
Acta Polytechnica Hungarica Vol. 12, No. 5, 2015

 – 191 –

Load Profile-based Efficiency Metrics for Code

Obfuscators

Marko Đuković

Schneider Electric DMS, Narodnog Fronta 25A, 21000 Novi Sad, Serbia, E-mail:

marko.djukovic@schneider-electric-dms.com

Ervin Varga

University of Novi Sad, Faculty of Technical Sciences, Department of Power,

Electronic and Telecommunication Engineering, Trg Dositeja Obradovića 6,

21000 Novi Sad, Serbia, E-mails: evarga@uns.ac.rs, e.varga@ieee.org

Abstract: Code obfuscation techniques are gaining more attention and importance as

ubiquitous computing becomes commonplace. The necessity to protect intellectual property

rights as well as the need to prevent tampering with code running on all sorts of

autonomous devices increases the demand for high quality code obfuscator tools.

Currently, the principal quality metrics for evaluating code obfuscators mostly revolve

around aspects such as security and functional correctness of the generated code.

Nevertheless, power consumption plays a central role in handheld devices, as battery life

and endurance is usually the bottleneck in achieving an acceptable level of user

satisfaction with the system. Consequently, the criteria for choosing the right code

obfuscator should be extended to also take into account the impact of obfuscation on the

overall power consumption. This paper presents one viable approach for evaluating code

obfuscators in regard to a power consumption level of the obfuscated code. The

methodology is based upon load profiles. The performance of the solution has been tested

using various commercial code obfuscators. The results show that there are significant

differences in power consumption levels between original and obfuscated code. In order to

select an obfuscation tool it is not enough to rely solely on non-power related attributes.

High increase in a power consumption level may be totally inappropriate on mobile

devices, despite the best obfuscation achieved with that particular tool. Accordingly, power

consumption level should be incorporated into a set of quality metrics for code obfuscators.

Keywords: Energy-aware system; measurement techniques; protection mechanisms;

obfuscation

M. Đuković et al. Load Profile-based Efficiency Metrics for Code Obfuscators

 – 192 –

1 Introduction

We are nowadays witnessing an extremely rapid development in the domain of

information technologies (IT), which entails an additional level of electrical power

dependency. This fact is especially important taking into account the proliferation

of mobile solutions. The aforementioned trend is inevitably followed by higher

power costs, partly due to increased number of data centers, server farms, etc. [1].

The IT sector today uses around 8% of the total produced electrical energy at the

global level, and this tendency continues to rise [2].

One of the key challenges facing software engineering today is in relation to

power consumption of executable code. Reducing load on batteries is not only

pertinent in the case of handheld devices, but in general. There are already

optimizing compilers for embedded software targeted to keep power consumption

of running programs as low as possible (previously speed and memory

consumption were the only key optimization goals for compilers). Naturally, any

such optimization is a very complex task, as the code still needs to meet

acceptable performance characteristics as well as utilize computing resources

judiciously. Nevertheless, despite the sophistication level of a compiler in

choosing the best possible route to generate energy-aware binaries, overall power

reduction is still mainly dictated by the source code itself. In other words, it is

impossible to leave every power consumption issues to the compiler. If the

algorithm and its implementation are inherently power hungry then there is very

little a compiler can do to mitigate the problem.

Another important aspect brought extensively into the foreground, particularly by

the proliferation of the pervasive computing paradigm, is pertaining to the

dependability and security of the software. As software is running on all sorts of

devices they are more exposed to keen eyes of possibly malicious intent.

Similarly, end users are also endangered by accepting and allowing various

software to run on their devices. Consequently, much effort is invested to keep the

software protected from reverse engineering and modification as well as to protect

intellectual property rights. One technique to impede reverse engineering of

software is code obfuscation. The basic idea is very simple. It is related to the way

of rearranging the code to become incomprehensible for human readers, while

guaranteeing semantic equivalence with original code (this is an imperative

requirement). Of course, any such rearrangement inevitably changes the runtime

execution characteristics of the original code. Among these is the power

consumption level.

All in all, code obfuscation is one of the most popular techniques to protect

programs from malicious code tampering and/or to prevent illegal appropriation of

intellectual property rights. However, obscurity comes at the cost of memory, run-

time and power consumption overhead. This research paper addresses the problem

of estimating additional power consumption due to code obfuscation. Power

consumption is a crucial problem for mobile devices, because of their limited

Acta Polytechnica Hungarica Vol. 12, No. 5, 2015

 – 193 –

power resources available as well as because of many power intensive sensors

commonly installed. This paper presents a potential step forward in understanding

the trade-off between higher level of code security and limited power resources.

To derive estimates and quantify the effects of obfuscation on power consumption

an appropriate measurement and evaluation is needed. Without estimating the

elevation in power consumption users might perceive degradation from the

viewpoint of usability. If mobile devices need to be recharged more often, due to

power hungry code, then the benefits of having higher security would be

counterbalanced by the necessity to save power. Thus, users willing to fully

leverage secure applications, to carry out sensitive e-commerce related actions,

would be penalized. This is the reason that measures need to be taken to estimate

and balance the obfuscation with power consumption.

2 Related Work

The analysis of how code obfuscation impacts power consumption is an uncharted

research area. Papers dealing specifically with the influence of obfuscation

techniques on power consumption do not exist. There are related works, but

mainly for measuring electricity consumption in general, or for very specific

targets. Essentially, the current research about the influence of software on power

consumption is divided into several areas: code refactoring [3], lock free data

structures [4], design patterns [5, 6] and web servers [7].

Anderson [8] presents a system whose purpose is to detect malware by analyzing

dynamic power consumption patterns during run-time based on load profiles. This

is possible as the signature of malware’s power usage looks very different from

the baseline power draw of a chip’s standard operations [8]. The proposed solution

is mainly useful in controlled environments (routers, switches, etc.), where the

reference behavior of the system is known in advance. Our solution is targeted to

code obfuscators, hence in some way expands the domain of load profile-based

techniques for estimating power consumption. Tiwari in [9] presents one such

measurement based approach for determining the power consumption rate at the

granularity of CPU instructions. Research results were obtained for three

architecturally different microprocessor types. The method and estimated results

described in [9] were essentially the starting point for the purposes of our work.

Paper [10] presents a methodology for power consumption estimation of

embedded processors/systems. The work described in [11] elaborates about a

model for energy and power estimation using constant parameters. Finally, [12]

describes in detail the power consumption at the level of assembly instructions for

advanced computer systems. The rest of the paper is organized in the following

way: Section 2 presents an overview of the code obfuscation problem domain and

its importance together with some brief theoretical background, Section 3 presents

M. Đuković et al. Load Profile-based Efficiency Metrics for Code Obfuscators

 – 194 –

an overview of the architecture and methodology used for analyzing the power

consumption of obfuscated code, Section 4 discusses the results obtained for

various code obfuscators and Section 5 concludes the paper as well as details the

future work of the authors.

3 Obfuscation and Problem Definition

The objective of this study was the identification of major problems related to

energy efficiency as a consequence of code obfuscation, the most commonly used

protection mechanism against reverse engineering. Recently, energy is becoming a

very important factor in the design of advanced computer systems. Researchers

invest considerable efforts in power conservation techniques [13], [14]. In this

paper we have studied the effects of obfuscation on power consumption at the

processor level for the .NET platform. For this purpose, we have developed the

framework for analyzing and generating load profiles. These are energy profiles

showing diagrams of electrical power consumption per instruction during the

execution of an application.

3.1 Obfuscation Problem

Thanks to rapidly growing popularity of internet technologies, software

companies are facing an ever-increasing threat of theft of intellectual property

rights. Code reverse engineering allows competitors to reveal important

technological innovations, secrets and also to inflict some inestimable damage.

Business logic comprehension is not conditioned on understanding the whole

code. Consequently, reverse engineering entails development of new protection

mechanisms, which usually revolve around: encryption, code morphing, security

through obscurity and obfuscation. These techniques may also be used for

protection against malwares, another growing problem in the software industry.

Encryption is a very popular method of intellectual property protection against

reverse engineering and it implies encryption of a byte code, so that the client is

the only one who has the necessary key to decrypt and run the application. The

problem with encryption is to find a safe way for exchanging keys.

Of all currently relevant principles, code obfuscation is the most commonly used.

First concepts are mentioned in [15] and are pertaining to key exchange

mechanisms. Risk of unauthorized code access, loss of intellectual property,

finding software vulnerabilities and economic losses that individuals or companies

may undergo are urgent problems nowadays. All programming languages can be

obfuscated, but under the highest risk of being reverse engineered are software

packages developed for the JVM (Java Virtual Machine) and .NET platforms.

Unlike a native binary code, an intermediate byte code contains names of classes,

methods and fields, thus disassemblers may easily generate almost identical code

Acta Polytechnica Hungarica Vol. 12, No. 5, 2015

 – 195 –

to the original. The previously mentioned platforms also utilize Just-In-Time (JIT)

compiling, which allows byte code to be translated on-the-fly into a machine code.

All in all, a high level of manageability of virtual machine code makes reverse

engineering more feasible than in the case of a code produced by a compiler for

the so-called non-managed languages (such as, C++ and C). In the latter case,

obfuscation is often realized by using special macros, which perturb the source

code before being given to the compiler.

Besides all good qualities, obfuscation has couple of disadvantages. The most

considerable drawback is the fact that obfuscated applications contain many more

executable instructions. Moreover, many transformations increase the execution

time of programs, thus indirectly rising their power consumption needs.

3.2 Types of Obfuscation

There are several types of obfuscation (various obfuscation transformations are

classified in detail in [16]), but we will list only those ones that are relevant in this

study:

3.2.1 Lexical Obfuscation

Encompasses lexical changes in identifier names to hide their real meaning.

Lexical obfuscation is a relatively weak type of protection, because an attacker

can understand the meaning of the changed identifier from the context. It has the

smallest impact on the energy profile. This type of obfuscation is usually not used

independently, since there are tools that facilitate the understanding of lexically

perturbed code.

3.2.2 Data Obfuscation

Used in situations when data itself needs to be protected. The data is modified in

such a way that it is very hard to discern its value based upon static code analysis.

This type of obfuscation affects the values and structures of data located in a

program. The common transformations of this type includes: array and variable

merging/splitting, data encoding, inheritance relation modification and variable

reordering [17]. Array related manipulations are specifically elaborated in more

detail in [18], [19]. Data obfuscation is very powerful in object-oriented systems,

due to importance of understanding inheritance relations. A simple example of a

data obfuscation is changing the value of one variable with an arbitrary number of

new variables. Hence, the value of the original variable cannot be determined

without combining the values of an arbitrary number of auxiliary variables. This

similar idea can also be applied to classes [20]. An arbitrary number of classes

may be fused together and replaced with one big class, and vice versa. If these two

methods are used in tandem, an application would be notably changed and become

extremely incomprehensible. It has to be noted, that this type of obfuscation has a

big impact on the energy profile, thus will be further described in Section 5.

M. Đuković et al. Load Profile-based Efficiency Metrics for Code Obfuscators

 – 196 –

3.2.3 Control Obfuscation

Affects the flow of execution by altering it with irrelevant conditional statements.

This results in reordering of methods, loops and statements. There are two broad

categories of this type of obfuscation: opaque predicate and dynamic dispatch

[21], [22], [23], [24], [25], [26], [27]. Analyzing such obfuscated code is

enormously hard as there is no way to interrelate various program blocks with

each other. Usually, aggressive control flow adjustments do negatively impact the

performance of the application, as any kind of speculative execution optimizations

at the CPU level are basically rendered unusable. This type of obfuscation

considerable influences the power consumption, therefore it is also included in the

study.

4 Architecture & Methodology

The proposed architecture depicted on Fig. 1 is comprised from 4 sub-modules

denoted as S1, S2, S3 and S4, respectively. S1 represents the disassembling of the

original source code (assembly), which is carried out by using the OllyDbg

disassembler. S2 is hosting the 3 commercial obfuscators used in this study, and

this is the place where obfuscation happens. The output from this phase is an input

to S3, which is similar to S1 except that it works on obfuscated code. The outputs

of S1 and S3 are eventually fed into S4, where load profiles are generated for

various instruction sets (IS) using the CP Generator component. The load profiles

are estimated data based upon static code analysis, and [12] explains the processor

architecture together with accurate figures of how much power is needed by

various instructions. As we are interested in obtaining relative power consumption

differences, the concrete processor architecture is not so relevant to the study. The

original and obfuscated assemblies are binary files with an extension ".dll" and/or

".exe", respectively. Output files from the S1 and S3 sub-modules (denoted as

"Original IS" and "Obfuscated IS"), obtained after disassembling the input

artifacts, are textual files with an extension ".txt". The executable component

named as "CP Generator" was written in the C# language. The resulting load

profiles (generated inside the S4 sub-module) are illustrated in Section 5.2.

On the other hand, it has to be emphasized that the proposed architecture has its

limitations. For example, control obfuscations might alter static control flow such

that it still has a very similar "dynamic" measured consumption. Nevertheless, the

proposed approach may forecast a very different "static" power consumption. In

this respect, the suggested architecture may be used to highlight the pertinent

aspects of this novel metric, which is the aim of this paper. A combined

"static/dynamic" analysis would give a much better picture of the actual power

consumption.

Acta Polytechnica Hungarica Vol. 12, No. 5, 2015

 – 197 –

Figure 1

The architecture of the measurement scheme

5 Performance Evaluation

This section presents the evaluation results for three commercial obfuscators: the

Agile.NET, Confuser and the Smart Assembly. The inputs were a simple matrix

multiplication program and a multi-agent system instance. This section is divided

into 2 parts: the first part contemplates the important obfuscation techniques

(illustrated with small snippets) [28], while the second part provides a

comparative view of obtained results for each obfuscator using the previously

mentioned inputs. Lexical obfuscation is denoted as L1, lexical and data

obfuscation as L2, while all three types as L3.

Figure 2

Original source code in assembly language

M. Đuković et al. Load Profile-based Efficiency Metrics for Code Obfuscators

 – 198 –

5.1 Obfuscation Techniques

Part of the source code used to exemplify different obfuscation techniques is

shown in Fig. 2.

5.1.1 Insertion of Dead (Garbage) Code

Represents a very simple and frequently used technique based upon the insertion

of specific assembly instructions. The only purpose of these are to change the

code's size and shape while retaining the original functionality [29]. These extra

instructions are totally insignificant and the most famous among them is NOP (No

Operation). Fig. 3 shows an example of the code after insertion of these

superfluous instructions.

Figure 3

NOP operation as a dead code

Dead code may also be manually inserted by combining certain assembly

instructions. The most trivial example revolving around an increase/decrease of

the value inside the CX register is given in Table 1.

Table 1

Dead code manipulation examples

Commands Explanation

SUB CX, 2

INC CX

INC CX

A subtraction of 2 followed by a double

increment does not change the value inside

the CX register.

PUSH CX

POP CX

The value of CX remains unchanged,

because the CX register receives a

previously saved value.

Acta Polytechnica Hungarica Vol. 12, No. 5, 2015

 – 199 –

5.1.2 Register or Variable Reassignment

Represents a very simple and popular method based on switching registers of

different types. An example of this kind of technique is presented in Fig. 4. In this

example, the following switches have been carried out: EAX –> EBX, AL–>BL,

EBX–>EDX, BL–>DL, DH–>AH, EDX–>EAX.

Figure 4

Register reassignment

5.1.3 Subroutine Reordering

Embodies a bit more complex scheme by randomly altering the order of execution

of subroutines. This technique has factorial number of variants in regard to the

number of subroutines [30]. For example, if the code contains 10 subroutines then

the obfuscator may generate 10! variants of the original code.

5.1.4 Instruction Substitution

This method uses as input a library of equivalent instructions. The main idea is to

replace one sequence of instructions with another one without changing the

original functionality. This method has a high impact on the code's signature, it is

very hard to reverse engineer it, especially in the case when the previously

mentioned library is not known. Fig. 5 shows an example for instructions XOR

and SUB. Evidently, it is hard to notice what is going on in the altered code.

M. Đuković et al. Load Profile-based Efficiency Metrics for Code Obfuscators

 – 200 –

Figure 5

Instruction substitution

5.1.5 Code Transposition

There are two commonly used approaches. The first one is based on a random

distribution of instructions and insertion of unconditional branches and/or jumps

to retain the original flow of control [31]. The second one relies on the exchange

of independent instructions and replacement of these with new ones. This

approach is difficult to implement, since it is not easy to find such independent

sets of instructions. Figs. 6 and 7 show a test code for both approaches.

Figure 6

Code transposition – unconditional branches

Acta Polytechnica Hungarica Vol. 12, No. 5, 2015

 – 201 –

Figure 7

Code transposition – independent instructions

5.2 Matrix Multiplication - Results

Here, we present the results of measuring 3 parameters (obfuscated code size,

average power consumption per instruction and number of executed instructions)

of obfuscated code as well as visually show their comparative values. Fig. 8 shows

the load profile of the non-obfuscated matrix multiplication test program.

Figure 8

Non-obfuscated load profile of the matrix multiplication program

Case L1: comparative view of load profiles obtained by applying the L1

obfuscation technique is shown in Fig. 9. Evidently, the output generated by the

Confuser considerably differs from the original version of the code. The average

consumption per instruction has not changed too much (~3 mA), but the number

of executed instructions have increased 4.5 times. This resulted in an elevated

power consumption level while running the obfuscated code. Agile.NET has

raised the code size by 35%, while the average consumption per instruction

jumped by almost 14 mA. Smart Assembly produced the best results here. It

M. Đuković et al. Load Profile-based Efficiency Metrics for Code Obfuscators

 – 202 –

reduced the number of instructions thankfully to the optimization applied when

using the instruction substitution technique. Fig. 10 graphically shows the

measured parameters.

Figure 9

Comparative view of load profiles after L1 obfuscation cycle for all obfuscators

Figure 10

Graphical view for measured parameters after L1 obfuscation for original and obfuscated profiles

Case L2: this obfuscation cycle produced totally different load profiles, as it is

obvious from Fig. 11.

Acta Polytechnica Hungarica Vol. 12, No. 5, 2015

 – 203 –

Figure 11

Comparative view of load profiles after L2 obfuscation cycle for all obfuscators

Agile.NET has produced a code with the biggest power demand. Despite the fact

that the average power consumption per instruction remained the same, the code

base has increased by a factor of 35 (huge amount of dead code, conditional

branching instructions and jumps). This has caused an increase in power

consumptions. Fig. 12 graphically shows the measured parameters for this cycle.

Figure 12

Graphical view for measured parameters after L2 obfuscation for original and obfuscated profiles

Case L3: the biggest changes have been observed in this cycle as depicted in Fig.

13. Confuser and Agile.NET have utilized extremely huge instruction sets, while

at the same time the power consumption per instruction has also raised. This effect

is best visible in the case of the Confuser, which is around 57 mA. The number of

instructions are increased due to very large amount of dead code as well as high

M. Đuković et al. Load Profile-based Efficiency Metrics for Code Obfuscators

 – 204 –

level of instruction substitutions and code transpositions. Smart Assembly gave

the best results here, where the load profile is very similar to the original code

with a higher consumption level due to dead code. Fig. 14 graphically shows the

measured parameters for this cycle.

Figure 13

Comparative view of load profiles after L3 obfuscation cycle for all obfuscators

Figure 14

Graphical view for measured parameters after L2 obfuscation for original and obfuscated profiles

Based upon the presented results it is quite straightforward to qualify and classify

code obfuscators in regard to their associated load profile, i.e. profile resulted by

executing the corresponding obfuscated code. Apparently, a load profile nicely

summarizes all the various effects on the code (number of instructions, type of

instructions used, execution time, etc.), which would be quite hard to judge in

advance just considering each of these effects independently.

Acta Polytechnica Hungarica Vol. 12, No. 5, 2015

 – 205 –

5.3 Agents in a Proprietary Multi-Agent System

The associated energy consumption problems due to obfuscation are nicely

illustrated in the following multi-agent system case study. The benefits of

leveraging a multi-agent system in an electrical power distribution network is best

reflected in an increased information exchange and processing capabilities of the

network. Power networks are radial by nature, where a consumer may be

conveniently represented by an agent situated inside a hierarchically organized

structure. An example of simple power network is shown in Fig. 15.

Figure 15

Sample power distribution network

The agents are grouped by zones, which are themselves organized in a hierarchical

fashion [33]. One straightforward and simple method for creating such a zone

hierarchy is to just follow the network's topology. Agents inside a zone actively

exchange various operational data, like voltage levels, load flow, etc. Fig. 16

depicts one example of mapping agents to a hierarchy of zones.

Figure 16

Power distribution network modeled with zones

The example shown in Fig. 16 contains 5 agents and 4 communication zones

including the root zone. Agents A1 and A2 belong to the same zone Z1 and as

such behave like equal peers. Zone Z2 aggregates zone Z1 and agent A3. In order

M. Đuković et al. Load Profile-based Efficiency Metrics for Code Obfuscators

 – 206 –

for agent A3 to communicate with any agent from zone Z1 it needs to send

messages toward Z1 zone's representative (it might be either agent from zone Z1).

Fig. 17 shows the load profile of the non-obfuscated agent's control program.

Figure 17

Non-obfuscated load profile of the agent's control program

Case L1: comparative view of load profiles got by applying the L1 obfuscation

technique is shown in Fig. 18. Apparently, all outputs are similar by the number of

instructions. Fig. 19 graphically shows the measured parameters.

Figure 18

Comparative view of load profiles after L1 obfuscation cycle for all obfuscators

Acta Polytechnica Hungarica Vol. 12, No. 5, 2015

 – 207 –

Figure 19

Graphical view for measured parameters after L1 obfuscation for original and obfuscated profiles

Case L2: as in the case of the matrix multiplication, this obfuscation cycle

produced totally different load profiles (see Fig 20). The load profile, which

resulted after leveraging Agile.NET, clearly emphasizes the fact that the number

of instructions has doubled compared to the original case.

Figure 20

Comparative view of load profiles after L2 obfuscation cycle for all obfuscators

Fig. 21 graphically shows the measured parameters for this cycle.

M. Đuković et al. Load Profile-based Efficiency Metrics for Code Obfuscators

 – 208 –

Figure 21

Graphical view for measured parameters after L2 obfuscation for original and obfuscated profiles

Case L3: the biggest difference was observed in the L3 cycle as depicted in Fig.

22. Agile.NET has utilized huge instruction sets, while the power consumption per

instruction for Confuser raised almost up to 400 mA. Smart Assembly again gave

the best results here, where the load profile is very similar to the original one (a

higher consumption level is due to the presence of dead code). Fig. 23 graphically

shows the measured parameters for this cycle.

Figure 22

Comparative view of load profiles after L3 obfuscation cycle for all obfuscators

Acta Polytechnica Hungarica Vol. 12, No. 5, 2015

 – 209 –

Figure 23

Graphical view for measured parameters after L3 obfuscation for original and obfuscated profiles

Conclusions and Future Work

This paper shows that load profile based classification of code obfuscators is

assuredly a viable method. The power consumption pattern of an application

represents its unique signature (print), which might be used as a quality metric for

judging its energy efficiency. This aspect is gaining much popularity nowadays,

especially with the introduction of new quality attributes such as sustainability. It

is not anymore just enough to have high performing and secure applications.

Energy considerations need to be brought into a foreground, as customer

satisfaction will surely depend upon how long the battery on his/her mobile device

will last while running programs. On the other hand, it is quite obvious that

ubiquitous computing and the proliferation of code on remote devices requires

well thought out mechanisms and technologies to protect and secure code. This is

not only for the benefit of protecting intellectual properties, but also to save

customers from running bogus code, which might inflict undesired damages.

Obfuscation, is just one although very important, way to achieve this goal.

This paper has presented a novel load profile based power consumption metric to

score the efficiency of code obfuscators. Using this metric it is now possible to

analyze and exactly express how code obfuscation impacts power consumption.

The paper gives an overview and explanation of common types and techniques of

obfuscation. These are all interrelated and their impact on power consumption

explained.

The study includes evaluation results for 3 commercial obfuscators: Agile.NET,

Confuser and Smart Assembly. To obtain experimental results a custom built

measurement architecture was implemented based on static code analysis.

The chosen static code analysis approach might occasionally produce false results.

Our future work is related to extend the framework to include dynamic

measurements, too. This would definitely result in a much higher accuracy during

evaluation of the various obfuscators.

M. Đuković et al. Load Profile-based Efficiency Metrics for Code Obfuscators

 – 210 –

Load profiles are very hard to be spoofed by malware. Classical signature based

malware detection methods may be thwarted by various polymorphic packers.

This is not the case with a load profile. Malware cannot even detect whether it is

running under supervision or not from the viewpoint of its energy consumption.

Although static analysis of executable code to detect a malware is a promising

technique [32], load profiles represent a perfect side-channel to watch out for

changes in behavior. There is no way to alter the original code without disturbing

its load profile.

Besides detecting unusual changes in the power consumption due to software

changes, load profiles may also be used to detect failing hardware. This is

especially interesting in highly distributed environments.

References

[1] T. Guelzim, M. Obaidat: Chapter 8 – Green Computing and

Communication Architecture, Handbook of Green Information and

Communication Systems, Academic Press, 2013

[2] H. T. Mouftah, B. Kantarci: Energy Efficient Cloud Computing – A Green

Migration of Traditional IT, Handbook of Green Information and

Communication Systems, Academic Press, 2013, pp. 295-330

[3] C. Sahin, L. Pollock, J. Clause: How do Code Refactorings Affect Energy

Usage?, Proceedings of the 8
th

 International Symposium on Empirical

Software Engineering and Measurement, 2014

[4] N. Hunt, P. Sandhu, L. Ceze: Characterizing the Performance and Energy

Efficiency of Lock-Free Data Structures, Proceedings of the 15
th

 Workshop

on Int. between Compilers and Computer Architectures, 2011, pp. 63-70

[5] C. Sahin, F. Cayci, I. L. Gutierrez, J. Clause, F. Kiamilev, L. Pollock, K.

Winbladh: Initial Explorations on Design Pattern Energy Usage, Proc. of

the First International Workshop on Green and Sustainable Software, 2012,

pp. 55-61

[6] S. Christian Bunse: On Energy Consumption of Design Patterns, Proc. of

the 2
nd

 Workshop on Energy Aware Soft. Engineering and Development,

2013, pp. 7-8

[7] I. Manotas, C. Sahin, J. Clause, L. Pollock, K. Winbladh: Investigating the

impact of Web Servers on Web Application Energy Usage, Proc. of the

Second Inter. Workshop on Green and Sustainable Software, 2013

[8] M. Anderson: Rooting Out Malware with a Side Channel Chip Defense

System, IEEE Spectrum, Jan. 2015

[9] V. Tiwari, S. Malik, A. Wolfe: Instruction Level Power Analysis and

Optimization of Software, IEEE Trans. Very Large Scale Integration (VLSI

Systems), 1996, pp. 326-328

Acta Polytechnica Hungarica Vol. 12, No. 5, 2015

 – 211 –

[10] S. Nikolaidis, Th. Laopoluos: Instruction Level Power Consumption

Estimation of Embedded Processors for Low Power Application, CIEEE

Conf. Intelligent Data Acquisition and Advanced Computing Systems, Vol.

24, 2002, pp. 133-137

[11] J. T. Russel, M. F. Jacome: Software Power Estimation and Optimization for

High Performance, 32-bit Embedded Processors, Proc. Conf. Computer

Design, 1998, pp. 328-333

[12] V. Tiwari, S. Malik, A. Wolfe: Power Analysis of Embedded Software: A

First Step Towards Software Power Minimization, IEEE Trans. Very Large

Scale Integration (VLSI), 1994, pp. 437-445

[13] L. Benini, G. D. Micheli: System-Level Power Optimization: Techniques and

Tools, ACM Trans. Design Autom. Elect. System, 2000, Vol. 5, No. 2, pp.

115-192

[14] H. Zeng, C. S. Ellis, A. R. Lebeck, A. Vahdat: ECO Systems: Managing

Energy as a First Class Operating System Resource, Proc. Int. Conf.

Architectural Support Programming Languages System, 2002, pp. 123-132

[15] W. Diffie, M. Hellman: New Directions in Cryptography, IEEE Trans.

Information Theory, Vol. 22, No. 6, pp. 644-654

[16] C. S. Colberg, C. Thomborson: Watermarking, Tamper-Proofing and

Obfuscation Tools for Software Protection, IEEE Trans. Software Eng.,

2002, pp. 735-746

[17] J. T. Chan, W. Yang: Advanced Obfuscation Techniques for JAVA bytecode,

The Journal of System and Software (Elsevier - 2004), Vol. 71, No. 2, pp. 1-

11

[18] S. Drape: Generalizing the Array Split Obfuscation, The Journal of

Information Sciences (Elsevier - 2006), Vol. 177, No. 1, pp. 202-219

[19] S. Praveen, P. S. Lal: Array Data Transformation for Secure Code

Obfuscation, Proc. World Academy of Science, Engineering and

Technology, 2007, Vol. 21

[20] C. S. Colberg, C. Thomborson, D. Low: Breaking Abstraction and

Unstructuring Data Structures, IEEE Conf. Computer Languages, 1998a, pp.

28-38

[21] M. Sosonkin, G. Naumovich, N. Memon: Obfuscation of Design Intent in

Object Oriented Applications, Proc. Digital Rights Management, 2003, pp.

142-153

[22] C. Wang, J. Hill, J. C. Knightm J. W. Davidson: Protection of Software-

Based Survivability Mechanisms, Proc. Dependable System and Network,

IEEE Computer Society - 2001, pp. 193-202

M. Đuković et al. Load Profile-based Efficiency Metrics for Code Obfuscators

 – 212 –

[23] S. Chow, Y. Gu, H. Johnson, V. Zakharov: An Approach to the

Obfuscation of Control-Flow of Sequential Computer Programs, Int. Conf.

Information Security, 2001, pp. 144-155

[24] T. Toyofuku, T. Tabata, K. Sakurai: Program Obfuscation Scheme Using

Random Numbers to Complete Control Flow, Proc. International

Workshop Security in Ubiquitous Comp. Systems, 2005, Vol. 3823, pp.

916-925

[25] C. Collberg, C. Thomborson, D. Low: Manufacturing Cheap, Resilient and

Stealth Opaque Constructs, ACM Symposium on Principles Programming

Languages, 1998b, pp. 184-196

[26] A. Venkatraj: Program Obfuscation, Dep. of Computer Science Arizona

University, 2003

[27] J. Palsberg, S. Krishnaswamy, M. Kwon, D. Ma, Q. Shao, Y. Zhang:

Experience with Software Watermarking, IEEE Proc. Comp. Security

Applications, ACSAC - 2000, pp. 308-316

[28] S. Drape, A. Majumdor, C. Thomborson: Slicing Obfuscation - Design,

Correctness and Evaluation, ACM Proc. Digital Rights Management, 2007,

pp. 70-81

[29] I. You, K. Yim: Malware Obfuscation Techniques - A Brief Survey, IEEE

International Conference on Broadband, Wireless Computing,

Communication and Application, 2010, pp. 297-300

[30] A. Balakrishnan, C. Schulze: Code Obfuscation Literature Survey,

Computer Science - University of Wisconsin, 2005, USA

[31] W. Wong, M. Stamp: Hunting for Metamorphic Engines, Journal in

Computer Virology, 2006, Vol. 2, pp. 211-229

[32] M. Christodorescu, S. Jha: Static Analysis of Executable to Detect

Malicious Patterns, Proc. of Conference on USENIX Security Symposium,

2003, Vol. 1, pp. 169-186

[33] V. Renesse, K. P. Birman, W. Vogels: Astrolabe: A Robust and Scalable

Technology for Distributed System Monitoring, Management and Data

Mining, ACM Trans. Computer Systems, Vol. 21, pp. 164-206, 2003

