p
j T j j T T

m m j m s s j s s e s

j j j

p
j T j T

m m s sj s s

j

V q K K q q R q t T Kq

q K K q q R q t T Kq

q K K q q K K q q B q

q R q t T q R



 

 

 

 

 

 

     

  

 



     

 
     

 

 
    

 

  

 

 

  

  

       

2

1

1 1

1 1

p
j j

m mj

j

p p
j T j T

j m mj m mj j s sj s sj

j j

q t T

q t T K q t T q t T K q t T 





   

 

 

    



 

                    (14) 

By plugging the control gains of (9) in (14), and by adding and subtracting the 

terms 
1

1

p
j T j

j m m

j

q K q
 



 , 
1

1

p
T

j s s

j

q K q
 



  from (14), we have: 

     

 

     

   

1 1

1 1

1

1 1 1

1

1 1 1

3 2

2

2

p p
j T T j j

j m s sj s j s m mj m

j j

p
j T j T T

m j m s s s e s

j

p
j T j j T j T j

j m m m mj m mj s m mj

j

T T j T

j s s s sj s sj m s

V q K q t T q q K q t T q

q K q q K q q B q

q K q q t T K q t T q K q t T

q K q q t T K q t T q K q

 







 

 

     



     



    

     

   

 
      

 

    

 





 
1

p

sj

j

t T




 
 

 


             (15) 

Now, we define the following error signals: 

 

 

j
s

j
m

j

s m mjq

j

m s sjq

e q q t T

e q q t T

  

  
                  (16)   

By re-writing (15) in terms of the time-derivatives of the error signals of (16) and 

using the relation      
0

T

q t T q t q t d 


     , we have: 



U. Farooq et al. State Convergence-based Control of a  
 Multi-Master-Single-Slave Non-linear Teleoperation System 

 – 16 – 

   

 

1 10 0

1 1 1

1 1

1

1

3 2

sj mj

j j
s s

j j
m m

T Tp p
j T T j

j m s j s m

j j

p p
j T j T T T

m j m s s s e s j q q
j j

p
T

j q q
j

V q K q t d q K q t d

q K q q K q q B q e K e

e K e

     

 



   

 

       

 

 



     

   



  

 



             (17) 

By integrating (17) over the time interval [0, tf] and using lemma 1, we get: 

 

2

10 0 0

2

1 0 0

1 1

1 0 0 0

1

2 2

2 2

3 2

f f f

f f

f f f

j
s s

t t tp
sj sjj T j T

j m m s s

j sj

t tp
mj mjT j T j

j s s m m

j mj

t t tp
j T j T T

m j m s s s e s

j

T

j q q

T
V ds q K q ds q K q ds

T
q K q ds q K q ds

q K q ds q K q ds q B q ds

e K e















   



   



     





 
   
 
 

 
  
 
 

  



  

  

   

1

1 10 0

f f

j j j
m m

t tp p
T

j q q
j j

ds e K e ds
 

 

  

                          (18) 

By grouping the terms in (18), we can simplify the bound on the time-derivative 

of the Lyapunov- Krasovskii functional as: 

     

 

   

22

min 1

1 2

22 2

min 1 min 1

1 1 22

22

min 1 min

1 2 2

0 3 2
2 2

2 2
j
s

j
m

p
j sj mj j

f j m

j mj

p p
j mj sj

s j q
j jsj

p

j e sq
j

T
V t V K K K q

T
K K K q K e

K e B q

 
 



 
  



  





 

 





 
      

 
 

 
    

 
 

 



 



                      (19) 

Now, if the inequalities in (10) are satisfied, the right hand side of (19) will remain 

negative. Since V(0) and V(tf) are positive and right hand side of (19) is negative, 

it can be concluded that V(tf)-V(0) remains bounded ensuring that V(tf) will remain 

bounded. Taking the limit as tf →∞ and using the robot properties, it can be said 

that the signals , , , ,j j j

m s m s s mq q q q q q L
 



 
  

 
and 2, , ,j j

s m

j

m s q q
q q e e L
    

 
 

. To prove 

the system stability in the sense of (11), we have to show that the acceleration 

signals of master/slave systems and their time derivatives remain bounded. To this 

end, we rewrite (7) and (8) without external forces (since they are assumed to be 

passive and bounded) as: 
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     
1

1 2 1 2

j j j j j j j j j j

m m m m m m m m m s sj m s sjq M C q K q K q R q t T R q t T
     
        

 
         (20) 

   1

1 2 1 2

1 1

p p
j j j j

s s s s s s s s s m mj s m mj

j j

q M C q K q K q R q t T R q t T
  



 

 
        

 
         (21) 

By considering the control gains of (9) along with (20) and (21), it is now required 

to show that the signals    
1

,
p

j j

m j s sj s j m mj

j

q q t T q q t T L  



 
     

 
 . These 

signals can be written as: 

      

    
1 1 1

j j

m j s sj m j s j s s sj

p p p
j j j j

s j m mj s j m j m j m mj

j j j

q q t T q q q q t T

q q t T q q q q t T

  

   
  

      

 
       

 
  

             (22) 

The first set of parentheses on the right hand sides of (22) are bounded by virtue 

of , ,j j

m s m sq q q q L
 



 
  

 
 while the second set of parentheses are bounded by 

virtue of lemma 2 and ,j

m sq q L
 



 
 

 
. This implies that the left hand sides of (22) 

are also bounded. By using the properties 1 and 3 of the robot dynamics and the 

result    
1

, , , , , ,
p

j j j j j

m s m s s m m j s sj s j m mj

j

q q q q q q q q t T q q t T L 
 





 
      

 
 , it can 

be concluded that the signals ,j

m sq q
  

 
 

 are bounded. Since the signals ,j

m sq q
  

 
 

 

also belong to 2L , then by Barbalat’s lemma: 

lim lim lim lim 0j j
m s

j

m s q qt t t t
q q e e
   

   
    . Now, it is left to show the boundedness of 

the time derivatives of (20) and (21) to complete the proof. By taking their time 

derivatives, we have: 

     

     

1

1 2 1 2

1

1 2 1 2         +

j

j j j j j j j j jm

m m m m m m m m s sj m s sj

j j j j j j j j j

m m m m m m m m s sj m s sj

d q d
M C q K q K q R q t T R q t T

dt dt

d
M C q K q K q R q t T R q t T

dt



  

  

 
        

 

 
       
 

 (23) 
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     

   

1

1 2 1 2

1 1

1

1 2 1 2

1 1

          

p p
j j j js

s s s s s s s s m mj s m mj

j j

p p
j j j j

s s s s s s s s m mj s m mj

j j

d q d
M C q K q K q R q t T R q t T

dt dt

d
M C q K q K q R q t T R q t T

dt


 



 

 


 

 
        

 

 
        

 

 

 

 

                    (24) 

By using the properties 3 and 4 of the robot dynamics and the earlier 

result    
1

, , , , , , , ,
p

j j j j j j

m s m s s m m j s sj s j m mj m s

j

q q q q q q q q t T q q t T q q L 
  





 
      

 
 , 

it can be concluded that the second derivative terms in (23) and (24) are bounded. 

The boundedness of the first derivative terms in (23) and (24) follows from the 

properties 1 and 2 of the robot dynamics, the boundedness of the signals 

, , ,j j

m m s sq q q q
    

 
 

 and considering  1 1 1 1 1TM M M M M C C M
 
         . Thus 

the right hand sides of (23) and (24) remain bounded implying that the signals 

,j

m sq q L
 



 
 

 
are uniformly continuous. Therefore, we have: lim lim 0j

m s
t t

q q
 

 
  . 

This completes the proof. 

Theorem 4.2: The desired position of the slave system, as mentioned in (3), is 

achieved under the control gains of (9) and the condition that the signals 

, , , , ,j j
s m

j j

s m s m q q
q q q q e e

     
 
 

converge to zero as t  . 

Proof: The convergence of the signals , , , , ,j j
s m

j j

s m s m q q
q q q q e e

     
 
 

has been shown in 

Theorem 4.1. Thus, by using the results from Theorem 4.1 and by substituting the 

control gains of (9) in (8), we have: 

 
1

lim 0
p

j

s j m mj
t

j

q q t T




                    (25) 

By using the relation    
mj

t

j j j

m mj m m

t T

q t T q q d 




    , and the result lim 0j

m
t

q



 , 

we can write (25) as: 
1

lim 0
p

j

s j m
t

j

q q




  . Thus, slave position coordination is 

achieved in the absence of environmental force as time goes to infinity and control 

objective 1 is achieved. This completes the proof. 
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4.2 Force Reflection Behavior 

Let us now investigate the force experienced by the operators in steady state when 

the slave is in contact with the environment. Towards this end, the steady state 

behavior of the closed loop master systems’ (when the velocity and acceleration 

signals converges to zero) is first found from (7) as: 

 1 1 0, 1,2,...,j j j j

m m m s sj hK q R q t T F j p                     (26) 

By using the relation    
sj

t

s sj s s

t T

q t T q q d 




     and the earlier result from 

stability analysis lim 0s
t

q



 , and the control gains of (9), operators’ forces in (26) 

can be given as: 

  , 1,2,...,j j

h m j sF K q q j p                     (27) 

Similarly, the behavior of the slave system in steady state including the 

environmental force can be obtained from (8), (9) and two earlier theorems as: 

1

p
j

e s j m

j

F Kq Kq


                     (28) 

By adding and subtracting 2

1

p

j s

j

Kq


 from (28), we can write the environmental 

force in terms of operators’ forces as: 

2

1 1

1
p p

j

e j h j s

j j

F F Kq 
 

 
   

 
                   (29) 

From (29), it is evident that the environmental force is indeed proportional to the 

weighted effect of the operators’ forces. Thus, the second control objective of (4) 

is also achieved. 

5 Simulation Results 

The proposed state convergence based scheme for multi-master-single-slave 

teleoperation system is verified in MATLAB/Simulink environment using a two 

degrees-of-freedom three masters and one slave manipulators with the dynamics 

of (1), (2). The corresponding inertia matrices, coriolis/centrifugal matrices and 

gravity vectors are given in (30)-(33): 
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   11 12 11 12 1

21 22 21 22 2

, , ,
m m c c g

M q C q q g q
m m c c g

      
        

      
              (30) 

   

 

2 2 2

11 2 1 2 2 2

2 2

12 21 2 2 2

2

22 2

2 cos

cos

m m l m m l m l q

m m m l m l q

m m l

   

  



                (31) 

   

 

2 2

11 2 2 2 12 1 2 2 2

2

21 1 2 2 22

sin , sin

sin , 0

c q m l q c q q m l q

c q m l q c

  



 
     

 

 

               (32) 

       1 2 1 2 1 2 1 2 2 1 2sin sin , sing g gg a m l q q a m m l q g a m l q q                  (33) 

Where 1 2,m m are the masses of links 1 and 2 respectively; 1 2l l l  are the 

lengths of links and 
ga is the acceleration due to gravity. By setting the parameters 

for the master systems as: 1 2 2 , 1m m mm m kg l m    and the slave system as: 

1 2 10 , 1s s sm m kg l m    and by defining the alpha influencing factors for the 

master systems as: 1 2 30.5, 0.3, 0.2      and by setting the gamma values as 

unity and by assuming the time delays in the communication channel as: 

1 1 2 2 3 31 , 0.5 , 2m s m s m sT T s T T s T T s      , we solve the inequalities of (10) and 

subsequently select the decisive positive definite matrices as: 

   120,10 , 40,20K diag K diag  . The control gains for the multi-master-

single-slave nonlinear teleoperation system can now be found using (9). 

We first simulate the tri-master-single-slave nonlinear teleoperation system under 

the control of constant operators’ forces and in the absence of environment forces. 

The human forces are    1 2 3, 150 , 5 , 2 , 3j j

h op op op opF t F t s F N F N F N     which 

vanish after 150 sec. The results for this simulation are shown in Figure 2. It can 

be seen that the multilateral system remains stable, owing to the boundedness of 

the signals and both the joint positions of the slave system converge to the desired 

references. We also consider the realistic case where the operators’ forces vary 

linearly with time. The simulation results for this case are shown in Figure 3. It 

can again be seen that the slave position signals indeed follow the desired 

reference positions. Finally, we simulate the nonlinear teleoperation system in the 

presence of environment forces considering the constant operators’ forces. The 

simulation results for this case are depicted in Figure 4 where the slave comes in 

contact with the environment at t=150 sec. After the contact is made, masters’ 

positions are reduced and the slave is unable to follow the set references. This is in 

line with the theoretical results. The reduction in masters’ positions is due to the 

force reflected onto the masters’ systems by the slave system when it is in contact 
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with the environment while the error in slave’s desired trajectory is the result of its 

direct interaction with the environment as can be seen from (28). 
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Figure 2 

Tri-master-single-slave nonlinear teleoperation system with constant operator forces in free motion (a) 

Joint 1 position signals (b) Joint 2 position signals 
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Figure 3 

Tri-master-single-slave nonlinear teleoperation system with time varying operator forces in free motion 

(a) Joint 1 position signals (b) Joint 2 position signals 
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Figure 4 

Tri-master-single-slave nonlinear teleoperation system in free plus contact motion (a) Joint 1 position 

signals (b) Joint 2 position signals 

Conclusions 

In this work, the design of a multi-master-single-slave nonlinear teleoperation 

system in the presence of asymmetric constant communication time delays is 

presented, based on the extended state convergence theory. A Lyapunov-based 

stability analysis is carried out to find the control gains for the modified extended 
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state convergence architecture. The efficacy of the proposed scheme is finally 

verified through simulations in the MATLAB/Simulink environment by 

considering a two degrees-of-freedom, tri-master-single-slave robotic system. 

Future work involves the design of state convergence based multilateral nonlinear 

teleoperation system in the presence of time varying delays with experimental 

validation. 
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