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Abstract: The paper presents a novel controller and observer design methodology for nonlin-
ear systems based on the Linear Parameter Varying (LPV) framework. The introduced tech-
niques effectively combine the classical state feedback methodology with matrix similarity
theorems. The presented solutions are analyzed in order to assess their benefits, drawbacks
and limitations. The possible selection of scheduling variables is investigated and dyadic
structures are used to strengthen the eigenvalue equality from a mathematical point of view.
The connection between the controller and observer side is presented and a solution is given
for occurring matrix invertibility issues. The method is tested for a control of nonlinear
physiological system, more specifically, for the control of innate immune system. The results
show that the developed complementary LPV controller and observer are able to satisfy the
predefined criteria.
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1 Introduction

During controller design, today’s control engineers have to face many challenges.
On the one hand, application of nonlinear controller design techniques requires an
experienced designer, use of advanced mathematical tools and unique approaches
in each case. On the other hand, the application of well-known linear design meth-
ods provides controllers operating only under specific circumstances. Since the real
world processes are not linear, to catch that specific proper operating environment
in which the nonlinear process can be handled as linear is difficult [1].
In the last two decades, several applications appeared – mostly on LPV basis – that
aim to deal with the effective combination of the linear controller design methods on
nonlinear systems under given restrictions and requirements. Besides, such innova-
tive methods appeared that effectively exploit the iterative and adaptive techniques,
even without the use of the Lyapunov laws or other techniques.
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A good example for the latter is the Robust Fixed Point Transformation (RFPT)
based techniques. The RFPT-based observer design formalizes the control problem
as a fixed point problem. By using adaptive iterative mathematical tools the solution
of the fixed point problem also becomes the desired control action which satisfies
the predefined criteria [2, 3].
An important direction in the combination of linear design methods on a Lyapunov
basis and nonlinear control tasks is the application of the LPV framework [4]. All
state space models can be described as LPV models in which the most crucial prop-
erties are represented by the so-called parameter vector. A LPV model consists of
finite or infinite Linear Time Invariant (LTI) systems. That is, which LTI system’s
properties reflect in the LPV system depends on the varying parameter vector. If the
parameter vector is constant then the LPV system reduces to a LTI system.
Many application possibilities appeared recently which effectively exploited the
benefits of the LPV model descriptions [5, 6]. One of these is the Gain Scheduling
(GS) controller design [7, 8]. In this case the parameter space of the LPV system
is divided into sections and it is possible to design such controllers on the basis of
linear design techniques that can deal with the control of a given sector. In this way
there are plenty different, but similar controllers designed one-by-one for each sec-
tor. The change between the designed sector controllers is taking place accordingly
the variation of the parameter vector. Another direction is the controller design
for polytopic LPV models via Linear Matrix Inequalities (LMI). In this case, the
resulting controller can be designed for a given parameter domain – defined as a
hyperbox in the parameter space – by using LMI techniques. The control tasks can
be formalized as a LMI, which satisfies given prescriptions and true for all vertices
of the defined polytope. Via optimization it is possible to design such a LMI-LPV
controller, which is the convex combination of the designed subcontrollers (one for
each vertex) and, which is able to control the system, if the parameter vector is in-
side the given domain [9, 10]. There are other possibilities as well which aim to
catch all possible occurring LTI systems during the operation, like the frequency
domain based methods [11]. Although, all of them have many benefits, but they
do have drawbacks as well. One main limitation is that these methods use only a
particular region of the parameter space and do not provide a solution for the whole.
In this work we focus on another direction, namely, we aim to provide a controller
design solution that is able to handle the whole parameter space beside the appropri-
ate control action and global stability. The introduced method uses the mathematical
properties of the parameter space of the LPV systems and linear controller design
techniques. Furthermore, it does not require LMIs or other computational costly
methods.
The paper is organized as follows: first we introduce the LPV based design method,
mathematical tools, limitations, applicability and developed control structure. Af-
terwards, the application of the method in case a physiological system is shown.
Finally, we conclude with the results and give a short outline of the future work.
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2 The LPV-based Design Method

2.1 LPV Systems in General

In this section the developed state feedback based complementary LPV controller
and observer designs are detailed. The procedure allows the controller design for
the nonlinear system to be controlled – given by its state-space representation –
through the so-called LPV framework. The method combines modern state feed-
back design, LPV methods and the matrix similarity theorems in order to realize the
complementary LPV controller and observer.

Definition 1. LPV model in state space form
A LPV model can be described in state space representation, and the compact form
of it is:

ẋ(t) = A(p(t))x(t)+B(p(t))u(t)+E(p(t))d(t)
y(t) = C(p(t))x(t)+D(p(t))u(t)+D2(p(t))n(t)

(1a)

S(p(t)) =
(

A(p(t)) B(p(t)) E(p(t)
C(p(t)) D(p(t)) D2(p(t))

)
, (1b)

(
ẋ(t)
y(t)

)
= S(p(t))


x(t)
u(t)
d(t)
n(t)

 , (1c)

where A(p(t)) ∈ Rn×n is the state matrix, B(p(t)) ∈ Rn×m is the control input ma-
trix, E(p(t)) ∈ Rn×h is the disturbance input matrix, C(p(t)) ∈ Rk×n is the output
matrix, D(p(t)) ∈ Rk×m is the control input forward matrix and D2(p(t)) ∈ Rk×h

disturbance input forward matrix. Moreover, u(t) ∈ Rm, d(t) ∈ Rh, n(t) ∈ Rh ,
y(t) ∈ Rk and x(t) ∈ Rn vectors are the control, disturbance and noise inputs, out-
put and state vector, respectively.
S(p(t)) ∈R(n+k)×(n+m+h) is the parameter dependent system matrix, which equivo-
cally determines the LPV system. Further, the p(t) ∈ Ω ∈ Rq is the time dependent
parameter vector.

Evidently, if a LPV system does not contain or model the noise and disturbance then
only A(p(t)), B(p(t)), C(p(t)) and D(p(t)) matrices occur and S(p(t)) consists of
these matrices in appropriate dimensions.

Definition 2. Parameter vector and parameter space
The p(t) ∈Ω ∈ Rq real parameter vector consists of the so-called scheduling vari-
ables pi(t) i = 1,2, . . . ,q, which are selected terms of the original nonlinear model.
The p(t) spans the Rq real parameter space (which is a real Euclidean vector space)
in which the dimension q is equal to the number of the selected scheduling vari-
ables (dimension of the parameter vector). The Ω ∈ Rq is a bounded subspace
(hypercube) of the parameter space that is determined by the interpreted (reason-
able/possible) extremes of the scheduling variables, i.e. p(t): Ω = [p1,min, p1,max]×
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[p2,min, p2,max]× . . .× [pq,min, pq,max] ∈ Rq. The variation of the p(t) must be inside
Ω, if Ω is defined.

Remark 1. qLPV model
If the p(t) does contain not only scalers or functions from the original nonlinear

model but state variables as well it is called quasi-LPV (qLPV) model.

Usually, the LPV system can be generally described only in affine and polytopic
forms [9]. In this study, the general LPV form is used, which means the p(t) is
embedded directly into the system matrices.

Remark 2. Selection of the pi(t) i = 1,2, . . . ,q scheduling variables
The pi(t) scheduling variables should be the nonlinearity inducing terms in the

original nonlinear system. In this way, the p(t) contains each nonlinearity inducing
elements from the system equation, thus the S(p(t)) LPV description is able to
hide the nonlinear terms and handle them as scalars (if p is fixed) or time varying
parameters (if p(t) varies in time). Appropriate selection of pi(t) is a key condition
for controllability and observability of the later defined reference LTI system.

2.2 State Feedback, Controllability and Observability

The applicability of a state feedback based controller depends on the controllability
(stabilizability) and observability (detectability) of the given system. These criteria
– due to Kalman [12] – are determined by the structures of the given system repre-
sentation. More precisely, the eigenvalues of A (modes of the system), the B input
matrix and the C output matrix determine these key properties, if disturbance, noise
and direct coupling between the input and output are not considered [13, 14].
Consider the following dynamical LTI system:

ẋ(t) = Ax(t)+Bu(t)
y(t) = Cx(t) . (2)

The system (2) is controllable, if the Co = [B AB A2B . . . An−1B] controllability
matrix has full row rank, or equivalently, if all modes of A (λ (A) eigenvalues) are
accessible through B, namely v∗A= λ (A)v∗ and v∗B 6= 0 (the latter criteria is the so-
called Popov-Belevitch-Hautus (PBH) test) [14]. In this case, it is possible to design
such K feedback gain through which the A−BK closed-loop poles λ (A−BK) can
be freely assigned on the complex plain and the unstable modes can be stabilized,
i.e. u(t) =−Kx(t) and

ẋ(t) = (A−BK)x(t)
y(t) = Cx(t) . (3)

The system (2) is observable, if the Ob = [C CA CA2 . . . CAn−1]> observability
matrix has full column rank, or equivalently, if all modes of A (λ (A) eigenvalues)
are detectable through C, namely Aw = λ (A)w and Cw 6= 0 [14].
In this case, it is possible to design such G observer gain through which the A−
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GC closed-loop poles λ (A−GC) can be freely assigned on the complex plain and
e(t) := x(t)− x̂(t) observation error e(t)→ 0, t→ ∞.

˙̂x(t) = (A−GC)x̂(t)+Gy(t)+Hu(t) , (4)

where H := B.
Assume that the p(t) parameter vector is fixed (does not vary in time) and named
as pre f reference parameter vector. In this case, the S(p(t)) general LPV system
simplifies to a Sre f := S(pre f ) reference LTI system. Controllability and observ-
ability of the reference LTI system is a key property according to the preliminary
assumptions.

Remark 3. Before we go further two limitations should be noted regarding this
study:

• Only fully controllable and observable Sre f reference LTI systems are inves-
tigated – investigation of only stabilizable and detectable systems will be the
part of the future work;

• Parameter dependency can occur only in the A(p(t)) system matrix – thus,
other matrices cannot contain parameter dependent terms.

The latter restriction can be easily relaxed. If an input (output) contains nonlinearity
causing element this input (output) should be handled as new ”state variable” and
with the extension of A and reduction of B (C) the term can be linked to a state
(e.g. input case: ẋ1(t) = x1(t)u1(t) → ẋ1(t) = x1(t)x2(t) and ẋ2(t) = u(t); output
case: y(t) = x1(t)x2(t)→ x3(t) = x1(t)x2(t) and y(t) = x3(t)). The price is the extra
dynamics, which has to be handled.
The controllability depends on the (A(pre f ),B) complex. Assume that the refer-
ence controllability matrix Core f = [B A(pre f )B A(pre f )

2B . . . A(pre f )
n−1B]. If

rank(Core f ) = n then the (A(pre f ),B) (thus, the reference LTI system) is control-
lable.
The observability depends on the (A(pre f ),C) complex. Assume that the refer-
ence observability matrix Obre f := [C CA(pre f ) CA(pre f )

2 . . . CA(pre f )
n−1]>.

If rank(Obre f ) = n then the (A(pre f ),B) (thus, the reference LTI system) is observ-
able.

Remark 4. It is important to realize that S(p(t)) LPV system cannot be controlled
and/or observed at every p(t) (everywhere in the parameter domain). This can occur
when p(t) or given elements of it become equal to zero. In this case, the rank
of Co and/or Ob can be lower than n. Moreover, p(t) or pi(t) can cause linear
dependencies in Co and/or Ob which reduces the rank of the matrices as well and
reduces the controllability and/or observability.

Appropriate selection of pi(t) scheduling variables and the pre f is critical and de-
termines the controllability and observability properties of Sre f . On the one hand,
only those states can be embedded into the p(t) which can be measured or esti-
mated – since the p(t) is directly used in the complementary controller and observer
structures. On the other hand, the ”positions” of the pi(t) scheduling variables in
A(p(t)) are also crucial as we see later and determines which states can be linked to
the scheduling variables.
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2.3 Matrix similarity theorems and dyadic structures

The core of the developed complementary LPV controller and observer structures
are based on the special properties of the similarity theorems. Further, dyadic struc-
tures are useful for the generalization of the methods as well. The following defini-
tions, theorems and proofs can be found in [15, 16, 17, 18].

Definition 3. Similarity of matrices:
A quadratic, n×n matrix Q is similar to a matrix W, if exists an invertible R matrix

that is Q = R−1WR. Notation: Q∼W.

Theorem 1. Similarity invariance of the determinants of matrices: If Q∼W, then
|Q|= |W|.

Proof. Let Q∼W, namely, Q=R−1WR. Then |Q|= |R−1WR|= |R−1||W||R|=
|W|, since |R||R−1|= 1. [15, 17]. �

Theorem 2. If Q∼W, then the characteristic polynomials of the matrices and thus,
the eigenvalues and the geometric and algebraic multiplicities of the eigenvalues of
the matrices are the same (i.e. λ (Q) = λ (W))

Proof. Let Q∼W, namely, Q = R−1WR. Then Q−λ I = R−1WR−λR−1IR =
R−1(WR−λ IR) =R−1(W−λ I)R, namely, Q−λ I∼W−λ I, where I is the unity
matrix in appropriate dimension [15, 16]. �

Definition 4. Dyadic product (or shortly dyad):
The product of qn×1 and w>1×m vectors results a qn×1 w>1×m := Xn×m matrix [18].

Definition 5. Sum of dyadic series:
The sum of a dyadic series can be described with a product two matrices and the

opposite is also true.q1

[ w>1
]
+

...+

qk

[ w>k
]
=

k

∑
i=1

qiw>i = QW>

QW> =

 q1 q2 . . . qk




w>1
w>2

...
w>k


(5)

Definition 6. Minimal dyadic decomposition:
If we realize a matrix as the sum of the minimum of dyads as possible [18].

Definition 7. Rank of a matrix
The rank of a matrix is equal to the number of dyads which are represented in the

minimal dyadic decomposition [18].

On one hand, these mathematical tools can be used to define eigenvalues equality
rules for state feedback systems. Further, the useful properties of dyadic represen-
tation – especially the rank criteria – can be used for generalization purposes for the
developed method.
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2.4 Design of Complementary LPV Controller

Assume that a state feedback controller for the reference Sre f can be designed which
requires the satisfaction of the controllability criteria detailed above. In this case, the
control law can be described as u(t) =−Kre f x(t). As we see in (3) the closed-loop
system matrix becomes Are f −BKre f whose eigenvalues λ (Are f −BKre f ) define
the dynamics of the reference system. In that case, if we want to use the state
feedback control concerning a given LPV system the parameter dependency has to
be represented in the state feedback controller as well. Thus, only A(p(t)) can be
parameter dependent – as it was declared above – a given LPV system under control
can be described as:

ẋ(t) =
(
A(p(t))−BK(t)

)
x(t)

y(t) = Cx(t) . (6)

Definition 8. Complementary p(t) dependent feedback gain
A LPV feedback gain K(t) consists of a Kre f reference and K(t) varying feedback

gain as follows: K(t) := Kre f +K(p(t)). Therefore, from (6)
(
A(p(t))−BK(t)

)
=(

A(p(t))−B(Kre f +K(p(t)))
)
.

Assume that Are f −BKre f ∼ A(p(t))−B(Kre f +K(p(t))) ∀p(t). The eigenvalues
(poles) of the closed-loop reference LTI system are λre f := λ (Are f −BKre f ) and
the eigenvalues (poles) of the closed-loop LPV system are λ (p(t)) := λ (A(p(t))−
B(Kre f +K(p(t)))).
Theorem 2 consequences that λre f = λ (p(t)) ∀p(t) t ≥ 0 due to the similarity. From
control perspective, this means that the controlled reference LTI system and the con-
trolled LPV system will have the same eigenvalues (poles) everywhere in the param-
eter domain – which entails that they will have the same dynamics and behavior.
When the similarity transformation matrix is the I unity matrix in appropriate di-
mension, then similarity described above occurs as Are f −BKre f = I−1

(
A(p(t))−

B(Kre f +K(p(t)))
)
I. This equality provides not just the similar dynamical behav-

ior, but also the possibility to compute the parameter dependent K(p(t)) on the Ω

parameter domain at every p(t) t ≥ 0.

Are f −BKre f = I−1
(
A(p(t))−B(Kre f +K(p(t)))

)
I =

= A(p(t))−B(Kre f +K(p(t)))
K(p(t)) =−B−1(Are f −BKre f −A(p(t))+BKre f ) =−B−1(Are f −A(p(t)))

.

(7)

Hence, the control law becomes:

u(t) =−(Kre f +B−1(Are f −A(p(t))))x(t) . (8)

Therefore, the (6) should be modified accordingly to (7) which leads back to (3) as
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we can see below due to the equality criteria.

ẋ(t) =
(
A(p(t))−B(Kre f +K(p(t))

)
x(t) =

=
(
A(p(t))−B(Kre f −B−1(Are f −A(p(t)))

)
x(t) =

=
(
A(p(t))−BKre f +BB−1Are f −BB−1A(p(t)))

)
x(t) =

=
(
A(p(t))−BKre f +Are f −A(p(t))

)
x(t) =

=
(
Are f −BKre f

)
x(t)

y(t) = Cx(t)

. (9)

2.5 Design of Complementary LPV Observer

Assume that a state observer for the reference Sre f can be designed which re-
quires the satisfaction of the observability criteria detailed above. According to (4)
the closed-loop system matrix becomes Are f −Gre f C. The eigenvalues λ (Are f −
Gre f C) define the dynamics of the reference observer. Similar to the control per-
spective, if we want to use the state observer regarding a given LPV system the
parameter dependency has to be represented in the state observer as well. As pre-
viously, it is considered that only A(p(t)) can be parameter dependent and a given
observed LPV system can be described as:

˙̂x(t) =
(
A(p(t))−G(t)C

)
x̂(t)+G(t)y(t)+Hu(t) . (10)

Definition 9. Complementary p(t) dependent observer gain
A LPV observer gain G(t) consists of a Gre f reference and G(p(t)) varying ob-

server gain as follows: G(t) := Gre f +G(p(t)). Therefore, from (10)
(
A(p(t))−

G(t)C
)
=
(
A(p(t))− (Gre f +G(p(t))C

)
.

Assume that Are f −Gre f C∼A(p(t))− (Gre f +G(p(t)))C ∀p(t). The eigenvalues
(poles) of the closed-loop reference LTI system are λre f := λ (Are f −Gre f C) and
the eigenvalues (poles) of the closed-loop LPV system are λ (p(t)) := λ (A(p(t))−
(Gre f +G(p(t)))C).
According to Theorem 2 the consequence of the similarity the λre f = λ (p(t)) ∀p(t)
t ≥ 0. From control perspective point of view that means the reference LTI and the
LPV observers will have the same eigenvalues (poles) everywhere in the parameter
domain – which entails the they will have the same dynamics and behavior.
The similarity above requires that the transformation matrix be the I unity ma-
trix in appropriate dimension. That is, Are f −Gre f C = I−1

(
A(p(t))− (Gre f +

G(p(t)))C
)
I, thus G(p(t)) can be calculated on the Ω parameter domain at every

p(t).

Are f −Gre f C = I−1
(
A(p(t))− (Gre f +G(p(t)))C

)
I =

= A(p(t))− (Gre f +G(p(t)))C
G(p(t)) =−(Are f −Gre f C−A(p(t))+Gre f C)C−1 =−(Are f −A(p(t)))C−1

.

(11)
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Therefore, the (10) should be modified accordingly to (11) which leads back to (4):

˙̂x(t) =
(
A(p(t))−G(p(t))C

)
x̂(t)+G(p(t))y(t)+Hu(t) =

=
(
A(p(t))− (Gre f +G(t))C

)
x̂(t)+(Gre f +G(t))y(t)+Hu(t) =

=
(
A(p(t))− (Gre f − (Are f −A(p(t)))C−1)C

)
x̂(t)+

+(Gre f − (Are f −A(p(t)))C−1)y(t)+Hu(t) =
=
(
A(p(t))−Gre f C+Are f C−1C−A(p(t))C−1C

)
x̂(t)+

+(Gre f − (Are f −A(p(t)))C−1)y(t)+Hu(t) =
=
(
Are f −Gre f C

)
x̂(t)+(Gre f − (Are f −A(p(t)))C−1)y(t)+Hu(t)

.

(12)

2.6 Consequences and limitations

As it was declared above, the pi(t) scheduling parameters has to be measured or
estimated since these are directly used for tuning the developed controller and ob-
server structures. The main limitations are the invertibility of B and C matrices –
which are key properties regarding the applicability. Thus, if B and C are fully in-
vertable, then (9) and (12) can be applied and complementary LPV controller and
observer design is possible.
However, there are generalization possibilities based on Definition 4 - 7 which can
be utilized in order to make the developed solutions more flexible.

2.6.1 Controller Side

1. Appropriate selection of pi(t) scheduling parameters.
It is possible to calculate the K(p(t)) matrix in element by element way without
inversion of B. The key components are the selection and linking of pi(t).

Remark 5. The expression ”linking” should be explained at this point. If we select
a nonlinearity inducing term from a given equation, we can ”link” it to a given state
variable in a natural or forced way depending on the structure of the equation and the
requirements detailed below. For example, assume the following simple equations:

ẋ1(t) = k1x1(t)x2(t)+ k2
√

x2(t)+ k3x2(t)
ẋ2(t) =−k2

√
x2(t)− k3x2(t)+u1(t)

. (13)

In (13) two nonlinearity inducing elements can be found, x1(t)x2(t) and
√

x2(t).
Natural linking: we can select p1(t) = k1x2(t), which means we link p1(t) to x1(t)
in this equation as ẋ1(t) = p1(t)x1(t)+k2

√
x2(t)+k3x2(t). This linking is a natural

choice and come from the structure of the equation.
Forced linking: we have to select p2(t) = k2

√
x2(t) and link to a state. It is pos-

sible by using simple manipulations, eg. multiplication by 1 =
x1(t)
x1(t)

. Therefore,

k2
√

x2(t)
x1(t)
x1(t)

occurs and p2(t) = k2

√
x2(t)

x1(t)
will be the selected scheduling vari-

able. Thus, p2(t) can be linked in a forced way to x1(t) as ẋ1(t) = p1(t)x1(t) +
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p2(t)x1(t) + k3x2(t). Strong limitation is that x1(t) 6= 0 ∀t ≥ 0 in order to avoid
singularity. With forced linking we can arbitrarily bound given terms as scheduling
variables to selected states beside the mentioned limitation.
It has to be mentioned that in case of the forced linking, we have to be sure that de-
nominator of the newly realized scheduling variable – the state to which the schedul-
ing variable is linked – not only cannot be zero during operation. However, it also
has to be measurable, since we use it as an external ”input”. The other solution is to
estimate this state via nonlinear state estimators (such as the Kalman filter [12]).

From the control input side, the structure of B determines the selection and linking
of pi(t). From (7) it is clear that Are f −A(p(t)) difference matrix does only contain
elements in its structure where scheduling variables can be found – since the other
elements of the matrices are the same and by the Are f −A(p(t)) subtraction become
zero. However, in those entries which contain scheduling variables pi, j,re f − pi, j(t)
difference occur.
The structure of B will be also important. Suppose that every column and row of
B does contain at most one non zero element regardless the position (entry) of the
element in the structure of B. That means that every state could have at most one
different control input – which is reasonable in most of the physical and physiolog-
ical systems. For example, in case of a system with three states which have three

inputs, B can only contain one elements in each row, e.g..: B =

 0 b2 0
b1 0 0
0 0 b3

.

Assume that the structure of Are f −A(p(t)) is such that it contains pi, j,re f − pi, j(t)
elements in only those rows where the rows of B does have non zero bi, j elements
and the previous statement for B is true (columns and rows regardless the position
does contain only one element). In this case, the elements of K(t), namely ki, j(t)
can be calculated in an inverse way from the corresponding pi, j,re f − pi, j(t) and bi, j.

Thus, we know that pi, j,re f − pi, j(t) = bi, jki, j(t)→ ki, j(t) =
pi, j,re f − pi, j(t)

bi, j
.

The last missing piece in this regard is to establish the equality of Are f −A(p(t)) =
BK(t), which is true when rank(Are f −A(p(t))) = rank(BK(t)). This rank criteria
can be covered by the Definitions 4 - 7.

Assume that BK(t) can be decomposed to a dyad as BK(t) =
g

∑
i=1

bik(p(t))>i and

g

∑
i=1

bik(p(t))>i is a minimal dyadic decomposition of BK(t). In this case, rank(BK(t))=

g. Having regard to this fact we have to select the scheduling variables in such
a way that rank(Are f −A(p(t))) = g as well. It is only possible, if the structure
of Are f −A(p(t)) does contain g linearly independent columns (or rows). Then,

the rank criteria automatically satisfies and Are f −A(p(t)) =
g

∑
i=1

bik(p(t))>i which

means that Are f −A(p(t)) can be described as the sum of g piece of dyadic prod-
ucts.
However, the number of restrictions seems high, but in practice most of them is au-
tomatically satisfied and with forced linking we can link the scheduling variables to
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a given state arbitrarily.
For example, in case of a system with three states, two control inputs and two
scheduling variables:

B =

b1 0
0 b2
0 0

 , Are f −A(p(t)) =

p1,re f − p1(t) 0 0
0 p2,re f − p2(t) 0
0 0 0



Are f −A(p(t)) =
2

∑
i=1

bik(p(t))>i =

p1,re f − p1(t) 0 0
0 p2,re f − p2(t) 0
0 0 0

=

=

b1
0
0

[ p1,re f − p1(t)
b1

0 0

]
+

 0
b2
0

[0
p2,re f − p2(t)

b2
0

]

K(t) =


p1,re f − p1(t)

b1
0 0

0
p2,re f − p2(t)

b2
0


rank(Are f −A(p(t))) = 2

(14)

2. Control input virtualization.
There are special opportunities to ”virtually” increase the number of control input
signals, if there is only one control input. Thus, the structure of B can be extended
with additional columns with appropriate entries. From the control input side, it
means that all state equations can be completed additionally with uvirt,i(t) ”virtual”
inputs via the duplication of the real control input. In this case, the uvirt,i(t) virtual
input signals have to be equal to the real control input, namely uvirt,i(t) = ureal(t)
regardless of how many uvirt,i(t) virtual inputs are considered. The main restric-
tion will be that all of the rows of the realized K(t) have to be equal, which is the
only way to reach the equality of uvirt,i(t) = ureal(t). The usage of this technique
requires the assumptions from the previous section regarding the structure of B and
Are f −A(p(t)).
The input virtualization technique will be introduced via a practical example. As-
sume a three state system – with x1(t), x2(t) and x3(t) states – which contains a
control input signal in its third state equation and a selected scheduling variable can
be found only in the third equation linked to the first state as follows:

ẋ1(t) =−a1x1(t)+a2x2(t)
ẋ2(t) =−a2x2(t)+a3x3(t)
ẋ3(t) =−x1(t)

√
x3(t)−a3x3(t)+b1ureal(t)

, (15)

where p1(t) = −
√

x3(t) is selected as scheduling variable. In (15) B =

 0
0
b1

 and
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Are f −A(p(t)) =

 0 0 0
0 0 0

p1(t) 0 0

. Introduce two new virtual inputs into the previ-

ous equation:

ẋ1(t) =−a1x1(t)+a2x2(t)+ c1uvirt,1(t)− c1uvirt,1(t)
ẋ2(t) =−a2x2(t)+a3x3(t)+ c2uvirt,2(t)− c2uvirt,2(t)
ẋ3(t) = p1(t)x1(t)−a3x3(t)+b1ureal(t)

, (16)

In this case, an extended input matrix can be introduced: Bex =

c1b1 −c1b1 0
c2b1 0 −c2b1
b1 0 0

,

where c1 := 1[ẋ1(t)/ẋ3(t)] and c2 := 1[ẋ2(t)/ẋ3(t)] converter scalers take care of the
appropriate units and uvirt,1(t) = uvirt,2(t) = ureal(t). Since the concrete values of c1
and c2 are equal to 1, they will not be indicated in the followings.The extended Bex

is invertible, namely B−1
ex =

 0 0 b1
−b1 0 b1

0 −b1 b1

. In this case, K(t) can be calculated

by using (7) such as:

K(t) =−B−1(Are f −A(p(t))) =

=−

 0 0 b1
−b1 0 b1

0 −b1 b1

 0 0 0
0 0 0

p1,re f − p1(t) 0 0

=

=−

b1(p1,re f − p1(t)) 0 0
b1(p1,re f − p1(t)) 0 0
b1(p1,re f − p1(t)) 0 0


. (17)

The mentioned key component is that uvirt,i(t) = ureal(t) and the configuration of
(15) will provide this restriction.
In general, the states feedback design does not modify in case of the reference LTI
system, namely, the state feedback designing process have to be done by using the
original B =

[
0 0 b1

]>. The Kre f feedback gain will be a row matrix as Kre f =[
k1,re f k2,re f k3,re f

]
. In this given case to reach uvirt,i(t) = ureal(t), we have to

duplicate the rows of Kre f and realize an extended feedback gain matrix, such as

Kre f ,ex =

k1,re f k2,re f k3,re f
k1,re f k2,re f k3,re f
k1,re f k2,re f k3,re f

. By using the extended Bex in the control law

description the virtual inputs will drop out from the given state equations and will
be represented as an addition of zero in these (e.g. +0 :=+uvirt −uvirt ), which is a

– 196 –



Acta Polytechnica Hungarica Vol. 14, No. 6, 2017

realizable configuration by state feedback.

ẋ(t) = A(p(t))x(t)+Bexuex(t) =

=

−a1 a2 0
0 −a2 a3

p1(t) 0 −a3

x1(t)
x2(t)
x3(t)

+
b1 −b1 0

b1 0 −b1
b1 0 0

uvirt,1(t)
uvirt,2(t)
ureal(t)

=

= (A(p(t))−Bex(Kre f +K(t)))x(t) =

=

 −a1 a2 0
0 −a2 a3

p1(t) 0 −a3

−
b1 −b1 0

b1 0 −b1
b1 0 0


k1,re f k2,re f k3,re f

k1,re f k2,re f k3,re f
k1,re f k2,re f k3,re f

−
b1(p1,re f − p1(t)) 0 0

b1(p1,re f − p1(t)) 0 0
b1(p1,re f − p1(t)) 0 0

 x1(t)
x2(t)
x3(t)

=

=

 −a1 a2 0
0 −a2 a3

p1(t)−b1(k1,re f −b1(p1,re f − p1(t))) 0−b1k2,re f −a3−b1k3,re f

x1(t)
x2(t)
x3(t)


(18)

From (18) it is clear that the input virtualization does not modify the first and second
state equation via the state feedback, however, directly affects the third equation in
which the control input occurs. At the same time, this construction provides the
restriction from above in general (eigenvalue equality, rank criteria, etc.).
Naturally, other constructions can be imagined, but each case requires unique con-
struction of Bex and careful selection of pi(t). Regarding the given case, the same
result occurs if all of the states have linked scheduling parameters in the third state
equation (beside keeping in mind the limitations of selection of them). Namely,

A(p(t)) =

 · · ·
· · ·

p1(t)+AD p2(t)+AD p3(t)+AD

, where AD means those ad-

ditional coefficients of the states which are not embedded into a scheduling variable.
Moreover, the difference matrix becomes

Are f −A(p(t)) =

 · · ·
· · ·

p1,re f − p1(t) p2,re f − p2(t) p3,re f − p3(t)

 . (19)

It can be observed that the Are f −A(p(t)) difference matrix contains elements only
in the third row which corresponds to that row in B which contains the real input
coefficient.

Remark 6. It has to be noticed that the mentioned techniques which help to get
around the invertibility issue of B strongly coupled to the complementary observer
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design. The structure of C is similarly important and determines the usage of same
techniques regarding the observer design.

In multi input case the input virtualization technique may not be applicable. It
depends on the structure of B and C matrices – however, further generalization
from this point of view is ongoing.

2.6.2 Observer Side

From (11) it is clear that the key point is the invertibility of C. This is only possible
if all of the states are represented in the output, so directly measurable or calculable.
Otherwise, if C is not invertible, we have to face the same problem as in case of the
invertiblity of B. Although the same solution – appropriate selection of pi(t) from
the output point of view – can be used for element by element calculation of G(t)
observer gain. Virtualization of the output is meaningless from the output point of
view.
The structure of C determines the selection and linking of pi(t). Equation (11)
shows that Are f −A(p(t)) difference matrix does only contain elements in those
entries where scheduling variables can be found which are equal to pi, j,re f − pi, j(t)
difference.
The other component to be investigated is the structure of C. Assume that every
rows and columns of C contain at most one non zero element regardless the posi-
tion (entry) of the element in the structure of C. From system point of view this
assumption is reasonable, since in most of the physical or physiological systems
each output connects to one state. For example, in case of a system with three
states which have two outputs connected to x1(t) and x2(t) states, C can only be

C =

[
c1 0 0
0 c2 0

]
. Assume that the structure of Are f −A(p(t)) such that it contains

pi, j,re f − pi, j(t) elements in only those columns where the columns of C does have
non zero ci, j elements and the previous statement for C is true (columns and rows
regardless the position does contain only one element). In this case, the elements
of G(t), namely gi, j(t) can be calculated in the same inverse way as K(t) from
the corresponding pi, j,re f − pi, j(t) and ci, j. Thus, we know that pi, j,re f − pi, j(t) =

gi, j(t)ci, j→ gi, j(t) =
pi, j,re f − pi, j(t)

ci, j
.

The equality Are f −A(p(t)) =G(t)C holds if rank(Are f −A(p(t))) = rank(G(t)C).
Again, by using the consequences of Definitions 4 - 7 this rank criteria can be
proven.

Assume that G(t)C can be decomposed to a dyad as G(t)C =
f

∑
i=1

g(p(t))ic>i and

f

∑
i=1

g(p(t))ic>i is a minimal dyadic decomposition of G(t)C. In this case rank(G(t)C)=

f . Due to this fact, we have to select the scheduling variables in such a way that
rank(Are f −A(p(t))) = f as well. It is only possible if the structure of Are f −
A(p(t)) does contain f linearly independent columns (or rows). Then the rank cri-
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teria is automatically satisfied and Are f −A(p(t)) =
f

∑
i=1

g(p(t))ic>i which means that

Are f −A(p(t)) can be described as the sum of f piece of dyadic products.
Similar to the previous case by forced linking of the scheduling variables and sim-
ple mathematical manipulations it can be achieved that the described conditions are
automatically satisfied in practice.
For example, in case of a system with three states, two outputs and two scheduling
variables:

C =

[
c1 0 0
0 c2 0

]
, Are f −A(p(t)) =

p1,re f − p1(t) 0 0
0 p2,re f − p2(t) 0
0 0 0



Are f −A(p(t)) =
2

∑
i=1

g(p(t))ic>i =

p1,re f − p1(t) 0 0
0 p2,re f − p2(t) 0
0 0 0

=

=


p1,re f − p1(t)

c1
0
0

[c1 0 0
]
+


0

p2,re f − p2(t)
c2
0

[0 c2 0
]

G(t) =


p1,re f − p1(t)

c1
0

0
p2,re f − p2(t)

c2
0 0


rank(Are f −A(p(t))) = 2

(20)

2.6.3 Connection between the Controller and Observer side

If the B and C is ivertible then the calculated K(t) and G(t) practically separated
from each other.
By using the mentioned element-by-element calculation, the connection between
the K(t) and G(t), furthermore between B and C is straightforward. The structure
of Are f −A(p(t)) have to satisfy the requirements defined by the structures of B and
C. Namely, non zero elements can be in only those rows of Are f −A(p(t)) where
the corresponding rows of B have non zero elements. Moreover, non zero elements
can be in only those columns of Are f −A(p(t)) where the corresponding columns of
C have non zero elements. Furthermore, the measurability of p(t) parameter vector
has to be kept in mind all the time. If p(t) cannot be measured directly, estimation
of it is needed, for example via Kalman filtering.
From realization point of view this means that the complementary controller and
observer design have to be investigated in a strong conjunction and forced linking
should be applied in order to reach the appropriate structure for Are f −A(p(t)) to
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find the trade-off between the control and observer requirements come from the B
and C.
To provide a full picture, the following practical example demonstrates this balanc-
ing between the requirements. Assume a given four state system with two inputs
(connected to x3(t) and x4(t)) and two outputs (connected to x1(t) and x3(t)). First,
we have to investigate where the pi,re f − pi(t) differences can occur in the Are f −
A(p(t)) embedded in the system matrix to test the applicability of the method. In
this case, the investigation will be extended to the controller and observer parts as

well from B and C point of view. Be C =

[
c1 0 0 0
0 0 c2 0

]
and B =


0 0
0 0
b1 0
0 b2

.

Denote the entries of Are f −A(p(t)) with ∆ai, j(t). According to the prescriptions
regarding B and C non zero ∆pi(t) elements in Are f −A(p(t)) can be occurred only
in ∆a3,1(t),∆a3,3(t),∆a4,1(t) and ∆a4,3(t). At this given case for calculate K(t) and
G(t) the following equations can be written:

Are f −A(p(t)) = BK(t)→


∆a3,1(t)

b1
0

∆a3,3(t)
b2

0

∆a4,1(t)
b1

0
∆a4,3(t)

b2
0




0 0
0 0
b1 0
0 b2




0 0 0 0
0 0 0 0

∆a3,1(t) 0 ∆a3,3(t) 0
∆a4,1(t) 0 ∆a4,3(t) 0



Are f −A(p(t)) = G(t)C→

[
c1 0 0 0
0 0 c2 0

]


0 0
0 0

∆a3,1(t)
c1

∆a3,3(t)
c2

∆a4,1(t)
c1

∆a4,3(t)
c2




0 0 0 0
0 0 0 0

∆a3,1(t) 0 ∆a3,3(t) 0
∆a4,1(t) 0 ∆a4,3(t) 0


(21)

where the complementary feedback and observer gains can be calculated as

K(t) =


∆a3,1(t)

b1
0

∆a3,3(t)
b2

0

∆a4,1(t)
b1

0
∆a4,3(t)

b2
0

 , G(t) =


0 0
0 0

∆a3,1(t)
c1

∆a3,3(t)
c2

∆a4,1(t)
c1

∆a4,3(t)
c2

 . (22)
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If the aforementioned restrictions and requirements are held for the calculation of
the gains, then the connection between them is obvious from (20) and (21):

Are f −A(p(t)) = BK(t) = G(t)C

rank(Are f −A(p(t)) = rank(BK(t)) = rank(G(t)C)
. (23)

The suggested element-by-element calculation cannot be used all the time – it de-
pends on the given system to be controlled and usability requires deep investigation
of the possible LPV structures of the system.

2.7 Feed Forward Compensator

Due to the basic properties of classical state feedback control an additional feed
forward compensator has to be embedded in the control loop. Without it the state
feedback controller enforces the states (and though the outputs) to reach zero values
over time during operation. In order to reach the desired steady state values of

the output this N(p(t)) =
(

Nx(p(t))
Nu(p(t))

)
feed forward compensator should be p(t)-

dependent as well [13, 19, 20].
The p(t) dependent compensator matrices can be calculated as follows [13, 4]:[

A(p(t)) B
In 0n×m

][
Nx(p(t))
Nu(p(t))

]
=

[
0n×m

Im

]
[

Nx(p(t))
Nu(p(t))

]
=

[
A(p(t)) B

In 0n×m

]−1 [0n×m
Im

] , (24)

where In is the feedback ”selector” matrix (here is a unity matrix), 0n×m is zero ma-
trix and Im is unity matrix.
The compensator does modify the state vector by substracting the desired steady-
state from the actual state of the system, the steady-state is calculated as Nx(p(t))r(t),
where r(t) is the reference signal in the time instant t, and it modifies the control
input by adding the steady-state control input calculated as Nu(p(t))r(t). Therefore,
the controller is governed by the equations:

˙̂x(t) = Fx̂(t)+(Gre f +(Are f −A(p(t)))C−1)y(t)+Hu(t)
u(t) = (Kre f +B−1(Are f −A(p(t))))(x̂(t)−Nx(p(t))r(t))+Nu(p(t))r(t)

. (25)

2.8 Particular steps to realize complementary LPV controller
and observer in practice

Here we have collected the main steps of the realization of the complementary LPV
controller and observer structure.

• Realization of the appropriate S(p(t)) LPV model form from the original non-
linear model,
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• Selection of the S(pre f ) reference LTI system (which is an underlying LTI
system as well),

• Design of the Kre f reference state feedback controller with an arbitrary method,
which is appropriate to handle the S(pre f ) reference LTI system,

• Design of the Gre f reference observer gain with an arbitrary method which is
appropriate to observes the S(pre f ) reference LTI system,

• Realization of the complementary LPV controller and observer structure based
on Fig. 1.

Nr(p(t))

Nu(p(t))

Controller 
based on (9)

Converter 
x(t)  p(t)

Nonlinear system
(t,x,u)

Observer 
based on (12)

p(t)

x(t)

x(t)

r(t) y(t)

p(t)

p(t)

p(t)

p(t)

u(t)

u(t)

y(t)

Figure 1
General feedback control loop with completed controller and observer.

3 Control of Innate Immune Response

In this section a spectacular physiological control example will be demonstrated by
using the aforementioned methods.
Control of the response of innate immune system for given loads is crucial in many
cases these days, especially when the patient’s quality of life depend on it. Organ
transplantation as final solution in case of organ disorders and malfunctions requires
strict immunosuppression in order to prevent the rejection of the transplanted organ
[21]. Furthermore, in case of many autoimmune diseases the effective immuno-
suppression is the only way to avoid the self-destruction of the human body by
automated mechanisms [22]. On the other hand, suppression of internal defense
system could lead ot unwanted states, e.g. activates of carried, but inactive viruses
or bacteria and less effective immune protection against cancer [23, 24]. For exam-
ple, the resting cytomegalovirus infection – which does not cause problems for a
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healthy human – may causes serious problems for people with transplanted kidney
or liver. The virus, even if it comes together with a donor organ or belongs to the
recipient may lead to massive inflammation and critical state of different organs, if
the immune suppression is strong [21].
Therefore, the accurate description of the immune response by mathematical models
which can be basis for control design is very useful in these cases. In the following,
we show a general model which can be adopted for various instances in order to
describe the dynamics of infections and the response of the immune system for that.

3.1 Applied Model

The mathematical description of the used general theoretical model appeared in
[25]. This model has beneficial properties, because it is able to describe the dynam-
ics of several different diseases and its structure can be dynamically transformed in
order adapt to the particular disease to be modeled and/or controlled.
x1(t) is the concentration of a pathogen, however, this can be measured by the con-
centration of associated antigen, x2(t) is the concentration of plasma the cells carry-
ing and producing the antibodies, x3(t) is the concentration of antibodies which kill
the pathogen and x4(t) is the relative characteristics of the damaged organ (where
x4 = 0 and x4 = 1 mean the ”healthy” and ”dead” conditions, respectively). In gen-
eral, the values of the states cannot be lower than zero (xi(t) ≥ 0, i = [1,2,3,4],
∀t ≥ 0).
An important property of the model has to be highlighted, namely, the xi(t) states
are concentrations, however, the concrete units are not given due to the model is
general in the given form and can be adopted to a wide range of cases. The same
is true for the time span as well, namely, it can be arbitrarily determined to make
the applicability of the model more flexible. Because of these facts, in this study the
concrete type of concentration and time span are handled as ”general units”, without
specification – similarly as [25].
The model consists of the following ordinary and delayed differential equations:

ẋ1(t) = (a11−a12x3(t))x1(t)+b1u1(t), (26a)

ẋ2(t) = a21(x4(t))a22x1(t− τ)x3(t− τ)−a23(x2(t)− x∗2)+b2u2(t), (26b)

ẋ3(t) = a31x2(t)− (a32 +a33x1(t))x3(t)+b3u3(t), (26c)

ẋ4(t) = a41x1(t)−a42x4(t)+b4u4(t), (26d)

where a11 = 1, a12 = 1, a22 = 3, a23 = 1, a31 = 1, a32 = 1.5, a33 = 0.5, a41 = 1,
a42 = 1, b1 =−1, b2 = 1, b3 = 1 and b4 =−1 are constant parameters of the model.
In this study, the applied values of the parameters were the same as in [25]. The
model does contain a saturation as follows:

a21(x4(t)) =

{
cosπx4(t), 0≤ x4(t)≤ 0.5
0, otherwise

. (27)
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In this case – similarly to [25] – the τ constant time delays are not taken into con-
sideration in states x1(t) and x3(t).
In order to highlight what are the critical parts which shall be handled as scheduling
variables (25) can be described in extended and completed form.

ẋ1(t) = (a11−a12x3(t))x1(t)+b1u1(t) = p1(t)x1(t)+b1u1(t), (28a)

ẋ2(t) = a21(x4(t))a22x1(t)x3(t)−a23(x2(t)− x∗2)+b2u2(t) =
a21(x4(t))a22x1(t)x3(t)−a23x2(t)+a23x∗21+b2u2(t) =

a21(x4(t))a22x3(t)x1(t)−a23x2(t)+
a23x∗2
x3(t)

x3(t)+b2u2(t) =

p2(t)x1(t)−a23x2(t)+ p3(t)x3(t)+b2u2(t)

(28b)

ẋ3(t) = a31x2(t)−a32x3(t)−a33x3(t)x1(t)+b3u3(t) =
a31x2(t)−a32x3(t)+ p4(t)x1(t)+b3u3(t),

(28c)

ẋ4(t) = a41x1(t)−a42x4(t)+b4u4(t), (28d)

where p1(t) = a11−a12x3(t), p2(t) = a21(x4(t))a22x3(t), p3(t) =
a23x∗2
x3(t)

and p4(t) =

−a33x3(t) are the selected scheduling variables, respectively. Hence, the parameter
vector becomes p(t)= [p1(t), p2(t), p3(t), p4(t)]>. Therefore, a 4D parameter space
occurs.

The outputs of such a theoretical system is not predefined, but also depend on the
given application. In this study, the followings are considered: x1(t), x3(t) and x4(t)
are selected as outputs, namely these are measurable. The concentration of possible
pathogens are usually higher than the concentration of associated antigens [26, 21]
– this is taken into account with a scaler c1 at the output side of x1(t) – therefore,
c1x1(t) term is handled as measurable outputs. In this way, the outputs of the system
are y1(t) = c1x1(t), y2(t) = c2x3(t) and y3(t) = c3x4(t) where c1 = 1.5, c2 = 1 and
c3 = 1, respectively. Now, the system matrices of the LPV system arises as follows:

A(p(t)) =


p1(t) 0 0 0
p2(t) −a23 p3(t) 0
p4(t) a31 −a32 0
a41 0 0 −a42

 B =


b1 0 0 0
0 b2 0 0
0 0 b3 0
0 0 0 b4



C =

c1 0 0 0
0 0 c2 0
0 0 0 c3

 D =

0 0 0 0
0 0 0 0
0 0 0 0


. (29)
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The LPV system can be written in compact form:(
ẋ(t)
y(t)

)
= S(p(t))

(
x(t)
u(t)

)
=

[
A(p)(t) B

C D

](
x(t)
u(t)

)
=

=



p1(t) 0 0 0 b1 0 0 0
p2(t) −a23 p3(t) 0 0 b2 0 0
p4(t) a31 −a32 0 0 0 b3 0
a41 0 0 −a42 0 0 0 b4
c1 0 0 0 0 0 0 0
0 0 c2 0 0 0 0 0
0 0 0 c3 0 0 0 0


(

x(t)
u(t)

) . (30)

3.2 Design of the Complementary LPV Controller

The first step is to determine the reference LTI model. Assume that a set of favorable
states is x f avorable = [0,x∗2,(2x∗2/3),0]> which describes healthy condition without
presence of pathogens [25]. Through x f avorable the pre f = [−0.3333,0,1.5,−0.6667]
can be used. Moreover, the r reference vector can be selected to be equal to x f avorable,
as the desired values which have to be reached by the states over time (r= x f avorable =
[0,x∗2,(2x∗2/3),0]> over t→ ∞). The A(pre f ) becomes

A(pre f ) =


−0.3333 0 0 0

0 −1 1.5 0
−0.6667 1 −1.5 0

1 0 0 −1

 . (31)

The eigenvalues of the A(pre f ) are λ (A(pre f )) = [−2.5,0,−1,−0.3333]>, so the
reference LTI system is close to the border of stability because of its pole at 0.
The rank of the Co controllability matrix is equal to 4, namely rank(Co) = 4 ≡ n,
i.e. the reference LTI system is controllable. Therefore, it is possible to design a
reference states feedback controller Kre f so that u(t) =−Kre f x(t).
The Kre f optimal gain (for LQ optimal state feedback controller) can be designed by
using the MATLABTM care command. The design parameters in this given case are
assumed to be: Q = diag(20,10,10,10) and R = diag(1/20,1/5,1/5,1/5), which
provide fast poles and higher feedback gain at the critical state x1(t). The care
command does calculate X as the unique solution of the control algebraic Ricatti
equation (in the continuous-time domain) [27] as follows

A>XE+E>XA− (E>XB+S)R−1(B>XE+S>)+Q = O , (32)

where the calculated optimal gain – besides S = 0 and E = I – is equal to Kre f =
R−1(B>XE+S>). The obtained optimal gain for the reference LTI system is:

Kre f =


−19.7359 0.4638 0.6369 −0.9001
−0.1159 6.2073 1.0364 0.0073
−0.1592 1.0364 5.8609 0.0101
−0.2250 −0.0073 −0.0101 −6.1272

 . (33)

– 205 –



György Eigner Control of Physiological Systems through Linear Parameter Varying Framework

The Kre f feedback gain does provide that the eigenvalues of the closed loop be-
come λre f ,closed = [−19.9798,−7.1725,−7.3062 + 0.1332i,−7.3062− 0.1332i]>

via A(pre f )−BKre f . The higher negative real parts of the eigenvalues provide
fast transient part and stability, moreover, the occurring small complex parts do not
cause high transient excursion.
Since B is invertible, the (9) can be used directly to calculate K(t) and realize the
complementary LPV controller structure. Through the developed control law the
structure of the complementary controller does provide that the strict equality of (7)
will be satisfied over the operation. Namely, the λLPV,closed = λre f ,closed ∀t(t ≥ 0)
everywhere in the state space (and parameter space) regardless the actual value of
p(t) parameter vector.

3.3 Design of the Complementary LPV Observer

The design of the complementary LPV observer is similar to the previous controller
case and the calculation steps follow the same straightforward path.
First, the observability of the reference LTI system has to be investigated as the crit-
ical point of the design. The rank of the observability matrix determines whether the
system is observable or not. In this particular case, the rank of the Ob observability
matrix rank(Ob) = 4≡ n, i.e. the reference LTI system is observable.
The Gre f reference observer gain can be calculated by using the MATLAB’s place
command [27]. In practice, the eigenvalues of A−LC should have more negative
real parts (should be lower) than the system matrix in the λre f ,closed closed loop
the eigenvalues in order to reach good observer dynamics (fast response and adap-
tivity). Consider, that λobs = [−41,−43,−45,−47]>, where λobs,i > λre f ,closed,i
i = [1,2,3,4].
The resulting Gre f becomes:

Gre f = 103


0.0298 −0.0000 0
−0.2951 1.9354 0
−0.0071 0.0875 0
0.0007 0 0.0400

 . (34)

Since, C is not invertible and (12) cannot be used directly, we have to apply the
design process from Sec. 2.6.2. In this case G(t) can be calculated based on (21)
and (22).

Are f −A(p(t)) = G(t)C =
2

∑
i=1

g(p(t))ic>i →G(t)

G(t) =



∆p1(t)
c1

0 0

∆p2(t)
c1

∆p3(t)
c2

0

∆p4(t)
c1

0 0

0 0 0


=



−0.3333− p1(t)
c1

0 0

0− p2(t)
c1

−1− p3(t)
c2

0

−0.6667− p4(t)
c1

0 0

0 0 0


(35)
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The rank(Are f −A(t)) = 2 which is equal to the number of dyads in the minimal
dyadic structure. After calculating G(t) the (12) can be used to realize the com-
plementary observer structure and because of the above described similarity the
eigenvalue equality will be satisfied.The last missing piece is the feed forward com-
pensation from Sec. 2.7. By using (24) the Nx(p(t)) and Nu(p(t)) can be calculated
continuously during operation.
In this way the final control loop is realizable in accordance with Fig. 1.

3.4 Results

In this section the results of the simulations are detailed. Since the aim of the com-
plementary LPV controller and observer is to enforce a particular LPV system and
through the original nonlinear system to behave as the given LTI reference system,
the focus during the presentation of the results is to highlight this property. In order
to do that – beside keeping in mind the constraints – the corresponding signals of the
nonlinear and LTI reference system will be presented and compared to each other.
The simulations are carried out with the following system models:

1. Reference LTI system Sre f : state vector xLT I(t), observed reference state vec-
tor x̂LT I(t), output vector yLT I(t), the permanent parameter vector pre f .

2. Original nonlinear system with complementary LPV controller and observer:
state vector xorig(t), observed state vector x̂LPV (t) coming from the comple-
mentary LPV observer (12), output vector of the nonlinear system yorig(t),
parameter vector pLPV (t) generated by the observed states x̂LPV (t).

During the simulation the same settings were used in every case. The reference
signal for the system states is the mentioned favorable steady values r = x f avorable =
[0,x∗2,(2x∗2/3),0]> = [0,2,1.3333,0]>, hence the desired steady-state of the system
to be x∞ = r. The corresponding steady-state output is y = [0,1.333,0]>. The initial
state vector for every system was x(0) = [1.5,3,2,0]>. The initial state vector for
the observers was equal to the desired steady-state values (since, this is known and
determined) x̂(0) = r. However, in this way there is an initial observation error,
thus the dynamics of the observer can be analyzed. The simulation time was 1
time unit. This time span is enough to study the behavior of the system since all
of the transients disappear under this time frame because of the fast operation and
dynamics.
On Fig. 2. the variation of the states are presented over the simulated time span.
Naturally, not all of the states are measurable (x1(t) and x2(t) cannot be measured
directly). Albeit, – in order to reach a better understanding of the developed method
– all of the corresponding states can be found on the diagram. The figure contains
the following signals from the top to the bottom (started with the left column):

a) Vary of the xLT I(t) states of the selected reference LTI system Sre f belongs to
pre f

b) Vary of the xorig(t) states of the original nonlinear time varying model

– 207 –



György Eigner Control of Physiological Systems through Linear Parameter Varying Framework

c) Comparison of the difference of the observed states based on the L1(t) vector
norm as follows: L1(t) := ‖xLT I(t)−xorig(t)‖1

d) Vary of the x̂LT I(t) observed states of the selected reference LTI system by
the reference LTI observer

e) Vary of the x̂LPV (t) observed states of original nonlinear system coming from
the complementary LPV observer

f) Comparison of the difference of the observed states based on the L1(t) vector
norm as follows: L1(t) := ‖x̂LT I(t)− x̂LPV (t)‖1

In practice, only the signals from Subfigs. d), e) and f) are available (accessible),
since these are produced by the observers. However, the simulations can tell us
useful information regarding the original states as well.
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Figure 2
Comparison of the states during simulation. Due to the magnitude of x4 was too low compared to other

states it was multiplied by 10 to make it comparable, thus the order of magnitude became 101.

According to the simulations the developed complementary controller and observer
structures performed well. Subfigs. a) and b) present the variation of the states of
the reference LTI system (Sre f ) and the original nonlinear system, respectively. As
it was stated, the x(0) initial values are the same in case of these systems. Accord-
ing to Subfig. c) there is a small deviation between the states based on the L1(t)
norm at the beginning which disappears over time. Furthermore, the magnitude of
difference is small and can be neglected (since L1(t) := ‖xLT I(t)−xorig(t)‖1 which
means there was only a small numerical difference between the states of the LTI
reference system and the original nonlinear system).
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Subfigs. d) and e) show that the same results regard to the reference observer and
complementary LPV observer structure. The initial values of the observers were the
same (and equal to the r reference). The Subfig. f) shows that the complementary
observer structure performs well, thus the difference between the states of the ob-
servers were small and disappeared over time.
Finally, all of the states – with respect to the reference LTI system, the original non-
linear system, the reference LTI observer and the complementary LPV controlled
system – reached the same final value what was the main target during operation
regardless the variation of the parameter vector and the different initial conditions
according to Fig. 2.
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Figure 3
Comparison of the outputs during simulation. Due to the magnitude of y3 was too low compared to
other states it was multiplied by 10 to make it comparable, thus the order of magnitude became 101.

Figure 3 shows the variation of the output of the original nonlinear system (yorig)
and the reference LTI system (yLT I,re f ). As it can be seen the results correspond to
the previous findings and the outputs behave as expected. At the beginning there
is a small difference between the outputs (according to the defined L1) norm, but
the deviation ceases over time. The results reflect that the complementary LPV
controller and observer structure works well, thus it enforces that original nonlinear
system to behave as the reference LTI system – and the numerical values of the
outputs became equal over time as well.
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The variation of the p(t) parameter vector converted from the observed states can
be seen on Fig. 4. The figure strengthened the previous results, namely, regardless
the variation of the parameter vector the completed LPV controller and observer
structure is able to enforce the original nonlinear system to behave as the reference
LTI system. 0 0.2 0.4 0.6 0.8 1

-0.5

0

0.5

1

1.5

0 0.2 0.4 0.6 0.8 1
-1

0

1

Figure 4
Vary of the parameter vector during simulation.

Conclusions
In this paper we presented a novel complementary LPV controller and observer de-
sign approach. The proposed method combines the classical state feedback with
matrix similarity theorems, respectively. We analyzed the drawbacks, limitations
and benefits of the introduced method.
The main advantages of this method is that it is able to provide appropriate, stable
LPV controller and observer for the whole parameter domain by using a given ref-
erence LTI system as basis. Through the completed LPV controller and observer
structure it is possible to enforce the nonlinear system to behave as the given LTI
reference system.
We provided a practical example, namely, control of innate immune response. The
results were satisfying since the completed LPV controller and observer structure
was able to provide good control action and during operation the states of the refer-
ence LTI system and the original nonlinear system behaved similarly.
In our future work we are going to investigate the further generalization possibilities
of the proposed techniques and we will try the methods in case of physical systems
as well.
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