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Abstract: The enumeration of shortest paths in cubic grid is presented herein, which could 
have importance in image processing and also in the network sciences. The cubic grid 
considers three neighborhoods — namely, 6-, 18- and 26-neighborhood related to face 
connectivity, edge connectivity and vertex connectivity, respectively. The formulation for 
distance metrics is given. L1, D18, and L∞ are the three metrics for 6-neighborhood, 18-
neighborhood and 26-neighborhood. The task is to count the number of minimal paths, based 
on given neighborhood relations, from any given point to any other, in the three-dimensional 
cubic grid. Based on the coordinate triplets describing the grid, the formulations for the three 
neighborhoods are presented in this work. The problem both of theoretical importance and 
has several practical aspects. 
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1 Introduction 
Shortest path (SP) problems have ample applications in digital geometry, which 
works on discrete spaces, that is, with points with integer coordinates. Based on the 
application, the shortest path problem can be formulated. Shortest path problems in 
various grids are defined based on digital distances. In the square grid, there are two 
classical neighbor relations defined [35] — cityblock and chessboard. The former 
contains horizontal and vertical movements; in chessboard motion the diagonal 
movements are also allowed. Consequently, two kinds of distances are defined in 
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this grid, which are well explained in [23, 34]. In the square grid, every coordinate 
of a point is independent. In n dimensional space, there are n independent 
coordinates to address its elements, i.e., usually either the vertices or the hypercubes 
of the grid. Working in the n-dimensional space, the neighborhood structure of the 
vertices is isomorphic to the neighborhood structure of the n-dimensional 
hypercubes. The scientific field ‘Geometry of Numbers’ is about these grids [2, 14, 
15, 18, 31]. The terms ‘tiling’, ‘array’ and ‘lattice’ are used approximately in the 
same meaning as we use ‘grid’ here. Counting paths as an image analysis tool has 
already been coined in [35], and solved with the cityblock and chessboard 
paths/distances in [4]. 

Considering non-traditional but still regular tilings, the triangular grid and the 
hexagonal grid have the graph-theoretic dual relation. In digital geometry, they have 
also been analyzed from various points of view. A connection among them and the 
cubic grid is established [16, 28, 31] and therefore, symmetric coordinate systems 
with three coordinates work nicely on these grids. The relation between square grid 
and hexagonal grid is explained in [38]. The three types of neighbor relation on the 
triangular tiling are already used in [6]. The three coordinates in this grid depend on 
each other [28] [30]. The digital distance of any two points, based on a fixed 
neighborhood criterion, is the length of a minimal-length path between the two 
points, where in every step along the path one moves to a neighbor point [28] [30]. 

The general Euclidean Shortest Path (ESP) problem is NP-hard [1] between two 
points amid polyhedral obstacles in the 3D space, moreover there could be 
exponentially many minimal path classes in single-source multiple-destination 
problems. A polynomial time algorithm for Euclidean Shortest Path computations, 
for cases where all the obstacles are convex and their number is small, is stated in 
[36]. The Euclidean shortest paths within a given cube-curve with arbitrary 
accuracy are given in [19]. ESP between two points is stated in [20-22] for 2D and 
3D using rubberband algorithms. An algorithm to compute an L1-minimal path 
from any point to any other that lies on or above a given polyhedral terrain is 
presented in [24]. 

The discrete version of the problem is somewhat different. In graphs, a dynamic 
programming approach, namely the Dijkstra algorithm gives an efficient way of 
computing a shortest path. Digital grids can be seen as infinite graphs, where the 
neighbor points (pixels, voxels, etc. depending on the dimension of the used space) 
are connected by edges. Here, we count the number of shortest (also called minimal) 
paths (NSP), since there usually exist more than one shortest path depending on the 
conditions and on the used type of paths as a shortest path is generally not unique 
(similarly as in graphs). On the square grid, for any two points, a recursive 
formulation for counting the shortest paths between them, in cityblock, in 
chessboard and in octagonal approaches, is presented in [4]. It is to be noted here, 
that the general formulation for chessboard shortest paths, between two points was 
given by a recursive method based on a generating function. Herein, we also give 
an alternative, non-recursive formulation, based on enumerative combinatorics in 
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Sec. 3. In [3], NSP between any pair of points, in a digital image, with respect to a 
particular neighbor criterion is presented, where the images are considered as 
matrices and thus matrix operations are used in the computation. Shortest isothetic 
path (cityblock) is determined between two points inside a digital object for a given 
grid size, in [8] [9]. Since a shortest isothetic path is usually not uniquely 
determined, finding the number of them is important [7]. Here, in this paper, we 
will discuss the path counting problem between two points whose coordinate triplets 
are given in cubic grid for 6- 18-, and 26-neighborhoods, i.e., L1, D18, and L1 metrics 
respectively. The path counting problems in 3D digital geometry for the three 
neighborhoods are presented in [11] [12] in a different way. The formulation of path 
counting problem in 26-neighborhood in [11] is based on the generating function 
stated in [3] [4], whereas in this paper we propose it in a comprehensive and straight 
forward way. In [12], the formulation for path counting problem in 18-
neighborhood is divided into three cases whereas the first two cases are based on 
the generating function stated in [3, 4] and the third one is based on induction on 
the length of minimal paths. The formulation for 18-neighborhood proposed here is 
much simpler and more definite devoid of any generating function.  
The computation of number of paths is more directly proposed here compared to 
the formulae in [11] [12]. All these formulae are proved here using combinatorial 
techniques. 

The number of minimal paths (NSP) is related to various descriptive measures of 
graphs and networks including graph indices. In networking various packages may 
be sent in different but same length paths and in this way, NSP could be used to 
measure the width of the network between the given nodes. Thus, our study has not 
only theoretical interest, but also practical ones due to applicability both in imaging 
and in networking. 

The paper is written in the following structure. The preliminaries are discussed in 
Section 2. The formulation of NSP in cubic grid for 6-neighborhoods, 18-
neighborhoods, and 26-neighborhoods are given in Sections 3, 4, and 5 
respectively. Section 6 presents concluding remarks. 

2 Preliminaries 
Based on [17], the cubic grid on Ρ3 will be denoted by Ζ3, and defined as  
Ζ3 = {(c1, c2, c3) | c1, c2, c3 ∈ Ζ}. Let G be any set of points in Ρ3. The Voronoi 
neighborhood of g ∈ G is defined as NG(g) = {v ∈ Ρ3 | ∀h ∈ G, ||v – g|| ≤ ||v – h||}. 

The Voronoi neighborhood of (c1, c2, c3) in Ζ3 is a unit cube centered in  
(c1, c2, c3); in this way, the space is tessellated by unit cubes. When perceived as a 
set of points in Ρ3, Ζ3 is referred to as a cubic grid. The Voronoi neighborhoods in 
a grid in Ρ3 are referred to, as voxels. Figure 1 represents the directions of the three 
axes in the cubic grid and the origin is also shown. 
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There are three widely used neighborhoods in Ζ3. Those are 26-, 18- and  
6-neighborhood called face-edge-vertex neighbors, face-edge neighbors and face 
neighbors, respectively. Let r = (xr, yr, zr) ∈Ζ3 and si = (xsi, ysi, zsi) ∈Ζ3 be all the 
points fulfilling the condition max {| xr – xsi|, | yr – ysi|, | zr – zsi|} ≤ 1: 

N6(r) = {si : | xr – xsi| + | yr – ysi| + | zr – zsi| ≤ 1} 

N18(r) = {si : | xr – xsi| + | yr – ysi| + | zr – zsi| ≤ 2} 

N26(r) = {si : | xr – xsi| + | yr – ysi| + | zr – zsi| ≤ 3} 

These are shown in Fig. 2. The neighbor voxels N6(r), N18(r), and N26(r) are shown 
in red (orange, in the figure on the right), magenta, and yellow colors. The voxels 
which are in 6-neighborhood of r, are face connected with r. The edge connected 
and vertex connected voxels are in N18(r), and N26(r) of r respectively. 

     
Figure 1 

The origin and the directions of the three axes 

    
6-neighborhood          18-neighborhood                    26-neighborhood 

Figure 2 
The three neighborhoods, the central cube with its 6-, 18- and 26-neighbors 

Let us consider two points q and p in cubic grid. The problem is to find the NSP 
between p and q with a given neighbor relation. To formulate the problem, the 
points have to be translated such that either p or q be in origin (0,0,0). Let the 
coordinates of the points be p = (xp, yp, zp) and q = (xq, yq, zq). The coordinates of 
the points after translation will be p = (xp – xq, yp – yq, zp – zq) and q = (0,0,0). 

We may also recall the general definition of Lm distances in 3D between two points, 
which is given below. 
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𝐿𝐿𝑚𝑚(𝑝𝑝, 𝑞𝑞) = ��𝑥𝑥𝑝𝑝 − 𝑥𝑥𝑞𝑞�
𝑚𝑚 + �𝑦𝑦𝑝𝑝 − 𝑦𝑦𝑞𝑞�

𝑚𝑚 + �𝑧𝑧𝑝𝑝 − 𝑧𝑧𝑞𝑞�
𝑚𝑚�

1
𝑚𝑚                                          (1) 

They are usually defined under the condition m ≥ 1. The digital distances are 
discussed in [3, 4, 29]. We recall that the length of a minimal path from  
p = (xp, yp, zp) to q(0,0,0) in cubic grid in 6-neighborhood, 18-neighborhood, and 
26-neighborhood are denoted by metrics — L1, D18, and L∞ respectively, since, as 
it is well-known, the 6- and 26-neighborhood based distances coincide with the L1 
distance, and to the L∞ distance which is obtained in the limit m → ∞. 

L1(p, q) = D6(p, q) = (|xp| + |yp| + |zp||)             (2) 

𝐷𝐷18(𝑝𝑝, 𝑞𝑞) = max �max��𝑥𝑥𝑝𝑝�, �𝑦𝑦𝑝𝑝�, �𝑧𝑧𝑝𝑝��, �
�𝑥𝑥𝑝𝑝� + �𝑦𝑦𝑝𝑝� + �𝑧𝑧𝑝𝑝�

2
��                                (3) 

L∞(p, q) = D26(p, q) = max{|xp|, |yp|, |zp||}             (4) 

We also note that both the L2 and D18 distances are between the above mentioned 
“extremal” cases, i.e., both L1(p, q) ≥ L2(p, q) ≥ L∞(p, q) and D6(p, q) ≥ D18(p, q) ≥ 
D26(p, q) are satisfied for any pairs of points q, p ∈Ζ3. Furthermore, no digital 
distance is known that produces L2 for any pairs of points, thus to approximate the 
Euclidean distance by digital distances is still a hot topic both in 2D and 3D  
[5, 13, 25-27, 32, 33, 37]. 

3 Number of Minimal Paths in 6-Neighborhood 
Theorem 1. The number of minimal paths from q = (0,0,0) to any point p = (i,j,k) 
in 6-neighborhood is 

𝑓𝑓6𝑁𝑁(𝑖𝑖, 𝑗𝑗, 𝑘𝑘) = (|𝑖𝑖|+|𝑗𝑗|+|𝑘𝑘|)!
|𝑖𝑖|!|𝑗𝑗|!|𝑘𝑘|!

                                                                                       (5) 

Proof. Without loss of generality, one may assume that the coordinates of the point 
p are nonnegative, that is i, j, k ≥ 0. In 3D, two points, p’(i1, j1, k1) and q’(i2, j2, k2), 
are in 6-neighborhood if they share a face, i.e., when the following condition holds: 

|i1 – i2| + |j1 – j2| + |k1 – k2| = 1 

Thus, since the coordinates are integers, in 6-neighborhood, in each step of a 
shortest path only one coordinate changes by ±1 and the other two coordinates do 
not change. The other coordinates of the points coincide respectively. So, the length 
of a shortest path between p(i, j, k) and q(0; 0; 0) in 6-neighborhood is i + j + k (Eqn. 
2), the sum of the movements along three axes. Out of total i + j + k steps i, j, and k 
steps are taken along the x-, y-, and z-axes respectively. Their order is arbitrary, thus 
the total number of arrangements for a path length of |i| + |j| + |k| is given by 
(|𝑖𝑖|+|𝑗𝑗|+|𝑘𝑘|)!

|𝑖𝑖|!|𝑗𝑗|!|𝑘𝑘|!
, which is the total NSP in 6-neighborhood.              ∎ 
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Figure 3 

In Fig. 3 the NSP of length three and four are shown for some of the points along 
with the coordinate triplets. Actually, these numbers are the trinomial coefficients: 
(|𝑖𝑖|+|𝑗𝑗|+|𝑘𝑘|)!

|𝑖𝑖|!|𝑗𝑗|!|𝑘𝑘|!
  which could play a role in expansions like (x + y + z)n, see, e.g., [4]. 

It is to be noted here that NSP in 6-neighborhood in cubic grid is similar for some 
of the coordinates where x = 0 or y = 0 or z = 0, with the values in 4-neighborhood 
in 2D, i.e., the cityblock (or L1) distance in 2D, coinciding with the binomial 
coefficients. More formally, if the points p(i1, j1, k1) and q(i2, j2, k2) share a 
coordinate (e.g., i1 = i2), then their distance and NSP (in 6-neighborhood) between 
them can be computed in the same way as between the points analogous points in 
2D with 4-neighborhood neglecting the common coordinate, i.e., between  
pyz(j1, k1) and qyz(j2, k2). 

4 Number of Minimal Paths in 18-Neighborhood 
Without loss of generality, we assume that i, j, k ≥ 0. The length of a shortest path 
in 18-neighborhood is either maximum of i, j, k or �𝑖𝑖+𝑗𝑗+𝑘𝑘

2
� (Eqn. 3). The NSP is 

discussed in the following two theorems according to two cases. In our theorems q 
will be the origin, and we are counting the paths to the point p = (i, j, k), i.e., its x 
coordinate is i, its y coordinate is j and z coordinate is k, the coordinate axes and 
their directions as shown in Fig. 1. 

In the next theorem, without loss of generality, we assume that i ≥ j and i ≥ k, i.e., 
the first coordinate value of p is (one of) the largest. Further, we use the variables a 
and b to denote the number of steps in specific directions made in a shortest path: 
whenever 2 of the coordinates are changed in a step, which is legal in this case, 
opposite to the previously studied D6 case, there could be steps where both 
coordinates are increasing in a step, but also some steps where only the first 
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coordinate is increasing and one of the other is decreasing. The variables a and b 
denote the possible numbers of such steps when the first coordinate is increasing, 
but either the third (variable a) or the second coordinate (variable b, resp.) is 
decreasing. 

Theorem 2. Let q = (0, 0, 0) and p = (i, j, k) be two points such that D18 = max {i, 
j, k} = i. Then, by using 18-neighborhood, from q to p, the number of minimal paths 
is 

𝑓𝑓18𝑁𝑁(𝑖𝑖, 𝑗𝑗, 𝑘𝑘) = ∑ 𝑖𝑖!
𝑎𝑎!𝑏𝑏!(𝑘𝑘+𝑎𝑎)!(𝑗𝑗+𝑏𝑏)!�𝑖𝑖−𝑗𝑗−𝑘𝑘−2(𝑎𝑎+𝑏𝑏)�!

2(𝑎𝑎+𝑏𝑏)≤𝑖𝑖−𝑗𝑗−𝑘𝑘
𝑎𝑎=0,𝑏𝑏=0 .                                  (6) 

where a and b are the number of steps in some shortest paths in right-away (positive 
x and negative z) and right-bottom (positive x and negative y) directions (based on 
the directions of the axes shown in Fig. 1), respectively. 

Proof. By the symmetry of the grid, one may assume that D18 = max {i, j, k} = i, 
i.e., there are i-steps from q to p. D18 = i, implies that i ≥ j and i ≥ k, moreover  
i ≥ j + k by Eqn. 3 (the cases when D18 = j or D18 = k are similar). In 18-
neighborhood, a path can proceed through either a face-shared neighbor (change in 
only one coordinate value) or an edge-shared neighbor (change in any two 
coordinate values). In Eqn. 6, a and b refer to the numbers of right-away and right-
bottom movements w.r.t. the positive x-axis (Fig. 1), respectively. Let c = k + a and 
d = j + b be the respective numbers of right and right-top movements. In a right-
away movement, the path moves to the edge-shared neighbor where the x-
coordinate increases by 1 and the z-coordinate decreases by 1 and in a right 
movement, both x- and z-coordinates increase by 1. Similarly, in a right-bottom 
movement x-coordinate increases and y-coordinates decreases while for a right-top 
movement, both the x and y coordinates increase. The sum of movements cannot be 
more than i: a + b + c + d ≤ i, i.e., 2(a + b) ≤ i  − j − k. The right-away and the right 
movements as well as the right-top and the right-bottom movements have some 
limits. When a number of right-away movements are there, the right movements 
will be c = k + a such that the decrease of z-coordinate in a right-away moves is 
compensated by the increase of the z-coordinate in k + a right moves in order that 
the destination point has z-coordinate as k. Note that in each move the x-coordinate 
always increases by 1. Similarly, b number of right-bottom movements implies d = 
j + b number of right-top movements. Otherwise, it will not be possible to reach the 
destination in i steps. Apart from right-away, right, right-top, and right-bottom 
moves, there can be movements in x-direction only. For a given a, b, c, and d (i.e., 
right-away, right-bottom, right, and right-top respectively) steps, there are i − (a + 
b + c + d) = i − j − k − 2(a + b) number of steps in the positive x-direction to face 
neighbor. Thus, for a given a, b, c, and d combination, the total number of 
arrangements for a shortest path of length i is given by 𝑖𝑖!

𝑎𝑎!𝑏𝑏!(𝑘𝑘+𝑎𝑎)!(𝑗𝑗+𝑏𝑏)!�𝑖𝑖−𝑗𝑗−𝑘𝑘−2(𝑎𝑎+𝑏𝑏)�!
. 

For different values of a and b, values of c and d are computed satisfying the 
condition that a + b + c + d ≤ i. Thus, total NSP is the summation over the different 
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possible combinations of a, b, c, and d values, and is given by Eqn. 6.                                                                                                       
∎ 

 

Figure 4 
The NSP (given inside the white circle) from origin to other points (coordinates are shown in 

parentheses) in 18-neighborhoods for path length three 

The NSP from q(0, 0, 0) to p where the length of path is three, are given in Fig. 4. 
It is to be noted that when D18 = max {i, j, k} = j or k, the above formula (Eqn. 6) 
will change accordingly. The number of paths from (0, 0, 0) to (0, 3, 0) is 13 and 
that to (0, 3, 1) is 12. 

Theorem 3. The number of minimal paths from q = (0, 0, 0) to any point  
p = (i, j, k) in 18-neighborhood when D18 = �𝑖𝑖+𝑗𝑗+𝑘𝑘

2
� = 𝜏𝜏 is 

𝑓𝑓18𝑁𝑁(𝑖𝑖, 𝑗𝑗, 𝑘𝑘) = �

𝜏𝜏!
(𝜏𝜏−𝑖𝑖)!(𝜏𝜏−𝑗𝑗)!(𝜏𝜏−𝑘𝑘)!

,
𝜏𝜏!�(𝜏𝜏−𝑖𝑖)(𝜏𝜏−𝑗𝑗)+(𝜏𝜏−𝑗𝑗)(𝜏𝜏−𝑘𝑘)+(𝜏𝜏−𝑘𝑘)(𝜏𝜏−𝑖𝑖)�

(𝜏𝜏−𝑖𝑖)!(𝜏𝜏−𝑗𝑗)!(𝜏𝜏−𝑘𝑘)!
,

when (𝑖𝑖 + 𝑗𝑗 + 𝑘𝑘) mod 2 = 0
when (𝑖𝑖 + 𝑗𝑗 + 𝑘𝑘) mod 2 = 1.

            (7) 

Proof. At each step in 18-neighborhood, at most two coordinates can increase by 
one and the number of steps is τ. When i + j + k is even, as τ divides i + j + k with 
the quotient 2 which implies that at each step always two (distinct) coordinates will 
increase. Therefore, in a shortest path from q(0, 0, 0) to p(i, j, k) of length τ, the 
number of steps in both y- and z-directions is τ − i , in both x- and z-directions is τ 
− j, and in both x- and y-directions is τ − k. Thus, the number of possible 
arrangements, i.e., the NSP is 𝜏𝜏!

(𝜏𝜏−𝑖𝑖)!(𝜏𝜏−𝑗𝑗)!(𝜏𝜏−𝑘𝑘)!
 



Acta Polytechnica Hungarica Vol. 21, No. 6, 2024 

‒ 177 ‒ 

When i + j + k is odd, τ divides i + j + k + 1 and the quotient is 2 as D18 = �𝑖𝑖+𝑗𝑗+𝑘𝑘
2

� =
𝜏𝜏, it implies that for τ − 1 steps two coordinates will increase and in the rest one step 
only one of the three coordinates will increase (let it be called a singular step) giving 
rise to the following cases: 

Singular step in x-direction: A shortest path has one singular step in x-direction. 
Thus, there are rest τ − 1 steps, where at each step there are movements in two 
directions. The number of steps when there are movements in x- and y-directions in 
each step is (τ − 1) − k, in x- and z-direction is (τ − 1) − j, and in y- and z-direction 
is (τ − 1) − (i − 1) = L − i. So, the number of possible shortest paths with singular 
x-direction is 𝜏𝜏!

(𝜏𝜏−𝑖𝑖)!�(𝜏𝜏−1)−𝑗𝑗�!�(𝜏𝜏−1)−𝑘𝑘�!
= 𝜏𝜏!(𝜏𝜏−𝑗𝑗)(𝜏𝜏−𝑘𝑘)

(𝜏𝜏−𝑖𝑖)!(𝜏𝜏−𝑗𝑗)!(𝜏𝜏−𝑘𝑘)!
. When j > i + k and τ = j or 

k > i + j and τ = k the singular step in x-direction will never occur. 

Singular step in y-direction: There will be one singular step in y-direction. Here, 
the number of steps in x- and y-direction is (τ − 1) − k, in x- and z-direction is (τ − 
1) − (j − 1) = τ − j, and in y- and z-direction is (τ − 1) − i, giving the number of 
possible shortest path with singular y-direction as 𝜏𝜏!(𝜏𝜏−𝑖𝑖)(𝜏𝜏−𝑘𝑘)

(𝜏𝜏−𝑖𝑖)!(𝜏𝜏−𝑗𝑗)!(𝜏𝜏−𝑘𝑘)!
. When i > j + k 

and τ = i or k > i + j and τ = k the singular step in y-direction will never occur. 

Singular step in z-direction: One of the steps will be in the z-direction. The number 
of steps in x- and y-direction is (τ − 1) − (k − 1) = τ − k, in x- and z-direction is (τ − 
1) − j, and in y- and z-direction is (τ − 1) − i. Thus, the number of possible shortest 
paths with singular z-direction is given by 𝜏𝜏!(𝜏𝜏−𝑖𝑖)(𝜏𝜏−𝑗𝑗)

(𝜏𝜏−𝑖𝑖)!(𝜏𝜏−𝑗𝑗)!(𝜏𝜏−𝑘𝑘)!
. When j > i + k and τ = j 

or i > j + k and τ = i the singular step in z-direction will never occur. 

Hence, the total NSP when i + j + k is odd is given by  
𝜏𝜏!(𝜏𝜏−𝑗𝑗)(𝜏𝜏−𝑘𝑘)

(𝜏𝜏−𝑖𝑖)!(𝜏𝜏−𝑗𝑗)!(𝜏𝜏−𝑘𝑘)!
+ 𝜏𝜏!(𝜏𝜏−𝑖𝑖)(𝜏𝜏−𝑘𝑘)

(𝜏𝜏−𝑖𝑖)!(𝜏𝜏−𝑗𝑗)!(𝜏𝜏−𝑘𝑘)!
+ 𝜏𝜏!(𝜏𝜏−𝑖𝑖)(𝜏𝜏−𝑗𝑗)

(𝜏𝜏−𝑖𝑖)!(𝜏𝜏−𝑗𝑗)!(𝜏𝜏−𝑘𝑘)!
= 

𝜏𝜏!�(𝜏𝜏−𝑖𝑖)(𝜏𝜏−𝑗𝑗)+(𝜏𝜏−𝑗𝑗)(𝜏𝜏−𝑘𝑘)+(𝜏𝜏−𝑘𝑘)(𝜏𝜏−𝑖𝑖)�
(𝜏𝜏−𝑖𝑖)!(𝜏𝜏−𝑗𝑗)!(𝜏𝜏−𝑘𝑘)!

.                                                                           ∎ 

The NSP for path length three is shown in Fig. 4. The NSP from (0, 0, 0) to (2, 2, 
2) is 6 where i + j + k is even and that to (1, 2, 2) is 15 where i + j + k is odd.  
The number of paths from (0, 0, 0) to (0, 3, 2) satisfy both the equations stated in 
Theorem 2 and 3 and that from (0, 0, 0) to (2, 3, 1) also satisfy both the equations 
(see Fig. 4). To compute NSP between (0, 0, 0) and (9, 5, 4), the formula stated in 
Theorem 2 and 3 (here, i + j + k is even) both are applicable and produce same 
result, 630. Similarly, to find NSP between (0, 0, 0) and (9, 4, 4), the formula stated 
in Theorem 2 and 3 (here, i + j + k is odd) both yield same result 630. Remember 
that the distance D18 is computed as the maximum of a set. In some cases, it may 
happen that there are more maximal elements of this set, and thus, both Theorem 2 
and 3 can be applied to count NSP. In these cases, they must give the same value, 
as we state formally in the following. 
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Corollary 1. The number of minimal paths from q = (0, 0, 0) to any point p = (i, j, 
k) in 18-neighborhood when D18 = �𝑖𝑖+𝑗𝑗+𝑘𝑘

2
� = max{i, j, k} = τ = i, f18N(i, j, k) is as 

follows. 

𝑓𝑓18𝑁𝑁(𝑖𝑖, 𝑗𝑗, 𝑘𝑘) = ∑ 𝑖𝑖!
𝑎𝑎!𝑏𝑏!(𝑘𝑘+𝑎𝑎)!(𝑗𝑗+𝑏𝑏)!�𝑖𝑖−𝑗𝑗−𝑘𝑘−2(𝑎𝑎+𝑏𝑏)�!

2(𝑎𝑎+𝑏𝑏)≤𝑖𝑖−𝑗𝑗−𝑘𝑘
𝑎𝑎=0,𝑏𝑏=0 =

�

𝜏𝜏!
(𝜏𝜏−𝑖𝑖)!(𝜏𝜏−𝑗𝑗)!(𝜏𝜏−𝑘𝑘)!

,
𝜏𝜏!�(𝜏𝜏−𝑖𝑖)(𝜏𝜏−𝑗𝑗)+(𝜏𝜏−𝑗𝑗)(𝜏𝜏−𝑘𝑘)+(𝜏𝜏−𝑘𝑘)(𝜏𝜏−𝑖𝑖)�

(𝜏𝜏−𝑖𝑖)!(𝜏𝜏−𝑗𝑗)!(𝜏𝜏−𝑘𝑘)!
,

when (𝑖𝑖 + 𝑗𝑗 + 𝑘𝑘) mod 2 = 0
when (𝑖𝑖 + 𝑗𝑗 + 𝑘𝑘) mod 2 = 1                       (8) 

Proof. The proof can be done mathematically in two parts when i + j + k is even 
and when it is odd. Let τ = 𝑖𝑖+𝑗𝑗+𝑘𝑘

2
= 𝑖𝑖, i.e., i + j + k is even. Thus, i − j − k = 0. Putting 

i − j − k = 0, in Eqn. 6 (see Theorem 2) we get, 𝑓𝑓18𝑁𝑁(𝑖𝑖, 𝑗𝑗, 𝑘𝑘) =
∑ 𝑖𝑖!

𝑎𝑎!𝑏𝑏!(𝑘𝑘+𝑎𝑎)!(𝑗𝑗+𝑏𝑏)!�−2(𝑎𝑎+𝑏𝑏)�!
2(𝑎𝑎+𝑏𝑏)≤0
𝑎𝑎=0,𝑏𝑏=0 , as there is only one possibility for the values of 

a and b, i.e., a = b = 0 since 2(a+b) ≤ i − j − k = 0. By putting these values, we get 
𝑖𝑖!
𝑗𝑗!𝑘𝑘!

. Since, τ = i, i − j = k and i − k = j. Putting these values in the first expression of 

Eqn. 7 (see Theorem 3) when i + j + k is even, we get 𝑖𝑖!
𝑗𝑗!𝑘𝑘!

. Hence proved. 

For the second part, when i + j + k is odd, τ = 𝑖𝑖+𝑗𝑗+𝑘𝑘+1
2

= 𝑖𝑖. Thus, i − j − k = 1. Putting 
i − j − k = 1 in Eqn. 6 (see Theorem 2) we get, 𝑓𝑓18𝑁𝑁(𝑖𝑖, 𝑗𝑗, 𝑘𝑘) =
∑ 𝑖𝑖!

𝑎𝑎!𝑏𝑏!(𝑘𝑘+𝑎𝑎)!(𝑗𝑗+𝑏𝑏)!�1−2(𝑎𝑎+𝑏𝑏)�!
2(𝑎𝑎+𝑏𝑏)≤1
𝑎𝑎=0,𝑏𝑏=0 , as there is one possibility for the values of a and 

b, i.e., a = b = 0 since 2(a+b) ≤ i − j − k = 1. By putting these values, we get 𝑖𝑖!
𝑗𝑗!𝑘𝑘!

. 

Now, τ − i = 0, τ − j = k + 1, τ − k = j + 1. Thus, 𝜏𝜏!�(𝜏𝜏−𝑖𝑖)(𝜏𝜏−𝑗𝑗)+(𝜏𝜏−𝑗𝑗)(𝜏𝜏−𝑘𝑘)+(𝜏𝜏−𝑘𝑘)(𝜏𝜏−𝑖𝑖)�
(𝜏𝜏−𝑖𝑖)!(𝜏𝜏−𝑗𝑗)!(𝜏𝜏−𝑘𝑘)!

=
𝑖𝑖!(0+(𝑗𝑗+1)(𝑘𝑘+1)+0)

0!(𝑗𝑗+1)!(𝑘𝑘+1)!
= 𝑖𝑖!

𝑗𝑗!𝑘𝑘!
. Hence proved.         ∎ 

Similarly, the above-mentioned equation (Eqn. 8) can be proved when τ = j or k. 

5 Number of Minimal Paths in 26-Neighborhood 
The formulation for NSP in 26-neighborhood in cubic grid depends on NSP in 8-
neighborhood in 2D. This is exactly the chessboard distance in 2D [35]. The NSP 
in 8-neighborhood in 2D had been proposed by Das [3, 4] with recurrence relations, 
in this paper we show a shorter direct proof with combinatorial tools (Eqn. 9). We 
count NSP from the origin to a point p(i, j). Without loss of generality, we may 
assume that the absolute value of the first coordinate of p is not less than the absolute 
value of its second coordinate, i.e., |i| ≥ |j|. Similarly, as in Theorem 2, we use a 
variable, here b, to denote the possible number of steps that in which both 
coordinates are changed, the first is changed in the direction of p from q, while the 
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second one is changed in opposite way. Based on that we formulate the result in the 
next theorem, and one may see the formal details in the proof. 

Theorem 4. Let q = (0, 0) be the origin, and let point p = (i, j) be such that their 
distance is i. Then, in 2D with 8-neighborhood, the number of minimal paths from 
q to the point p is given by 

𝑓𝑓8(𝑖𝑖, 𝑗𝑗) = �
|𝑖𝑖|!

𝑏𝑏! (|𝑗𝑗| + 𝑏𝑏)! (|𝑖𝑖| − |𝑗𝑗| − 2𝑏𝑏)!

2𝑏𝑏≤|𝑖𝑖|−|𝑗𝑗|

𝑏𝑏=0

     where |𝑖𝑖| ≥ |𝑗𝑗|                      (9) 

Proof. The length of a shortest path between p(i, j) and q(0, 0) in 8-neighborhood 
is max {|i|, |j|}. By the symmetry of the grid, we show the proof for the case 0 ≤ j ≤ 
i, in this case the distance is i. With respect to the positive x-direction, let b be the 
number of moves along right-bottom diagonal in the shortest path where x-
coordinate increases by 1 and y-coordinate decreases by 1, and d = |j| + b be the 
number of moves along right-top diagonal in the shortest path where the x- and y-
coordinates increases by 1. A shortest path involves i steps, out of which if there are 
b right-bottom moves then d = j + b moves only in right-top direction, hence, the 
number of paths is given by |𝑖𝑖|!

𝑏𝑏!(𝑗𝑗+𝑏𝑏)!(𝑖𝑖−𝑗𝑗−2𝑏𝑏)!
. It may be noted here that b + d ≤ i, i.e., 

i − j − 2b as the total number of moves cannot be more than i. By summing over the 
different possible combinations of b and d, the total number of shortest paths is 
given by 𝑓𝑓8(𝑖𝑖, 𝑗𝑗) = ∑ |𝑖𝑖|!

𝑏𝑏!(𝑗𝑗+𝑏𝑏)!(𝑖𝑖−𝑗𝑗−2𝑏𝑏)!
2𝑏𝑏≤ 𝑖𝑖−𝑗𝑗
𝑏𝑏=0 .                                              ∎ 

The number of paths from q(0, 0) to other points in 8-neighborhood in 2D are shown 
in Fig. 5. Figure 6 shows two examples of all possible paths from a source to 
destination. For a particular path (shown in red) among all possible shortest paths, 
the l and r values are given for ease of understanding. The formulation for |j| > |i|, 
is just reverse (exchanging i with j) of the above equation (Eq. 9). The values 
appearing in 8-neighborhood in 2D are also present in 26-neighborhood of cubic 
grid counting the number of shortest paths from the origin to p(i, j, k) if i = j ≥ k or 
j = k ≥ i or i = k ≥ j (see Fig. 5 and Fig. 7). 

Now we are ready to state our last result. Without loss of generality, we count the 
NSP from the origin to a point p = (i, j, k) such that their distance is i, i.e., |i| ≥ |j| 
and |i| ≥ |k|. The variables a and b are used to count those steps where the y and the 
z coordinates are changing not to the direction of j and k, respectively, i.e., they are 
decreasing if the appropriate coordinate of p is nonnegative. 

Theorem 5. The number of minimal paths from q = (0, 0, 0) to any point  
p = (i, j, k) in 26-neighborhood is 
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Figure 5 
The NSP from origin to other points in 8-neighborhood in 2D. (The coordinate pairs are written 

in parentheses and the corresponding NSP values are also mentioned.) 

𝑓𝑓26𝑁𝑁(𝑖𝑖, 𝑗𝑗, 𝑘𝑘) = �
|𝑖𝑖|!

𝑏𝑏! (|𝑗𝑗| + 𝑏𝑏)! (|𝑖𝑖| − |𝑗𝑗| − 2𝑏𝑏)!

2𝑏𝑏≤|𝑖𝑖|−|𝑗𝑗|

𝑏𝑏=0

× �
|𝑖𝑖|!

𝑎𝑎! (|𝑘𝑘| + 𝑎𝑎)! (|𝑖𝑖| − |𝑘𝑘| − 2𝑎𝑎)!

2𝑎𝑎≤|𝑖𝑖|−|𝑘𝑘|

𝑎𝑎=0

                                (10) 

Proof. The length of a minimal path between p(i, j, k) and q(0, 0, 0) in 26-
neighborhood is max {|i|, |j|, |k|} = i (given in Eqn. 4) (say). In each step of a shortest 
path in 26-neighborhood, at most three coordinates can change. A shortest path in 
26-neighborhood is a combination of a shortest path in xy-plane, from q(0, 0, 0) to 
pxy(i, j, 0) and a shortest path in xz-plane, from q(0, 0, 0) to pxz(i, 0, k). With each 
shortest path in xy-plane, each shortest path in xz-plane is combined to get the total 
NSP in 3D. Thus, the NSP in 26N is given by f(i, j) × f(i, k) where  
f(i, j) and f(i, k) are NSPs in xy- and xz-planes respectively (Theorem 4). Thus,  
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Figure 6 

The NSP between the origin and other points in 8-neighborhood in 2D. The shaded portion 
shows the cells covered by all possible paths between two points out of which one path is 

shown by red color where |j| ≥ |i|. The path in left figure has b = 3 and d = |j| + b = 3 and that of 
right figure is b = 0 and d = |j| + b = 2. 

𝑓𝑓26𝑁𝑁(𝑖𝑖, 𝑗𝑗, 𝑘𝑘) = ∑ |𝑖𝑖|!
𝑏𝑏!(|𝑗𝑗|+𝑏𝑏)!(|𝑖𝑖|−|𝑗𝑗|−2𝑏𝑏)!

× ∑ |𝑖𝑖|!
𝑎𝑎!(|𝑘𝑘|+𝑎𝑎)!(|𝑖𝑖|−|𝑘𝑘|−2𝑎𝑎)!

2𝑎𝑎≤|𝑖𝑖|−|𝑘𝑘|
𝑎𝑎=0

2𝑏𝑏≤|𝑖𝑖|−|𝑗𝑗|
𝑏𝑏=0   

Where, a and b indicate the numbers of steps in right-bottom projected directions 
(moves that simultaneously increasing the first and decreasing the second 
coordinates, i.e., in positive x- and in negative y-directions, the z-directions might 
be arbitrary, i.e., ±1 or +0 for these moves) and right-away projected directions 
(moves in positive x- and negative z-directions, by increasing the first and 
decreasing the third coordinate, while the second coordinate might change by ±1 or 
not in these moves), respectively, if j and k are nonnegative.                             ∎ 

From the Equation 10, the formulation for NSP between two points for |j| ≥ |k|, |i| 
and |k| ≥ |i|, |j| can be derived similarly. The NSP of length three between  
q(0, 0, 0) and some other points are shown in Fig. 7. Figure 8 shows an example 
path from q(0, 0, 0) to p(7, 4, 2) which has 2 right-away movements with 
corresponding 4 right movements and 1 right-bottom with corresponding 5 right-
top movements. 
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Figure 7 
The NSP from origin to other points in 26-neighborhoods for Length = 3. (The coordinate 

triplets are written in parentheses and the corresponding NSP are also mentioned.) Observe that 
the results are not only symmetric, but they are according to a multiplication table, by Eqn. 10, 
where the elements of the border rows and columns are specified by the formula for the 2D L∞ 
distance, i.e., the chessboard distance (Eqn. 9). Obviously, the diagonals contain the squares of 

the numbers shown at the borders. 

 



Acta Polytechnica Hungarica Vol. 21, No. 6, 2024 

‒ 183 ‒ 

  

Figure 8 
One of the shortest paths of length 7 from (0, 0, 0) to (7, 4, 2) is shown and correspondingly the 
values of l, r, b, and t are 2, 4, 1, and 5 respectively. The projection of the paths in xy-plane is 

shown at back in green color and that in xz-plane in blue color at the bottom. 

Conclusions 

The shortest path problem has various applications in several fields, especially in 
image processing and image analysis. Digital distances are some of the important 
features in this regard and many studies have already been presented. In this paper, 
extending the results of Das [4] from 2D to 3D, using L1, D18 and L∞ distances, the 
number of minimal paths (NSP) between any point pair in the cubic grid are 
presented for 6-, 18- and 26-neighborhood where the coordinate triplets of the two 
points are provided. It is also to be noted that the formulation for the NSP in 8-
neighborhood in 2D is stated in this paper using combinatorial tool. In future, NSP 
problem in cubic grid can be extended for general orthogonal polyhedron. A 3D 
object can be represented by 3D orthogonal polyhedron. The critical points at 
different parts of 3D orthogonal polyhedrons need to be identified and the numbers 



M. Dutt et al. Counting of Shortest Paths in Cubic Grid 

‒ 184 ‒ 

of paths, between all such pairs of points, are important features for the shape 
analysis of 3D objects. Similar to the methods of path counting were applied in 2D 
images in [35]. 
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