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Abstract: Code obfuscation techniques are gaining more attention and importance as
ubiquitous computing becomes commonplace. The necessity to protect intellectual property
rights as well as the need to prevent tampering with code running on all sorts of
autonomous devices increases the demand for high quality code obfuscator tools.
Currently, the principal quality metrics for evaluating code obfuscators mostly revolve
around aspects such as security and functional correctness of the generated code.
Nevertheless, power consumption plays a central role in handheld devices, as battery life
and endurance is usually the bottleneck in achieving an acceptable level of user
satisfaction with the system. Consequently, the criteria for choosing the right code
obfuscator should be extended to also take into account the impact of obfuscation on the
overall power consumption. This paper presents one viable approach for evaluating code
obfuscators in regard to a power consumption level of the obfuscated code. The
methodology is based upon load profiles. The performance of the solution has been tested
using various commercial code obfuscators. The results show that there are significant
differences in power consumption levels between original and obfuscated code. In order to
select an obfuscation tool it is not enough to rely solely on non-power related attributes.
High increase in a power consumption level may be totally inappropriate on mobile
devices, despite the best obfuscation achieved with that particular tool. Accordingly, power
consumption level should be incorporated into a set of quality metrics for code obfuscators.

Keywords: Energy-aware system; measurement techniques; protection mechanisms;
obfuscation
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1 Introduction

We are nowadays witnessing an extremely rapid development in the domain of
information technologies (IT), which entails an additional level of electrical power
dependency. This fact is especially important taking into account the proliferation
of mobile solutions. The aforementioned trend is inevitably followed by higher
power costs, partly due to increased number of data centers, server farms, etc. [1].
The IT sector today uses around 8% of the total produced electrical energy at the
global level, and this tendency continues to rise [2].

One of the key challenges facing software engineering today is in relation to
power consumption of executable code. Reducing load on batteries is not only
pertinent in the case of handheld devices, but in general. There are already
optimizing compilers for embedded software targeted to keep power consumption
of running programs as low as possible (previously speed and memory
consumption were the only key optimization goals for compilers). Naturally, any
such optimization is a very complex task, as the code still needs to meet
acceptable performance characteristics as well as utilize computing resources
judiciously. Nevertheless, despite the sophistication level of a compiler in
choosing the best possible route to generate energy-aware binaries, overall power
reduction is still mainly dictated by the source code itself. In other words, it is
impossible to leave every power consumption issues to the compiler. If the
algorithm and its implementation are inherently power hungry then there is very
little a compiler can do to mitigate the problem.

Another important aspect brought extensively into the foreground, particularly by
the proliferation of the pervasive computing paradigm, is pertaining to the
dependability and security of the software. As software is running on all sorts of
devices they are more exposed to keen eyes of possibly malicious intent.
Similarly, end users are also endangered by accepting and allowing various
software to run on their devices. Consequently, much effort is invested to keep the
software protected from reverse engineering and modification as well as to protect
intellectual property rights. One technique to impede reverse engineering of
software is code obfuscation. The basic idea is very simple. It is related to the way
of rearranging the code to become incomprehensible for human readers, while
guaranteeing semantic equivalence with original code (this is an imperative
requirement). Of course, any such rearrangement inevitably changes the runtime
execution characteristics of the original code. Among these is the power
consumption level.

All in all, code obfuscation is one of the most popular techniques to protect
programs from malicious code tampering and/or to prevent illegal appropriation of
intellectual property rights. However, obscurity comes at the cost of memory, run-
time and power consumption overhead. This research paper addresses the problem
of estimating additional power consumption due to code obfuscation. Power
consumption is a crucial problem for mobile devices, because of their limited
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power resources available as well as because of many power intensive sensors
commonly installed. This paper presents a potential step forward in understanding
the trade-off between higher level of code security and limited power resources.

To derive estimates and quantify the effects of obfuscation on power consumption
an appropriate measurement and evaluation is needed. Without estimating the
elevation in power consumption users might perceive degradation from the
viewpoint of usability. If mobile devices need to be recharged more often, due to
power hungry code, then the benefits of having higher security would be
counterbalanced by the necessity to save power. Thus, users willing to fully
leverage secure applications, to carry out sensitive e-commerce related actions,
would be penalized. This is the reason that measures need to be taken to estimate
and balance the obfuscation with power consumption.

2 Related Work

The analysis of how code obfuscation impacts power consumption is an uncharted
research area. Papers dealing specifically with the influence of obfuscation
techniques on power consumption do not exist. There are related works, but
mainly for measuring electricity consumption in general, or for very specific
targets. Essentially, the current research about the influence of software on power
consumption is divided into several areas: code refactoring [3], lock free data
structures [4], design patterns [5, 6] and web servers [7].

Anderson [8] presents a system whose purpose is to detect malware by analyzing
dynamic power consumption patterns during run-time based on load profiles. This
is possible as the signature of malware’s power usage looks very different from
the baseline power draw of a chip’s standard operations [8]. The proposed solution
is mainly useful in controlled environments (routers, switches, etc.), where the
reference behavior of the system is known in advance. Our solution is targeted to
code obfuscators, hence in some way expands the domain of load profile-based
techniques for estimating power consumption. Tiwari in [9] presents one such
measurement based approach for determining the power consumption rate at the
granularity of CPU instructions. Research results were obtained for three
architecturally different microprocessor types. The method and estimated results
described in [9] were essentially the starting point for the purposes of our work.
Paper [10] presents a methodology for power consumption estimation of
embedded processors/systems. The work described in [11] elaborates about a
model for energy and power estimation using constant parameters. Finally, [12]
describes in detail the power consumption at the level of assembly instructions for
advanced computer systems. The rest of the paper is organized in the following
way: Section 2 presents an overview of the code obfuscation problem domain and
its importance together with some brief theoretical background, Section 3 presents
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an overview of the architecture and methodology used for analyzing the power
consumption of obfuscated code, Section 4 discusses the results obtained for
various code obfuscators and Section 5 concludes the paper as well as details the
future work of the authors.

3 Obfuscation and Problem Definition

The objective of this study was the identification of major problems related to
energy efficiency as a consequence of code obfuscation, the most commonly used
protection mechanism against reverse engineering. Recently, energy is becoming a
very important factor in the design of advanced computer systems. Researchers
invest considerable efforts in power conservation techniques [13], [14]. In this
paper we have studied the effects of obfuscation on power consumption at the
processor level for the .NET platform. For this purpose, we have developed the
framework for analyzing and generating load profiles. These are energy profiles
showing diagrams of electrical power consumption per instruction during the
execution of an application.

3.1 Obfuscation Problem

Thanks to rapidly growing popularity of internet technologies, software
companies are facing an ever-increasing threat of theft of intellectual property
rights. Code reverse engineering allows competitors to reveal important
technological innovations, secrets and also to inflict some inestimable damage.
Business logic comprehension is not conditioned on understanding the whole
code. Consequently, reverse engineering entails development of new protection
mechanisms, which usually revolve around: encryption, code morphing, security
through obscurity and obfuscation. These techniques may also be used for
protection against malwares, another growing problem in the software industry.
Encryption is a very popular method of intellectual property protection against
reverse engineering and it implies encryption of a byte code, so that the client is
the only one who has the necessary key to decrypt and run the application. The
problem with encryption is to find a safe way for exchanging keys.

Of all currently relevant principles, code obfuscation is the most commonly used.
First concepts are mentioned in [15] and are pertaining to key exchange
mechanisms. Risk of unauthorized code access, loss of intellectual property,
finding software vulnerabilities and economic losses that individuals or companies
may undergo are urgent problems nowadays. All programming languages can be
obfuscated, but under the highest risk of being reverse engineered are software
packages developed for the JVM (Java Virtual Machine) and .NET platforms.
Unlike a native binary code, an intermediate byte code contains names of classes,
methods and fields, thus disassemblers may easily generate almost identical code
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to the original. The previously mentioned platforms also utilize Just-In-Time (JIT)
compiling, which allows byte code to be translated on-the-fly into a machine code.
All in all, a high level of manageability of virtual machine code makes reverse
engineering more feasible than in the case of a code produced by a compiler for
the so-called non-managed languages (such as, C++ and C). In the latter case,
obfuscation is often realized by using special macros, which perturb the source
code before being given to the compiler.

Besides all good qualities, obfuscation has couple of disadvantages. The most
considerable drawback is the fact that obfuscated applications contain many more
executable instructions. Moreover, many transformations increase the execution
time of programs, thus indirectly rising their power consumption needs.

3.2 Types of Obfuscation

There are several types of obfuscation (various obfuscation transformations are
classified in detail in [16]), but we will list only those ones that are relevant in this
study:

3.2.1 Lexical Obfuscation

Encompasses lexical changes in identifier names to hide their real meaning.
Lexical obfuscation is a relatively weak type of protection, because an attacker
can understand the meaning of the changed identifier from the context. It has the
smallest impact on the energy profile. This type of obfuscation is usually not used
independently, since there are tools that facilitate the understanding of lexically
perturbed code.

3.2.2 Data Obfuscation

Used in situations when data itself needs to be protected. The data is modified in
such a way that it is very hard to discern its value based upon static code analysis.
This type of obfuscation affects the values and structures of data located in a
program. The common transformations of this type includes: array and variable
merging/splitting, data encoding, inheritance relation modification and variable
reordering [17]. Array related manipulations are specifically elaborated in more
detail in [18], [19]. Data obfuscation is very powerful in object-oriented systems,
due to importance of understanding inheritance relations. A simple example of a
data obfuscation is changing the value of one variable with an arbitrary number of
new variables. Hence, the value of the original variable cannot be determined
without combining the values of an arbitrary number of auxiliary variables. This
similar idea can also be applied to classes [20]. An arbitrary number of classes
may be fused together and replaced with one big class, and vice versa. If these two
methods are used in tandem, an application would be notably changed and become
extremely incomprehensible. It has to be noted, that this type of obfuscation has a
big impact on the energy profile, thus will be further described in Section 5.
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3.2.3  Control Obfuscation

Affects the flow of execution by altering it with irrelevant conditional statements.
This results in reordering of methods, loops and statements. There are two broad
categories of this type of obfuscation: opaque predicate and dynamic dispatch
[21], [22], [23], [24], [25], [26], [27]- Analyzing such obfuscated code is
enormously hard as there is no way to interrelate various program blocks with
each other. Usually, aggressive control flow adjustments do negatively impact the
performance of the application, as any kind of speculative execution optimizations
at the CPU level are basically rendered unusable. This type of obfuscation
considerable influences the power consumption, therefore it is also included in the
study.

4 Architecture & Methodology

The proposed architecture depicted on Fig. 1 is comprised from 4 sub-modules
denoted as S1, S2, S3 and S4, respectively. S1 represents the disassembling of the
original source code (assembly), which is carried out by using the OllyDbg
disassembler. S2 is hosting the 3 commercial obfuscators used in this study, and
this is the place where obfuscation happens. The output from this phase is an input
to S3, which is similar to S1 except that it works on obfuscated code. The outputs
of S1 and S3 are eventually fed into S4, where load profiles are generated for
various instruction sets (1S) using the CP Generator component. The load profiles
are estimated data based upon static code analysis, and [12] explains the processor
architecture together with accurate figures of how much power is needed by
various instructions. As we are interested in obtaining relative power consumption
differences, the concrete processor architecture is not so relevant to the study. The
original and obfuscated assemblies are binary files with an extension ".dll" and/or
".exe", respectively. Output files from the S1 and S3 sub-modules (denoted as
"Original IS" and "Obfuscated IS"), obtained after disassembling the input
artifacts, are textual files with an extension ".txt". The executable component
named as "CP Generator” was written in the C# language. The resulting load
profiles (generated inside the S4 sub-module) are illustrated in Section 5.2.

On the other hand, it has to be emphasized that the proposed architecture has its
limitations. For example, control obfuscations might alter static control flow such
that it still has a very similar "dynamic" measured consumption. Nevertheless, the
proposed approach may forecast a very different “static" power consumption. In
this respect, the suggested architecture may be used to highlight the pertinent
aspects of this novel metric, which is the aim of this paper. A combined
"static/dynamic™ analysis would give a much better picture of the actual power
consumption.
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Figure 1

The architecture of the measurement scheme

5 Performance Evaluation

This section presents the evaluation results for three commercial obfuscators: the
Agile.NET, Confuser and the Smart Assembly. The inputs were a simple matrix
multiplication program and a multi-agent system instance. This section is divided
into 2 parts: the first part contemplates the important obfuscation techniques
(illustrated with small snippets) [28], while the second part provides a
comparative view of obtained results for each obfuscator using the previously
mentioned inputs. Lexical obfuscation is denoted as L1, lexical and data
obfuscation as L2, while all three types as L3.

00801005 | MOV ESLEAX

00831007 | MOV ALEYIL PTR (5 {FAX)
001004 | FEST ALAL

0D 10NC | JE SHORT Ten1 00801054
00401006 | Puss £RX

001006 | PO TWONRD TR DA AN 4
00801036 | BCR ERXCL

DOMII0IE | SSWAP ERX

DOMIDLA | PUSM Test. DOAD 0%

008 10%F | POP TBX

00801025 | MOV DORD PTR DS(ERX] EAX
00801028 | 2 ThX

00801024 | FSR EAX £Ox

00801027 | TEST EALDC AN
01020 | MOV EAR L DX

0081001 | PUAM TDX

D080 100F | MOV DH 85

0081011 | MOV LY

00M1031 | MOV EALITAIFAN
ODSYI03E | INP SHORT Test 0081038
00801034 | NOP

O0S1MIR | BSF EALTIX

ODSM103E | MOV DWORD FTR DS{4188F0.0
00801049 | SUB EACESLEROR
O0S10AL | WALR IR I O004TTES

Figure 2
Original source code in assembly language
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5.1 Obfuscation Techniques

Part of the source code used to exemplify different obfuscation techniques is
shown in Fig. 2.

5.1.1 Insertion of Dead (Garbage) Code

Represents a very simple and frequently used technique based upon the insertion
of specific assembly instructions. The only purpose of these are to change the
code’s size and shape while retaining the original functionality [29]. These extra
instructions are totally insignificant and the most famous among them is NOP (No
Operation). Fig. 3 shows an example of the code after insertion of these
superfluous instructions.

SOAXIONS | MOV ES EAX

W0N1MY | WOV ALAYTE PTR DAIIAK
IS4 | TEST ALA

2043100 | JE SHOAT Tt 00402654
W0 AL DR 5

20 g | #0p R0 PR DS fa0F3 T
Igﬂilmi ! g-l l

JANT0IN | BVVAK X

N0LL | PUSH Test 2030105

J0A01F | FOP £EX

B [ DRURL PR AR LAY

|
2031023 | #& fRx

WY | TEST LA IHASE
FONIRC | MOV EAXE UK

JORI02E | FUSK S0

2001011 | HEY

0831032 | MOV EAX TRATFATC
SOM038 | P SHONT Tenr 00405238
WANTL | M

J0M31036 | 2SF EAX EDH

JOML03E | MOV DRV0R0 PTR D& 4188FCLO
HRN0A0 | VK LA M0

043 104E 1 AL EEOCE DY 500700

Figure 3
NOP operation as a dead code

Dead code may also be manually inserted by combining certain assembly
instructions. The most trivial example revolving around an increase/decrease of
the value inside the CX register is given in Table 1.

Table 1
Dead code manipulation examples

Commands Explanation
SUBCX, 2 A subtraction of 2 followed by a double
INC CX increment does not change the value inside
INC CX the CX register.
PUSH CX The value of CX remains unchanged,
POP CX because the CX register receives a

previously saved value.
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5.1.2  Register or Variable Reassignment

Represents a very simple and popular method based on switching registers of
different types. An example of this kind of technique is presented in Fig. 4. In this
example, the following switches have been carried out: EAX —> EBX, AL—>BL,
EBX—>EDX, BL->DL, DH->AH, EDX—>EAX.

20M1MS | WOV ES ERX

0NWINGT | WO SLAYTT PIE D5 10K
IS I004 | TESTBLBL

2042100C | JE SHOAT Tent 00402356
WML | P TI

IR 10GF | FOP INORD PTR DS (07
J0M1016 | MR ECKCL

MK | AP LI

WH10LL | PUSH Test 00801058
M101F | POP S0

RIS | AN DRVLNLY PO D00 X
20801023 | N ED

HOM102¢ | BSH EBXEAL

J0MT02T | FEST EAX DCEAME
WNIMD | VOV ERX EAX

WN0F | PUS EAX

1030 | VO AN B

01082 | o 27

JI1034 | VOV ERX TRALFAN
20901039 | NP SHONT Tenr 0240430
WMNAN | Wi

J0M103C | 25F ERX EAX

JOMI0IF | VOV DAVOAD PTR CS418SFCL0
JOMTMA | MUK DR

20821050 | MUL EDK EAX SDDAITES

Figure 4
Register reassignment

5.1.3  Subroutine Reordering

Embodies a bit more complex scheme by randomly altering the order of execution
of subroutines. This technique has factorial number of variants in regard to the
number of subroutines [30]. For example, if the code contains 10 subroutines then
the obfuscator may generate 10! variants of the original code.

5.1.4 Instruction Substitution

This method uses as input a library of equivalent instructions. The main idea is to
replace one sequence of instructions with another one without changing the
original functionality. This method has a high impact on the code's signature, it is
very hard to reverse engineer it, especially in the case when the previously
mentioned library is not known. Fig. 5 shows an example for instructions XOR
and SUB. Evidently, it is hard to notice what is going on in the altered code.
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01N

2040103
0011
M08 105F
WM 1016
MK
091014
208101F
ALY
081023
1024

M1
RS A L
0821028
1021
W0M1011
20831023
01036
WM
1038
N 103E
WM
082104E

WM 1M L4
EI'OZ 1034 iz i

WOV ES LAY
o) LALIRIA Y
QR AL
JESHOAT Teat 00402554
PO
POP INORD PTI DS [&0F3T4)
MCR E3XCL
LURTERE N
PUSH Tes1 00801005
OP SEX
WU LRVALY LI O8] LAY
N
ASR EALFDN
X THAG
WOV EACE e
PUSH EDN
NOV D
MO LT
MOV EAX TRRTEATC
MNP SHOAT Tenr. 00402433
W
25F [AX K
MOV DORED PTR 541387010
SR LA s
UL EBILEDE S0087TTS

Figure 5

Instruction substitution

5.1.5 Code Transposition

There are two commonly used approaches. The first one is based on a random
distribution of instructions and insertion of unconditional branches and/or jumps
to retain the original flow of control [31]. The second one relies on the exchange
of independent instructions and replacement of these with new ones. This

approach is difficult to implement,

since it is not easy to find such independent

sets of instructions. Figs. 6 and 7 show a test code for both approaches.

[ e e — |
[OFFEILOT | TOSH T

(ON4R1I08 | PP DMAORD: FTA R 5207974
03400 | IR IR CH

MANIEL | BIMAP ERX

WARIPLY | B Teat 4R T0EL

WNA01A | PP 35

00431019 | A DWOND TR D% FRX, LAY
A | INC BB

OGAINID | ISR EAX LD

OG0 | TEST EALDCMAING

O342100% | P SICAT Trer (0002072
TR

[00421109 | P ALEYIE PIR D8CAAX

JO0RI0EC | TEST ALy P
T{mnmr L SIORT Ten 0041084 o

a0 2 (L V) —

OMIIBL | A0 LARS TN

MDA | U LS

00431005 | WY DL

ANARIAT | P BT mm—
00431009 | AW LAK, (IATIARE

!'lau'" ont | M

0a4aN0 | oo

0dMneL | BSF EANEINK

4TI | PACTY DWIOND FTR 0S| A1BNC L0

g
O

SUE BAY St L
INUA KT RCARCA TS

Figure 6

Code transposition — unconditional branches
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KUAMLE | 11T ALAL

LC42M20 | 1T SCRT Tan 0014
CARNZE LI SHOSIL Tear 090108

AL | ROV ER

CO499352 | WUT OWURD PIR (% B AR

0043005 | M e

COAPMY | BS3 FAR I

0L | TEST RARDC rensits —t

00409031 | MOV EAREI

LC4020%) | mini Low

04N | IV SHOAT Teur AMOLOTA

LEAAICEE AT 20 42 1

AAID0% | MO DWORD PN DN S| L
49051 | Y8 LA e i

Yy

Figure 7
Code transposition — independent instructions

5.2 Matrix Multiplication - Results

Here, we present the results of measuring 3 parameters (obfuscated code size,
average power consumption per instruction and number of executed instructions)
of obfuscated code as well as visually show their comparative values. Fig. 8 shows
the load profile of the non-obfuscated matrix multiplication test program.
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g
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»
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0 xo @00
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Figure 8
Non-obfuscated load profile of the matrix multiplication program

Case L1: comparative view of load profiles obtained by applying the L1
obfuscation technique is shown in Fig. 9. Evidently, the output generated by the
Confuser considerably differs from the original version of the code. The average
consumption per instruction has not changed too much (~3 mA), but the number
of executed instructions have increased 4.5 times. This resulted in an elevated
power consumption level while running the obfuscated code. Agile.NET has
raised the code size by 35%, while the average consumption per instruction
jumped by almost 14 mA. Smart Assembly produced the best results here. It
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reduced the number of instructions thankfully to the optimization applied when
using the instruction substitution technique. Fig. 10 graphically shows the
measured parameters.
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Figure 9
Comparative view of load profiles after L1 obfuscation cycle for all obfuscators
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Figure 10
Graphical view for measured parameters after L1 obfuscation for original and obfuscated profiles

Case L2: this obfuscation cycle produced totally different load profiles, as it is
obvious from Fig. 11.
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Figure 11
Comparative view of load profiles after L2 obfuscation cycle for all obfuscators

Agile.NET has produced a code with the biggest power demand. Despite the fact
that the average power consumption per instruction remained the same, the code
base has increased by a factor of 35 (huge amount of dead code, conditional
branching instructions and jumps). This has caused an increase in power
consumptions. Fig. 12 graphically shows the measured parameters for this cycle.

it)

Avemrmiily 3low (Myten)

-

B Ausrage surest e lneti

a

Figure 12
Graphical view for measured parameters after L2 obfuscation for original and obfuscated profiles

Case L3: the biggest changes have been observed in this cycle as depicted in Fig.
13. Confuser and Agile.NET have utilized extremely huge instruction sets, while
at the same time the power consumption per instruction has also raised. This effect
is best visible in the case of the Confuser, which is around 57 mA. The number of
instructions are increased due to very large amount of dead code as well as high
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level of instruction substitutions and code transpositions. Smart Assembly gave
the best results here, where the load profile is very similar to the original code
with a higher consumption level due to dead code. Fig. 14 graphically shows the
measured parameters for this cycle.
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Figure 13
Comparative view of load profiles after L3 obfuscation cycle for all obfuscators
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Figure 14
Graphical view for measured parameters after L2 obfuscation for original and obfuscated profiles

Based upon the presented results it is quite straightforward to qualify and classify
code obfuscators in regard to their associated load profile, i.e. profile resulted by
executing the corresponding obfuscated code. Apparently, a load profile nicely
summarizes all the various effects on the code (number of instructions, type of
instructions used, execution time, etc.), which would be quite hard to judge in
advance just considering each of these effects independently.
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5.3 Agents in a Proprietary Multi-Agent System

The associated energy consumption problems due to obfuscation are nicely
illustrated in the following multi-agent system case study. The benefits of
leveraging a multi-agent system in an electrical power distribution network is best
reflected in an increased information exchange and processing capabilities of the
network. Power networks are radial by nature, where a consumer may be
conveniently represented by an agent situated inside a hierarchically organized
structure. An example of simple power network is shown in Fig. 15.

9199 ©

g ¢

Figure 15
Sample power distribution network

The agents are grouped by zones, which are themselves organized in a hierarchical
fashion [33]. One straightforward and simple method for creating such a zone
hierarchy is to just follow the network's topology. Agents inside a zone actively
exchange various operational data, like voltage levels, load flow, etc. Fig. 16
depicts one example of mapping agents to a hierarchy of zones.

ROOT

Figure 16
Power distribution network modeled with zones

The example shown in Fig. 16 contains 5 agents and 4 communication zones
including the root zone. Agents Al and A2 belong to the same zone Z1 and as
such behave like equal peers. Zone Z2 aggregates zone Z1 and agent A3. In order
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for agent A3 to communicate with any agent from zone Z1 it needs to send
messages toward Z1 zone's representative (it might be either agent from zone Z1).
Fig. 17 shows the load profile of the non-obfuscated agent's control program.

"
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o }

Purmber of instructions (10°3)

Figure 17
Non-obfuscated load profile of the agent's control program

Case L1: comparative view of load profiles got by applying the L1 obfuscation
technique is shown in Fig. 18. Apparently, all outputs are similar by the number of
instructions. Fig. 19 graphically shows the measured parameters.
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Figure 18
Comparative view of load profiles after L1 obfuscation cycle for all obfuscators
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Figure 19
Graphical view for measured parameters after L1 obfuscation for original and obfuscated profiles

Case L2: as in the case of the matrix multiplication, this obfuscation cycle
produced totally different load profiles (see Fig 20). The load profile, which
resulted after leveraging Agile.NET, clearly emphasizes the fact that the number
of instructions has doubled compared to the original case.
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Figure 20
Comparative view of load profiles after L2 obfuscation cycle for all obfuscators

Fig. 21 graphically shows the measured parameters for this cycle.
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Figure 21
Graphical view for measured parameters after L2 obfuscation for original and obfuscated profiles

Case L3: the biggest difference was observed in the L3 cycle as depicted in Fig.
22. Agile.NET has utilized huge instruction sets, while the power consumption per
instruction for Confuser raised almost up to 400 mA. Smart Assembly again gave
the best results here, where the load profile is very similar to the original one (a
higher consumption level is due to the presence of dead code). Fig. 23 graphically
shows the measured parameters for this cycle.
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Figure 22
Comparative view of load profiles after L3 obfuscation cycle for all obfuscators
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Figure 23
Graphical view for measured parameters after L3 obfuscation for original and obfuscated profiles

Conclusions and Future Work

This paper shows that load profile based classification of code obfuscators is
assuredly a viable method. The power consumption pattern of an application
represents its unique signature (print), which might be used as a quality metric for
judging its energy efficiency. This aspect is gaining much popularity nowadays,
especially with the introduction of new quality attributes such as sustainability. It
is not anymore just enough to have high performing and secure applications.
Energy considerations need to be brought into a foreground, as customer
satisfaction will surely depend upon how long the battery on his/her mobile device
will last while running programs. On the other hand, it is quite obvious that
ubiquitous computing and the proliferation of code on remote devices requires
well thought out mechanisms and technologies to protect and secure code. This is
not only for the benefit of protecting intellectual properties, but also to save
customers from running bogus code, which might inflict undesired damages.
Obfuscation, is just one although very important, way to achieve this goal.

This paper has presented a novel load profile based power consumption metric to
score the efficiency of code obfuscators. Using this metric it is now possible to
analyze and exactly express how code obfuscation impacts power consumption.

The paper gives an overview and explanation of common types and techniques of
obfuscation. These are all interrelated and their impact on power consumption
explained.

The study includes evaluation results for 3 commercial obfuscators: Agile.NET,
Confuser and Smart Assembly. To obtain experimental results a custom built
measurement architecture was implemented based on static code analysis.

The chosen static code analysis approach might occasionally produce false results.
Our future work is related to extend the framework to include dynamic
measurements, too. This would definitely result in a much higher accuracy during
evaluation of the various obfuscators.
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Load profiles are very hard to be spoofed by malware. Classical signature based
malware detection methods may be thwarted by various polymorphic packers.
This is not the case with a load profile. Malware cannot even detect whether it is
running under supervision or not from the viewpoint of its energy consumption.
Although static analysis of executable code to detect a malware is a promising
technique [32], load profiles represent a perfect side-channel to watch out for
changes in behavior. There is no way to alter the original code without disturbing
its load profile.

Besides detecting unusual changes in the power consumption due to software
changes, load profiles may also be used to detect failing hardware. This is
especially interesting in highly distributed environments.
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