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Abstract: This paper presents the design of a nonlinear teleoperation system which is 

comprised of a single master and multiple slave (SM/MS) units. The interaction between 

these units follows the extended state convergence architecture which allows multiple 

linear master units to influence multiple linear slave units. However, in this study, the 

nonlinear dynamics of the master and slave units is considered and the resulting nonlinear 

teleoperation system is analyzed in the presence of time delays. To be specific, the 

following objectives are defined: (i) the nonlinear teleoperation remains stable in the 

presence of time varying delays, (ii) the slave units follow the position commands of the 

master unit and (iii) the operator receives a force feedback proportional to the interaction 

forces of the slaves with their environments. Towards this end, Lyapunov-Krasovskii theory 

is utilized which provides guidelines to select the control gains of the extended state 

convergence architecture such that the aforementioned objectives are achieved. The 

efficacy of the proposed scheme is finally verified through simulations in 

MATLAB/Simulink environment by considering a two degrees-of-freedom (DoF) single-

master/tri-slave nonlinear teleoperation system. 

Keywords: Teleoperation; nonlinear dynamics; state convergence; MATLAB 



U. Farooq et al. Design of a Single-Master/Multi-Slave Nonlinear Teleoperation System through  
 State Convergence with Time Varying Delays 

 – 56 – 

1 Introduction 

Teleoperation refers to the control of a distant process and has found diverse 

applications ranging from miniaturized medical procedures to large-scale 

industrial processes. It is usually accomplished through the use of master and 

slave robotic devices which are connected through a communication channel. 

Based on the number of these robotic devices, teleoperation systems can be 

classified as either bilateral or multilateral systems. In a typical bilateral 

teleoperation system, human operator drives the master manipulator and the 

resulting motion commands are transmitted across the communication channel 

towards the slave manipulator which performs the desired task at the remote site. 

A force feedback is also provided by the slave manipulator to improve human’s 

perception of the remote environment. By deploying more than one slave 

manipulator, the task can be carried out more efficiently. The teleoperation system 

in such a setting is known as single-master/multi-slave system and is one of the 

topologies in a broader class of multilateral systems. Other arrangements in this 

category include dual user systems for training tasks, and multi-master/single-

slave and multi-master/multi-slave systems for collaborative missions [1]-[3]. 

All these forms of teleoperation need an effective control system to achieve the 

required task. An ideal control algorithm should be able to ensure that the 

teleoperation system remains stable against the time delays of the communication 

channel while providing a superior position and force tracking performance under 

systems’ uncertainties. This is a challenging task since stability and transparency 

(the position and force tracking requirement is collectively referred as 

transparency) are two conflicting objectives and the presence of uncertainties 

complicates the problem further. Many research efforts have been directed to 

address these performance issues in teleoperation systems. Passivity schemes are 

popular in research community as they transform the delay-vulnerable system into 

a delay-resilient one [3]-[11]. However, transparency of the teleoperation system 

is sacrificed during this transformation process especially when large time delays 

exist, for which some modifications to the standard passivity algorithms have also 

been proposed [12]. To ensure that the teleoperation system performs well under 

uncertainties, non-passive algorithms based on H-∞ [13], [14], sliding mode [15]-

[18] and adaptive control [19]-[21] theories are also proposed. However, time 

delay appears to be a limiting factor in the complete success of these algorithms. 

The use of intelligent control techniques such as fuzzy logic [22]-[26] and neural 

networks [27], [28] has also been investigated. Encouraging results are reported 

based on the combination of neural networks and passivity algorithms [29], [30]. 

State convergence is another novel scheme which provides an elegant design 

procedure to determine control gains for bilateral teleoperation systems modeled 

on state space [31]. It was originally proposed for linear systems with small time 

delay in the communication channel. Later, the applicability of the scheme to 

nonlinear teleoperation systems suffering from time-varying delays was 
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demonstrated through the use of Lyapunov-Krasovskii functional [32]. In our 

earlier work, we have employed the state convergence scheme to control a 

nonlinear teleoperation system which can be approximated by a class of Takagi-

Sugeno fuzzy models. We have also extended this scheme to design controllers for 

multiple linear one DoF teleoperation systems [33]. 

This paper builds on our earlier framework of [33] and discusses the design of a 

multi-DoF SM/MS nonlinear teleoperation system in the presence of time varying 

delays. To the best of authors’ knowledge, state convergence based design of 

SM/MS nonlinear teleoperation system has not been discussed in the literature. 

Further, the earlier methodology on the control of nonlinear bilateral teleoperation 

system through state convergence [32] has become a special case of the proposed 

multilateral controller. To proceed, we first define the control objectives to be the 

synchronization of master and slave position signals along with the mixed force 

reflection to the operator from the slave environments. Then, to achieve these 

objectives, Lyapunov-Krasovskii theory is utilized to design the control gains of 

the extended state convergence architecture following the lines of [32]. The 

proposed methodology is finally verified through MATLAB simulations on a 2-

DoF single-master/tri-slave nonlinear teleoperation system in the presence of time 

delays. 

This paper is structured as follows: We start by presenting the modeling of 

SM/MS teleoperation system in Section 2. Preliminaries are included in Section 3 

while control objectives are listed in Section 4. Stability analysis and control 

design is discussed in Section 5. Simulation results are presented in Section 6. 

Finally, conclusions are drawn in Section 7. 

2 Modeling of the SM/MS Teleoperation System 

We consider a nonlinear teleoperation system which is comprised of n-DoF single 

master and l-slave manipulators/units with the following dynamics: 

   ,m m m m m m m m m m hM q q C q q q g q F
 

    
 

      (1) 

  , , 1,2,...,i i i i i i i i i i i

s s s s s s s s s s eM q q C q q q g q F i l
   

        
   

   (2) 

Where  , i n n

m sM M  ,  , i n n

m sC C  ,   1, i n

m sg g  ,   1, i n

m sq q  , 

1, i n

m sq q  
 

 
, 1, i n

m sq q  
 

 
,   1, i n

m s   denote inertia matrices, 

coriolis/centrifugal matrices, gravity vectors, joint positions, joint velocities, joint 
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accelerations, and input torques of master and slave units respectively.     

Operator’s forces are assumed to be constant while environments are assumed to 

be passive in this study. It is also assumed that the environments can be modeled 

as spring-damper systems, i.e. 
i i i i i

e e s e sF K q B q  where ,i i n n

e eK B  are positive 

definite diagonal matrices. 

Now, the communication between the master and slave units is established 

through the use of extended state convergence architecture. This communication 

framework is shown in Figure 1 and is comprised of the following parameters: 

2

1 2

n n

m m mK K K     : This parameter is the stabilizing feedback gain matrix 

for the master unit. Each of its constituent members  1 2, n n

m mK K   is an 

unknown but negative definite diagonal matrix and will be found through 

Lyapunov-Krasovskii based design procedure. 

2

1 2

i i i n n

s s sK K K     : This parameter is the stabilizing feedback gain matrix 

for the ith slave unit. Each of its constituent members  1 2,i i n n

s sK K   is an 

unknown but negative definite diagonal matrix and will be found through 

Lyapunov-Krasovskii based design procedure. 

2

1 2

i i i n n

s s sR R R     : This parameter models the influence of the master unit’s 

motion onto the ith slave unit’s motion. Each of its constituent members 

 1 2,i i n n

s sR R   is an unknown but positive definite diagonal matrix and will be 

found through Lyapunov-Krasovskii based design procedure. 

2

1 2

i i i n n

m m mR R R     : This parameter models the influence of the ith slave 

unit’s motion onto the master unit’s motion. Each of its constituent members 

 1 2,i i n n

m mR R   is an unknown but positive diagonal matrix and will be found 

through Lyapunov-Krasovskii based design procedure. 

2

iG  : This parameter models the influence of the operator’s applied force onto 

the ith slave unit. 

 miT t  : This represents the time delay on the link which connects the ith 

slave unit to the master unit. In this study, only the upper bounds on these time 

delays  miT 
 are known. 

 siT t  : This represents the time delay on the link which connects the master 

unit to the ith slave unit. In this study, only the upper bounds on these time delays 

 siT 
 are known. 



Acta Polytechnica Hungarica Vol. 15, No. 8, 2018 

 – 59 – 

 

Figure 1 

Single-master/multi-slave teleoperation system through state convergence 

3 Premilinaries 

3.1 Properties of Master/Slave Units 

The master and slave units as modeled by (1),(2) possess the following properties: 

(P1) The inertia matrices are symmetric, positive definite and bounded, i.e. there 

exist positive constants l and u such that  0 l uI M q I      . 

(P2) A skew-symmetric relation exists between the inertia and coriolis/centrifugal 

matrices such that   2 , 0,T nx M q C q q x x
  

     
  

. 
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(P3) The coriolis/centrifugal force vectors are bounded i.e., there exists positive 

constant 
f  such that , fC q q q q

 
 

 
. 

(P4) If the joint variables q and q are bounded, then the time derivative of 

coriolis/centrifugal matrices is also bounded. 

3.2 Lemmas 

For any vectors , nx y , positive definite diagonal matrix n nF  , 

scalar 0  and variable time delay  iT t  having upper bound
iT  , the following 

inequalities hold: 

(L1)  
  2

0 0 0 0

2

f f fi
t t tT t

T T TiT
x F y t d dt x Fxdt y Fydt  





        

(L2)       
  1

2

20

iT t

i ix t T t x t x t d T x        

4 Control Objectives 

Besides establishing the stability, we intend to achieve the following objectives in 

SM/MS nonlinear teleoperation system: 

Control Objective # 1: During the free motion, the joint positions of all the slave 

units should converge to the corresponding joint positions of the master unit in 

steady state i.e.    lim 0, 1,2,...,i

s m
t

q t q t i l


     

Control Objective # 2: During the contact motion, operator should feel a force 

proportional to the aggregated environmental forces, i.e.
1

l
i

h e

i

F F


  

5 Stability Analysis and Control Design 

Consider the SM/MS teleoperation system of Fig. 1 with time varying delays in 

the communication channel. The control inputs for the master and slave units in 

this time-delayed teleoperation system are: 
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       1 2 1 2

1 1

l l
i i i i

m m m m m m m m s si m s si

i i

g q K q K q R q t T t R q t T t
 

                       (3)    

       

  

1 2 1 2

2      , 1, 2,...,

i i i i i i i i i

s s s s s s s s m mi s m mi

i

h mi

g q K q K q R q t T t R q t T t

G F t T t i l

        

  

                 (4) 

By plugging (3) in (1) and (4) in (2), we obtain the closed loop dynamics of the 

master and slave units as: 

     1 2 1 2

1 1

l l
i i i i

m m m m m m m m m s si m s si h

i i

M q C q K q K q R q t T t R q t T t F
 

          

              (5) 

     

  
1 2 1 2

2                      , 1, 2,...,

i i i i i i i i i i

s s s s s s s s s m mi s m mi

i i

h mi e

M q C q K q K q R q t T t R q t T t

G F t T t F i l

       

   

               (6) 

In equilibrium points for master and slave units, we have: 

  

  

, 0

, 0

m m mi m m m

i i i i i

s s si s s s

q q t T t q q q

q q t T t q q q

    

    

     (7) 

Considering the environmental models and evaluating (6), (7) at equilibrium, we 

have: 

  

1 1

1

1 1 2

0

0 , 1,2,...,

l
i i

m m m s h

i

i i i i i i

s s s m h mi e s

K q R q F

K q R q G F t T t K q i l



  

      


   (8) 

Let us now analyze the closed loop teleoperation system of (5), (6) in a new 

coordinate system formed by the variables , i

m sq q and their time delayed versions 

     , i

m mi s siq t T t q t T t   as defined below: 

m m mq q q          (9) 

     m mi m mi mq t T t q t T t q                    (10) 

i i i

s s sq q q                                 (11) 

     i i i

s si s si sq t T t q t T t q                     (12) 



U. Farooq et al. Design of a Single-Master/Multi-Slave Nonlinear Teleoperation System through  
 State Convergence with Time Varying Delays 

 – 62 – 

By using (9)-(12) with (5)-(8), we obtain the transformed teleoperation system as: 

     1 2 1 2

1 1

l l
i i i i

m m m m m m m m m s si m s si

i i

M q C q K q K q R q t T t R q t T t
 

         (13) 

     1 2 1 2

                       , 1, 2,...,

i i i i i i i i i i

s s s s s s s s s m mi s m mi

i i i i

e s e s

M q C q K q K q R q t T t R q t T t

K q B q i l

       

  

            (14) 

Now we study the asymptotic stability and position coordination behavior of the 

time-delayed teleoperation system in Theorem 1 while the force reflection 

behavior is discussed in Theorem 2. 

Theorem 1: The origin of the transformed time-delayed teleoperation system 

(13), (14) is asymptotically stable and the position coordination between the 

master and slave units is achieved in free motion when the control gains of (15), 

(16) are used and 1l  inequalities in (17), (18) are also satisfied. 

 1 2 1

1

1 2 1

1 1 2 2

, 1

, 2 , 1,2,...,

, 2 , 2 , 1,2,...,

l
i

m m md

i

i i i

s s sd

i i i i i i

m s m md s sd

K lK K l K K

K K K K K i l

R R K R K R K i l



     

      

     



               (15) 

   1 11 , 1i i

md sj sd mjK T t K K T t K
   

      
   

                (16) 

2

1 0, 1,2,...,
2 2

mj sj

sj

T
K K K i l







                     (17) 

2

1

1 1

0
2 2

l l
sj mj

i i mj

T
K K K







 

                     (18) 

Where, ,sj mj  are positive constants, 
1, n nK K  are positive definite diagonal 

matrices, ,sj mjT T are the time derivatives of communication delays which are 

assumed to be less than unity. Therefore, ,i i n n

sd mdK K  are also positive definite 

diagonal matrices. 

Proof: Consider the following Lyapunov-Krasovskii functional candidate: 
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       
 

   
 

1

1

1 1

1

1 1

1 1
, , ,

2 2

1

2

1

2

mj

sj

l TT
i i i i i i

m s s m s m m m s s s

i

tl lT T
i i

s m s m m m

i i t T t

tl lT T
i i i i i

s s s e s

i it T t

V q q q q q q M q q M q

q q K q q q K q d

q K q d q K q

  

  



  

 

 
    

 
 

   





  

 

              (19) 

By taking the time derivative of (19) along the trajectories of the teleoperation 

system (13), (14) and using the property P2 of the master and slave units, we 

obtain: 

     

     

1 1 2 2

1 1

1 2 1 2

1

l l
T

i i i i

m m m m s si m m m s si

i i

l T
i i i i i i i i i i i

s s s s s s m mi s m mi e s e s

i

T T TT T
i i i i i i i

s s s m m s m m s e s

i

V q K q R q t T t K q R q t T t

q K q K q R q t T t R q t T t K q B q

q K q q K q q K q q K q q K q

 



 
       

 
 

 
        

 
 

 
    
 
 

 



       

       

1

1 1

1

1 1

1

1

1

l

l
T T

m m m mi mi m mi

i

l T T
i i i i

s s s si si s si

i

q K q q t T t T t K q t T t

q K q q t T t T t K q t T t









  
         

 
      

  
 







 (20) 

By grouping the terms in (20) and using the definition of the time varying 

matrices (16), we have: 

     

     

        

 

1 1

1

1 1

1 1

2

1 2

1

2 1 2

l
T T

i i i

m m m m m s si s

i

l lT T
i i i i i

s s s s s m mi m

i i

l TT T
i i i i im

m m m m s si s si md s si

i

T T
i i i i i i

s s e s s s

V q K lK q q R q t T t K q

q K K q q R q t T t K q

K
q K q q R q t T t q t T t K q t T t

l

q K K B q q R



 



     

    

  
        
   

  



 



        
1

l
T

i

m mi m mi sd m mi

i

q t T t q t T t K q t T t


 
    
 
 



                    (21) 
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Let us now define the following position error signals: 

  

  

i
m

i
s

i

m s siq

i

s m miq

e q q t T t

e q q t T t

  

  
                  (22) 

By substituting the control gains of (15) in (21) and using the time derivative of   

(22) in the resulting expression, we obtain: 

       
1 1 1

1 1

1 1 1

      

T
i i
m m

T
i i
s s

l l l TT
i i i i

q qm s si s md s m mi m

i i i

l l lT TT
i i i i i i

q qsd m m s s s e s

i i i

V q K q t T t q e K e q K q t T t q

e K e q K q q K q q B q

  

  

       

  

  

  

                                  (23) 

By integrating (23) over the time interval 0, ft 
  , rewriting first and third terms in 

integral form and finally using lemma L1, we have: 

2

2

10 0 0

1 0 0

1 0 0

2 2

             
2 2

             

f f f

f f

f f

T T
i i i i
m m s s

t t t
l TT

i isi si

m m s s

i si

t t
l T T

i imi mi

s s m m

i mi

t t
l

i i
q q q qmd sd

i i

T
V d q K q d q K q d

T
q K q d q K q d

e K e d e K e d


  




 



 











 
   
 
 

 
  
 
 



  

  

  
1

1 1

1 10 0 0

             

f f f

l

t t t
l lT TT

i i i i i

m m s s s e s

i i

q K q d q K q d q B q d  



 



 



   

                          (24) 

The simplification of (24) leads to: 

2

2

1

1 10 0

1

1 0

1 10 0

2 2

              
2 2

              

f f

f

f f

T T
i i i i
m m s s

t t
l l

T
si mi

m m

i i mi

t
l T

i imi si

s s

i si

t t
l l T

i i i i
q q q qmd sd s e

i i

T
V d q K K K q d

T
q K K K q d

e K e d e K e d q B q


 








 



 





 

 
     

 
 

 
   

 
 

 

  

 

  
1 0

ft
l

i

s

i

d




              (25) 
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   

     

2

2

2

1

1 1 2

2

1

1
2

2
2 2

1 1 12 2
2

0
2 2

                        
2 2

                        i i
m s

l l
si mi

f m

i i mi

l
imi si

s

i si

l l l
i i i i

q qmd sd e s

i i i

T
V t V K K K q

T
K K K q

K e K e B q











  



 





  

 
      

 
 

 
   

 
 

 

 



  

                (26) 

Where  X denotes the minimal Eigen value of X and the notation 

 
2

x t represents the 2L norm of the signal  x t in the time interval 0, ft 
  . Now, 

if the inequalities in (17), (18) are satisfied and the time derivative of the 

communication delays remains less than unity, then the right hand side of (26) 

remains negative. Taking the limit as
ft  , it can be concluded that the signals 

, , ,i i i

m s s m sq q q q q L

  
  

  

and
2, , ,i i

m s

i
q qm sq q e e L

  
 

  

. The boundedness of the 

signals  ,i i

s m sq q q implies that mq is also bounded and therefore mq L . Now, 

we study the boundedness of the signals , i

m sq q
  
 
  

. Towards this end, we rewrite 

(13) and (14) as: 

       
1

1 1 2 2

1 1

l l
i i i i

m m m m m m m s si m m m s si

i i

q M C q K q R q t T t K q R q t T t


 

 
        

  
 

                    (27) 

 
  

  

1 1 1 2

2

i i i i i i i i i

s s s s s m mi e s s si i

s s

i i i

s m mi e s

C q K q R q t T t K q K q
q M

R q t T t B q



 
      

   
 

   

             (28) 

In (27) and (28), boundedness of the signals, 

     ,i i

m s si s m miq q t T t q q t T t    needs to be established in order to draw 

conclusions on the boundedness of the perturbed acceleration signals. These 

position error signals can be written as: 

     

1 2

i i i i

m s si m s s s siq q t T t q q q q t T t                      (29) 
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     

1 2

i i

s m mi s m m m miq q t T t q q q q t T t                      (30) 

The first terms in (29), (30) have already been shown to be bounded. The second 

terms in these relations can be re-written using lemma L2 as: 

    
 

    
 

1

2

1

2

0 2

0 2

si

mi

T t

i i i i

s s si s si s

T t

m m mi m mi m

q q t T t q t d T q

q q t T t q t d T q

 

 





    

    





               (31) 

It can now be concluded from (31) that the 

signals       ,i i

m s si s m miq q t T t q q t T t L     . Using the properties P1, P3 

of the manipulators and the combined result, 

     , , , , ,i i i i i

m s s m s m s si s m miq q q q q q q t T t q q t T t L

  
      

  

, it is established 

that the perturbed acceleration signals of master and slave units are bounded, i.e. 

, i

m sq q L

  
 

  

. By Barbalat’s lemma, this boundedness of the transformed 

acceleration signals in conjunction with the result 
2, i

m sq q L
  

 
  

leads to the zero 

convergence of the perturbed velocity signals, i.e. 

lim lim lim lim 0i i
m s

i
q qm s

t t t t
q q e e

   
    . Next, we analyze the time derivative of 

(27) and (28):  

 
  

  

 
  

  

1 1
1 1

2 2

1

1 1
1 1

2 2

1

      

l
i i

m m m m m s si

i

m m
l

i i

m m m s si

i

l
i i

m m m m m s si

i

m
l

i i

m m m s si

i

C q K q R q t T t
d

q M
dt

K q R q t T t

C q K q R q t T t
d

M
dt

K q R q t T t

 



 



 
   

  
 
   
  

 
   

 
 
   
  









              (32) 



Acta Polytechnica Hungarica Vol. 15, No. 8, 2018 

 – 67 – 

 
  

  

 
  

  

1 1 1

2 2

1 1 1

2 2

      

i i i i i i i

s s s s s m mi e si i

s s

i i i i i

s s s m mi e s

i i i i i i i

s s s s s m mi e si

s

i i i i i

s s s m mi e s

C q K q R q t T t K qd
q M

dt
K q R q t T t B q

C q K q R q t T t K qd
M

dt
K q R q t T t B q





 
    

   
 
     

 
    

  
 
     

              (33) 

The derivative terms involving inertia matrices in (32), (33) are computed as: 

      

      

1 1

1 1

T

m m m m m

i i i iT i

s s s s s

d
M M C C M

dt

d
M M C C M

dt

 

 

  

  

                (34) 

The properties P1 and P3 of the master and slave units along with the earlier result 

, , ,i i

m s m sq q q q L

  
 

  

dictate the boundedness of the derivative terms in (34). The 

remaining derivative terms in (32), (33) also turn out to be bounded following the 

application of properties P1, P3, P4 and the earlier result: 

  

  

, , , , ,

, ,

i i i i

m s s m s m s si

i i

s m mi m s

q q q q q q q t T t
L

q q t T t q q



 
    

 
 

   

. Since all the terms on right hand 

sides of (32), (33) are bounded, we have , i

m sq q L

  
 

  

. By using the results, 

lim lim 0i

m s
t t

q q
 

  and , i

m sq q L

  
 

  

, it can be concluded that lim lim 0i

m s
t t

q q
 

  . 

With the zero convergence of perturbed velocity and acceleration signals, the 

closed loop teleoperation system of (13), (14) in combination with (15) becomes: 

  
1

lim 0
l

i

m s si
t

i

q q t T t




                    (35) 

   1lim i i i

s m mi e s
t

q q t T t K K q


                    (36) 

The time delay terms in (35) and (36) can be written as: 
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  
 

  
 

si

mi

t

i i i

s si s s

t T t

t

m mi m m

t T t

q t T t q q d

q t T t q q d









  

  





                               (37) 

Since lim lim 0i

m s
t t

q q
 

  , then the integral terms in (37) disappear. By using this 

result in (35), (36) and considering the free motion behavior of the teleoperation 

system, it can be concluded that the perturbations in joint position errors converge 

to zero, i.e. lim lim 0i

m s
t t

q q
 

  . Thus the origin of the transformed teleoperation 

system , , ,i i

m s m sq q q q
  
 
  

is asymptotically stable. This further implies that 

lim , lim i i

m m s s
t t

q q q q
 

  . By using these results in the original time-delayed 

teleoperation system (5), (6), it is found that the position error between the master 

and slave units is vanished in the absence of operator and environmental forces 

and the control objective #1 is achieved  

Remark 1: In case of SM/MS teleoperation system with time varying delays in the 

communication channel, the control gains for the joint velocities of master and 

slave units depend on the derivative of time delays as can be seen from (16). 

These gains are unrealizable since no information about the trajectories of time 

delays is available except for their upper bounds. In order to overcome this 

limitation, we transmit extra ramp signals across the communication channel and 

their time derivatives are computed to realize the velocity control gains as: 

  

  

1

1

, 1, 2,...,

, 1, 2,...,

i

md sj

i

sd mj

K r t T t K i l

K r t T t K i l

   

   

                              (38) 

Theorem 2: During the contact motion of the teleoperation system under the 

control gains of (15), static force is reflected to the operator which is proportional 

to the aggregated environmental force. 

Proof: Consider the steady state behavior of the teleoperation system (1), (2) in 

the presence of operator and environmental forces. By plugging the control gains 

(15) in (5), (6), we have: 

 
1

l
i

h m s

i

F K q q


                    (39) 

  2

i i i

e m s hF K q q G F                     (40) 
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By taking the summation ( 1i   to i l ) on both sides of (40) and using (39), we 

obtain: 

1

2

1

1

l
i

e

i

h l
i

i

F

F

G












                   (41) 

It can be seen from (41) that the operator experiences a static force which is a 

scaled version of the aggregated environmental force. If all the slave units 

experience the same force while working in their environments and the force 

transmission coefficients  2

iG  are all unity, then 
1

h e e

l
F F F

l
 


for large l . 

This completes the proof. 

Remark 2: By setting l  as unity in (41), the earlier state convergence based 

nonlinear bilateral controller [32] becomes a special case of the proposed 

multilateral controller. 

6 Simulation Results 

In order to validate the proposed scheme, a single-master/tri-slave nonlinear 

teleoperation system is setup in MATLAB/Simulink environment. The master and 

slave units forming this teleoperation system are all two link manipulators with 

two degrees-of-freedom motion. Their dynamical system representation is given 

by (1), (2) with the following matrix/vector entries: 

 
   

 

2 2 2 2

2 2

2 2 2

2

3 2 cos cos

cos

ml ml q ml ml q
M q

ml ml q ml

  
  

 

               (42) 

   

 

2 2

2 2 1 2 2

2

1 2

sin sin
,

sin 0

q ml q q q ml q
C q q

q ml q

  





  
          

   
 

              (43) 

 
   

 
1 2 1

1 2

sin 2 sin

sin

g g

g

a ml q q a ml q
g q

a ml q q

  
  

 
                (44) 

Where, 1 2m m m  denotes the mass of the links, 1 2l l l  denotes the link 

lengths and 
29.8ga ms is the acceleration due to gravity. The numerical values 

of these parameters are chosen as  2.0, 1.0m mm l  ,  1 110.0, 1.5s sm l  , 
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 2 25.0, 2.0s sm l  and  3 38.0, 2.5s sm l  . The other parameters of the 

teleoperation system are the stiffness and damping of the remote environments 

which are selected as     1 1100,100 , 20,20e eK diag B diag  , 

    2 250,50 , 10,10e eK diag B diag  and     3 120,20 , 5,5e eK diag B diag  . 

Let us now consider that the time varying delays exist in the communication 

channel between the master and slave units as shown in Figure 2. We assume that 

the upper bound on these time delays is 0.8. We further assume that all the gamma 

constants are unity. The inequalities in (17), (18) are then solved which leads to 

the selection of decisive matrices as (20,10)K diag and
1 (60,30)K diag . With 

the knowledge of these matrices, control gains of the teleoperation system are 

found to be: 

  

  

  

3

1 2

1

1 2

1 2

1

60 0 80 0 20 0
,

0 30 0 40 0 10

20 0 40 0 20 0
, , 1,2,3

0 10 0 20 0 10

20 0 20 0
, 2 , 1,2,3

0 10 0 10

20 0

0 10

m m si

i

i i

s s mi

i i

m m si

i

s

K K r t T t

K K r t T t i

R R r t T t i

R



      
         

      

      
           

      

   
        
   






  2

20 0
, 2 , 1,2,3

0 10

i

s miR r t T t i
  

       
   

    (45) 
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Figure 2 

Time delays between master and slave units 
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We first analyze the time delayed teleoperation system in free motion when the 

operator applies a constant force as shown in Figure 3. The resultant joint 

positions of the master and slave units are shown in Figures 4-6. It can be seen 

that the slave units are following the master unit in the presence of time varying 

delays and the joint positions converge when the applied force becomes zero. This 

shows that the free motion behavior of the teleoperation system is stable. 
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Figure 3 

Operator’s force profile 
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Figure 4 

Free motion of Slave # 1 (a) Joint 1 position (b) Joint 2 position 
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Figure 5 

Free motion of Slave # 2 (a) Joint 1 position (b) Joint 2 position 
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Figure 6 

Free motion of Slave # 3 (a) Joint 1 position (b) Joint 2 position 

We now consider the contact motion of the slaves when the operator exerts a 

constant force of 1 N that lasts for 150 s. The contact motion of all the slave units 

starts at 50t s and ends at 100t s . The resultant position trajectories of the 

master and slave units are depicted in Figures 7-9. It is evident that the joint 

positions of the slave units are tracking the corresponding joint positions of the 

master unit and all the position signals remain bounded which implies that the 

teleoperation system is stable during both the free and contact motion cases. The 

force reflection ability of the time delayed teleoperation system is also analyzed. 

Theoretical result of (41) indicates that the static force reflection should be 

 1 2 30.25 e e eF F F   , which is confirmed through simulation results on force 

reflection as shown in Figure 10. 



Acta Polytechnica Hungarica Vol. 15, No. 8, 2018 

 – 75 – 

0 50 100 150 200 250
-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6
Joint 1 position signals (rad)

Time (sec)

 

 

Master

Slave 1

 

(a) 

0 50 100 150 200 250
0

0.2

0.4

0.6

0.8

1

1.2

1.4
Joint 2 position signals (rad)

Time (sec)

 

 

Master

Slave 1

 

(b) 

Figure 7 

Free plus contact motion of Slave # 1 (a) Joint 1 position (b) Joint 2 position 
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Figure 8 

Free plus contact motion of Slave # 2 (a) Joint 1 position (b) Joint 2 position 
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Figure 9 

Free plus contact motion of Slave # 3 (a) Joint 1 position (b) Joint 2 position 
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Figure 10 

Free plus contact motion of Slave # 3 (a) Joint 1 position (b) Joint 2 position 
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Conclusions 

The design of a SM/MS nonlinear teleoperation system is presented in this paper. 

The proposed design builds upon our earlier work on the multilateral linear 

teleoperation systems, but considers the nonlinear dynamics of the master and 

slave units as well as the asymmetric time delays of the communication channel. 

With the help of Lyapunov-Krasovskii control theory, it is shown that the origin 

of the teleoperation system is asymptotically stable and the slave units track the 

position commands of the master unit. It is also shown that the proposed 

teleoperation system possess force reflection ability. To validate the theoretical 

findings, MATLAB simulations are performed on a single-master/tri-slave 

nonlinear teleoperation system where each master/slave unit has two DoF motion. 

It is found that all the control objectives including stability, position 

synchronization and force reflection are achieved. Future work involves the real 

time implementation of the proposed scheme. 
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