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Abstract: Code obfuscation techniques are gaining more attention and importance as 

ubiquitous computing becomes commonplace. The necessity to protect intellectual property 

rights as well as the need to prevent tampering with code running on all sorts of 

autonomous devices increases the demand for high quality code obfuscator tools. 

Currently, the principal quality metrics for evaluating code obfuscators mostly revolve 

around aspects such as security and functional correctness of the generated code. 

Nevertheless, power consumption plays a central role in handheld devices, as battery life 

and endurance is usually the bottleneck in achieving an acceptable level of user 

satisfaction with the system. Consequently, the criteria for choosing the right code 

obfuscator should be extended to also take into account the impact of obfuscation on the 

overall power consumption. This paper presents one viable approach for evaluating code 

obfuscators in regard to a power consumption level of the obfuscated code. The 

methodology is based upon load profiles. The performance of the solution has been tested 

using various commercial code obfuscators. The results show that there are significant 

differences in power consumption levels between original and obfuscated code. In order to 

select an obfuscation tool it is not enough to rely solely on non-power related attributes. 

High increase in a power consumption level may be totally inappropriate on mobile 

devices, despite the best obfuscation achieved with that particular tool. Accordingly, power 

consumption level should be incorporated into a set of quality metrics for code obfuscators. 

Keywords: Energy-aware system; measurement techniques; protection mechanisms; 

obfuscation 
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1 Introduction 

We are nowadays witnessing an extremely rapid development in the domain of 

information technologies (IT), which entails an additional level of electrical power 

dependency. This fact is especially important taking into account the proliferation 

of mobile solutions. The aforementioned trend is inevitably followed by higher 

power costs, partly due to increased number of data centers, server farms, etc. [1]. 

The IT sector today uses around 8% of the total produced electrical energy at the 

global level, and this tendency continues to rise [2]. 

One of the key challenges facing software engineering today is in relation to 

power consumption of executable code. Reducing load on batteries is not only 

pertinent in the case of handheld devices, but in general. There are already 

optimizing compilers for embedded software targeted to keep power consumption 

of running programs as low as possible (previously speed and memory 

consumption were the only key optimization goals for compilers). Naturally, any 

such optimization is a very complex task, as the code still needs to meet 

acceptable performance characteristics as well as utilize computing resources 

judiciously. Nevertheless, despite the sophistication level of a compiler in 

choosing the best possible route to generate energy-aware binaries, overall power 

reduction is still mainly dictated by the source code itself. In other words, it is 

impossible to leave every power consumption issues to the compiler. If the 

algorithm and its implementation are inherently power hungry then there is very 

little a compiler can do to mitigate the problem. 

Another important aspect brought extensively into the foreground, particularly by 

the proliferation of the pervasive computing paradigm, is pertaining to the 

dependability and security of the software. As software is running on all sorts of 

devices they are more exposed to keen eyes of possibly malicious intent. 

Similarly, end users are also endangered by accepting and allowing various 

software to run on their devices. Consequently, much effort is invested to keep the 

software protected from reverse engineering and modification as well as to protect 

intellectual property rights. One technique to impede reverse engineering of 

software is code obfuscation. The basic idea is very simple. It is related to the way 

of rearranging the code to become incomprehensible for human readers, while 

guaranteeing semantic equivalence with original code (this is an imperative 

requirement). Of course, any such rearrangement inevitably changes the runtime 

execution characteristics of the original code. Among these is the power 

consumption level. 

All in all, code obfuscation is one of the most popular techniques to protect 

programs from malicious code tampering and/or to prevent illegal appropriation of 

intellectual property rights. However, obscurity comes at the cost of memory, run-

time and power consumption overhead. This research paper addresses the problem 

of estimating additional power consumption due to code obfuscation. Power 

consumption is a crucial problem for mobile devices, because of their limited 
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power resources available as well as because of many power intensive sensors 

commonly installed. This paper presents a potential step forward in understanding 

the trade-off between higher level of code security and limited power resources. 

To derive estimates and quantify the effects of obfuscation on power consumption 

an appropriate measurement and evaluation is needed. Without estimating the 

elevation in power consumption users might perceive degradation from the 

viewpoint of usability. If mobile devices need to be recharged more often, due to 

power hungry code, then the benefits of having higher security would be 

counterbalanced by the necessity to save power. Thus, users willing to fully 

leverage secure applications, to carry out sensitive e-commerce related actions, 

would be penalized. This is the reason that measures need to be taken to estimate 

and balance the obfuscation with power consumption. 

2 Related Work 

The analysis of how code obfuscation impacts power consumption is an uncharted 

research area. Papers dealing specifically with the influence of obfuscation 

techniques on power consumption do not exist. There are related works, but 

mainly for measuring electricity consumption in general, or for very specific 

targets. Essentially, the current research about the influence of software on power 

consumption is divided into several areas: code refactoring [3], lock free data 

structures [4], design patterns [5, 6] and web servers [7]. 

Anderson [8] presents a system whose purpose is to detect malware by analyzing 

dynamic power consumption patterns during run-time based on load profiles. This 

is possible as the signature of malware’s power usage looks very different from 

the baseline power draw of a chip’s standard operations [8]. The proposed solution 

is mainly useful in controlled environments (routers, switches, etc.), where the 

reference behavior of the system is known in advance. Our solution is targeted to 

code obfuscators, hence in some way expands the domain of load profile-based 

techniques for estimating power consumption. Tiwari in [9] presents one such 

measurement based approach for determining the power consumption rate at the 

granularity of CPU instructions. Research results were obtained for three 

architecturally different microprocessor types. The method and estimated results 

described in [9] were essentially the starting point for the purposes of our work. 

Paper [10] presents a methodology for power consumption estimation of 

embedded processors/systems. The work described in [11] elaborates about a 

model for energy and power estimation using constant parameters. Finally, [12] 

describes in detail the power consumption at the level of assembly instructions for 

advanced computer systems. The rest of the paper is organized in the following 

way: Section 2 presents an overview of the code obfuscation problem domain and 

its importance together with some brief theoretical background, Section 3 presents 
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an overview of the architecture and methodology used for analyzing the power 

consumption of obfuscated code, Section 4 discusses the results obtained for 

various code obfuscators and Section 5 concludes the paper as well as details the 

future work of the authors. 

3 Obfuscation and Problem Definition 

The objective of this study was the identification of major problems related to 

energy efficiency as a consequence of code obfuscation, the most commonly used 

protection mechanism against reverse engineering. Recently, energy is becoming a 

very important factor in the design of advanced computer systems. Researchers 

invest considerable efforts in power conservation techniques [13], [14]. In this 

paper we have studied the effects of obfuscation on power consumption at the 

processor level for the .NET platform. For this purpose, we have developed the 

framework for analyzing and generating load profiles. These are energy profiles 

showing diagrams of electrical power consumption per instruction during the 

execution of an application. 

3.1 Obfuscation Problem 

Thanks to rapidly growing popularity of internet technologies, software 

companies are facing an ever-increasing threat of theft of intellectual property 

rights. Code reverse engineering allows competitors to reveal important 

technological innovations, secrets and also to inflict some inestimable damage. 

Business logic comprehension is not conditioned on understanding the whole 

code. Consequently, reverse engineering entails development of new protection 

mechanisms, which usually revolve around: encryption, code morphing, security 

through obscurity and obfuscation. These techniques may also be used for 

protection against malwares, another growing problem in the software industry. 

Encryption is a very popular method of intellectual property protection against 

reverse engineering and it implies encryption of a byte code, so that the client is 

the only one who has the necessary key to decrypt and run the application. The 

problem with encryption is to find a safe way for exchanging keys. 

Of all currently relevant principles, code obfuscation is the most commonly used. 

First concepts are mentioned in [15] and are pertaining to key exchange 

mechanisms. Risk of unauthorized code access, loss of intellectual property, 

finding software vulnerabilities and economic losses that individuals or companies 

may undergo are urgent problems nowadays. All programming languages can be 

obfuscated, but under the highest risk of being reverse engineered are software 

packages developed for the JVM (Java Virtual Machine) and .NET platforms. 

Unlike a native binary code, an intermediate byte code contains names of classes, 

methods and fields, thus disassemblers may easily generate almost identical code 
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to the original. The previously mentioned platforms also utilize Just-In-Time (JIT) 

compiling, which allows byte code to be translated on-the-fly into a machine code. 

All in all, a high level of manageability of virtual machine code makes reverse 

engineering more feasible than in the case of a code produced by a compiler for 

the so-called non-managed languages (such as, C++ and C). In the latter case, 

obfuscation is often realized by using special macros, which perturb the source 

code before being given to the compiler. 

Besides all good qualities, obfuscation has couple of disadvantages. The most 

considerable drawback is the fact that obfuscated applications contain many more 

executable instructions. Moreover, many transformations increase the execution 

time of programs, thus indirectly rising their power consumption needs. 

3.2 Types of Obfuscation 

There are several types of obfuscation (various obfuscation transformations are 

classified in detail in [16]), but we will list only those ones that are relevant in this 

study: 

3.2.1 Lexical Obfuscation 

Encompasses lexical changes in identifier names to hide their real meaning. 

Lexical obfuscation is a relatively weak type of protection, because an attacker 

can understand the meaning of the changed identifier from the context. It has the 

smallest impact on the energy profile. This type of obfuscation is usually not used 

independently, since there are tools that facilitate the understanding of lexically 

perturbed code. 

3.2.2 Data Obfuscation 

Used in situations when data itself needs to be protected. The data is modified in 

such a way that it is very hard to discern its value based upon static code analysis. 

This type of obfuscation affects the values and structures of data located in a 

program. The common transformations of this type includes: array and variable 

merging/splitting, data encoding, inheritance relation modification and variable 

reordering [17]. Array related manipulations are specifically elaborated in more 

detail in [18], [19]. Data obfuscation is very powerful in object-oriented systems, 

due to importance of understanding inheritance relations. A simple example of a 

data obfuscation is changing the value of one variable with an arbitrary number of 

new variables. Hence, the value of the original variable cannot be determined 

without combining the values of an arbitrary number of auxiliary variables. This 

similar idea can also be applied to classes [20]. An arbitrary number of classes 

may be fused together and replaced with one big class, and vice versa. If these two 

methods are used in tandem, an application would be notably changed and become 

extremely incomprehensible. It has to be noted, that this type of obfuscation has a 

big impact on the energy profile, thus will be further described in Section 5. 
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3.2.3 Control Obfuscation 

Affects the flow of execution by altering it with irrelevant conditional statements. 

This results in reordering of methods, loops and statements. There are two broad 

categories of this type of obfuscation: opaque predicate and dynamic dispatch 

[21], [22], [23], [24], [25], [26], [27]. Analyzing such obfuscated code is 

enormously hard as there is no way to interrelate various program blocks with 

each other. Usually, aggressive control flow adjustments do negatively impact the 

performance of the application, as any kind of speculative execution optimizations 

at the CPU level are basically rendered unusable. This type of obfuscation 

considerable influences the power consumption, therefore it is also included in the 

study. 

4 Architecture & Methodology 

The proposed architecture depicted on Fig. 1 is comprised from 4 sub-modules 

denoted as S1, S2, S3 and S4, respectively. S1 represents the disassembling of the 

original source code (assembly), which is carried out by using the OllyDbg 

disassembler. S2 is hosting the 3 commercial obfuscators used in this study, and 

this is the place where obfuscation happens. The output from this phase is an input 

to S3, which is similar to S1 except that it works on obfuscated code. The outputs 

of S1 and S3 are eventually fed into S4, where load profiles are generated for 

various instruction sets (IS) using the CP Generator component. The load profiles 

are estimated data based upon static code analysis, and [12] explains the processor 

architecture together with accurate figures of how much power is needed by 

various instructions. As we are interested in obtaining relative power consumption 

differences, the concrete processor architecture is not so relevant to the study. The 

original and obfuscated assemblies are binary files with an extension ".dll" and/or 

".exe", respectively. Output files from the S1 and S3 sub-modules (denoted as 

"Original IS" and "Obfuscated IS"), obtained after disassembling the input 

artifacts, are textual files with an extension ".txt". The executable component 

named as "CP Generator" was written in the C# language. The resulting load 

profiles (generated inside the S4 sub-module) are illustrated in Section 5.2. 

On the other hand, it has to be emphasized that the proposed architecture has its 

limitations. For example, control obfuscations might alter static control flow such 

that it still has a very similar "dynamic" measured consumption. Nevertheless, the 

proposed approach may forecast a very different "static" power consumption. In 

this respect, the suggested architecture may be used to highlight the pertinent 

aspects of this novel metric, which is the aim of this paper. A combined 

"static/dynamic" analysis would give a much better picture of the actual power 

consumption. 
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Figure 1 

The architecture of the measurement scheme 

5 Performance Evaluation 

This section presents the evaluation results for three commercial obfuscators: the 

Agile.NET, Confuser and the Smart Assembly. The inputs were a simple matrix 

multiplication program and a multi-agent system instance. This section is divided 

into 2 parts: the first part contemplates the important obfuscation techniques 

(illustrated with small snippets) [28], while the second part provides a 

comparative view of obtained results for each obfuscator using the previously 

mentioned inputs. Lexical obfuscation is denoted as L1, lexical and data 

obfuscation as L2, while all three types as L3. 

 

Figure 2 

Original source code in assembly language 
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5.1 Obfuscation Techniques 

Part of the source code used to exemplify different obfuscation techniques is 

shown in Fig. 2. 

5.1.1 Insertion of Dead (Garbage) Code 

Represents a very simple and frequently used technique based upon the insertion 

of specific assembly instructions. The only purpose of these are to change the 

code's size and shape while retaining the original functionality [29]. These extra 

instructions are totally insignificant and the most famous among them is NOP (No 

Operation). Fig. 3 shows an example of the code after insertion of these 

superfluous instructions. 

 

Figure 3 

NOP operation as a dead code 

Dead code may also be manually inserted by combining certain assembly 

instructions. The most trivial example revolving around an increase/decrease of 

the value inside the CX register is given in Table 1. 

Table 1 

Dead code manipulation examples 

Commands Explanation 

SUB CX, 2 

INC CX 

INC CX 

A subtraction of 2 followed by a double 

increment does not change the value inside 

the CX register. 

PUSH CX 

POP CX 

The value of CX remains unchanged, 

because the CX register receives a 

previously saved value. 
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5.1.2 Register or Variable Reassignment 

Represents a very simple and popular method based on switching registers of 

different types. An example of this kind of technique is presented in Fig. 4. In this 

example, the following switches have been carried out: EAX –> EBX, AL–>BL, 

EBX–>EDX, BL–>DL, DH–>AH, EDX–>EAX. 

 

Figure 4 

Register reassignment 

5.1.3 Subroutine Reordering 

Embodies a bit more complex scheme by randomly altering the order of execution 

of subroutines. This technique has factorial number of variants in regard to the 

number of subroutines [30]. For example, if the code contains 10 subroutines then 

the obfuscator may generate 10! variants of the original code. 

5.1.4 Instruction Substitution 

This method uses as input a library of equivalent instructions. The main idea is to 

replace one sequence of instructions with another one without changing the 

original functionality. This method has a high impact on the code's signature, it is 

very hard to reverse engineer it, especially in the case when the previously 

mentioned library is not known. Fig. 5 shows an example for instructions XOR 

and SUB. Evidently, it is hard to notice what is going on in the altered code. 
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Figure 5 

Instruction substitution 

5.1.5 Code Transposition 

There are two commonly used approaches. The first one is based on a random 

distribution of instructions and insertion of unconditional branches and/or jumps 

to retain the original flow of control [31]. The second one relies on the exchange 

of independent instructions and replacement of these with new ones. This 

approach is difficult to implement, since it is not easy to find such independent 

sets of instructions. Figs. 6 and 7 show a test code for both approaches. 

 

Figure 6 

Code transposition – unconditional branches 
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Figure 7 

Code transposition – independent instructions 

5.2 Matrix Multiplication - Results 

Here, we present the results of measuring 3 parameters (obfuscated code size, 

average power consumption per instruction and number of executed instructions) 

of obfuscated code as well as visually show their comparative values. Fig. 8 shows 

the load profile of the non-obfuscated matrix multiplication test program. 

 

Figure 8 

Non-obfuscated load profile of the matrix multiplication program 

Case L1: comparative view of load profiles obtained by applying the L1 

obfuscation technique is shown in Fig. 9. Evidently, the output generated by the 

Confuser considerably differs from the original version of the code. The average 

consumption per instruction has not changed too much (~3 mA), but the number 

of executed instructions have increased 4.5 times. This resulted in an elevated 

power consumption level while running the obfuscated code. Agile.NET has 

raised the code size by 35%, while the average consumption per instruction 

jumped by almost 14 mA. Smart Assembly produced the best results here. It 
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reduced the number of instructions thankfully to the optimization applied when 

using the instruction substitution technique. Fig. 10 graphically shows the 

measured parameters. 

 

Figure 9 

Comparative view of load profiles after L1 obfuscation cycle for all obfuscators 

 

Figure 10 

Graphical view for measured parameters after L1 obfuscation for original and obfuscated profiles 

Case L2: this obfuscation cycle produced totally different load profiles, as it is 

obvious from Fig. 11. 
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Figure 11 

Comparative view of load profiles after L2 obfuscation cycle for all obfuscators 

Agile.NET has produced a code with the biggest power demand. Despite the fact 

that the average power consumption per instruction remained the same, the code 

base has increased by a factor of 35 (huge amount of dead code, conditional 

branching instructions and jumps). This has caused an increase in power 

consumptions. Fig. 12 graphically shows the measured parameters for this cycle. 

 

Figure 12 

Graphical view for measured parameters after L2 obfuscation for original and obfuscated profiles 

Case L3: the biggest changes have been observed in this cycle as depicted in Fig. 

13. Confuser and Agile.NET have utilized extremely huge instruction sets, while 

at the same time the power consumption per instruction has also raised. This effect 

is best visible in the case of the Confuser, which is around 57 mA. The number of 

instructions are increased due to very large amount of dead code as well as high 
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level of instruction substitutions and code transpositions. Smart Assembly gave 

the best results here, where the load profile is very similar to the original code 

with a higher consumption level due to dead code. Fig. 14 graphically shows the 

measured parameters for this cycle. 

 

Figure 13 

Comparative view of load profiles after L3 obfuscation cycle for all obfuscators 

 

Figure 14 

Graphical view for measured parameters after L2 obfuscation for original and obfuscated profiles 

Based upon the presented results it is quite straightforward to qualify and classify 

code obfuscators in regard to their associated load profile, i.e. profile resulted by 

executing the corresponding obfuscated code. Apparently, a load profile nicely 

summarizes all the various effects on the code (number of instructions, type of 

instructions used, execution time, etc.), which would be quite hard to judge in 

advance just considering each of these effects independently. 
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5.3 Agents in a Proprietary Multi-Agent System 

The associated energy consumption problems due to obfuscation are nicely 

illustrated in the following multi-agent system case study. The benefits of 

leveraging a multi-agent system in an electrical power distribution network is best 

reflected in an increased information exchange and processing capabilities of the 

network. Power networks are radial by nature, where a consumer may be 

conveniently represented by an agent situated inside a hierarchically organized 

structure. An example of simple power network is shown in Fig. 15. 

 

Figure 15 

Sample power distribution network 

The agents are grouped by zones, which are themselves organized in a hierarchical 

fashion [33]. One straightforward and simple method for creating such a zone 

hierarchy is to just follow the network's topology. Agents inside a zone actively 

exchange various operational data, like voltage levels, load flow, etc. Fig. 16 

depicts one example of mapping agents to a hierarchy of zones. 

 

Figure 16 

Power distribution network modeled with zones 

The example shown in Fig. 16 contains 5 agents and 4 communication zones 

including the root zone. Agents A1 and A2 belong to the same zone Z1 and as 

such behave like equal peers. Zone Z2 aggregates zone Z1 and agent A3. In order 
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for agent A3 to communicate with any agent from zone Z1 it needs to send 

messages toward Z1 zone's representative (it might be either agent from zone Z1). 

Fig. 17 shows the load profile of the non-obfuscated agent's control program. 

 

Figure 17 

Non-obfuscated load profile of the agent's control program 

Case L1: comparative view of load profiles got by applying the L1 obfuscation 

technique is shown in Fig. 18. Apparently, all outputs are similar by the number of 

instructions. Fig. 19 graphically shows the measured parameters. 

 

Figure 18 

Comparative view of load profiles after L1 obfuscation cycle for all obfuscators 
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Figure 19 

Graphical view for measured parameters after L1 obfuscation for original and obfuscated profiles 

Case L2: as in the case of the matrix multiplication, this obfuscation cycle 

produced totally different load profiles (see Fig 20). The load profile, which 

resulted after leveraging Agile.NET, clearly emphasizes the fact that the number 

of instructions has doubled compared to the original case. 

 

Figure 20 

Comparative view of load profiles after L2 obfuscation cycle for all obfuscators 

Fig. 21 graphically shows the measured parameters for this cycle. 
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Figure 21 

Graphical view for measured parameters after L2 obfuscation for original and obfuscated profiles 

Case L3: the biggest difference was observed in the L3 cycle as depicted in Fig. 

22. Agile.NET has utilized huge instruction sets, while the power consumption per 

instruction for Confuser raised almost up to 400 mA. Smart Assembly again gave 

the best results here, where the load profile is very similar to the original one (a 

higher consumption level is due to the presence of dead code). Fig. 23 graphically 

shows the measured parameters for this cycle. 

 

Figure 22 

Comparative view of load profiles after L3 obfuscation cycle for all obfuscators 
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Figure 23 

Graphical view for measured parameters after L3 obfuscation for original and obfuscated profiles 

Conclusions and Future Work 

This paper shows that load profile based classification of code obfuscators is 

assuredly a viable method. The power consumption pattern of an application 

represents its unique signature (print), which might be used as a quality metric for 

judging its energy efficiency. This aspect is gaining much popularity nowadays, 

especially with the introduction of new quality attributes such as sustainability. It 

is not anymore just enough to have high performing and secure applications. 

Energy considerations need to be brought into a foreground, as customer 

satisfaction will surely depend upon how long the battery on his/her mobile device 

will last while running programs. On the other hand, it is quite obvious that 

ubiquitous computing and the proliferation of code on remote devices requires 

well thought out mechanisms and technologies to protect and secure code. This is 

not only for the benefit of protecting intellectual properties, but also to save 

customers from running bogus code, which might inflict undesired damages. 

Obfuscation, is just one although very important, way to achieve this goal. 

This paper has presented a novel load profile based power consumption metric to 

score the efficiency of code obfuscators. Using this metric it is now possible to 

analyze and exactly express how code obfuscation impacts power consumption. 

The paper gives an overview and explanation of common types and techniques of 

obfuscation. These are all interrelated and their impact on power consumption 

explained. 

The study includes evaluation results for 3 commercial obfuscators: Agile.NET, 

Confuser and Smart Assembly. To obtain experimental results a custom built 

measurement architecture was implemented based on static code analysis. 

The chosen static code analysis approach might occasionally produce false results. 

Our future work is related to extend the framework to include dynamic 

measurements, too. This would definitely result in a much higher accuracy during 

evaluation of the various obfuscators. 
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Load profiles are very hard to be spoofed by malware. Classical signature based 

malware detection methods may be thwarted by various polymorphic packers. 

This is not the case with a load profile. Malware cannot even detect whether it is 

running under supervision or not from the viewpoint of its energy consumption. 

Although static analysis of executable code to detect a malware is a promising 

technique [32], load profiles represent a perfect side-channel to watch out for 

changes in behavior. There is no way to alter the original code without disturbing 

its load profile. 

Besides detecting unusual changes in the power consumption due to software 

changes, load profiles may also be used to detect failing hardware. This is 

especially interesting in highly distributed environments. 
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