
Acta Polytechnica Hungarica Vol. 15, No. 3, 2018 

 – 81 – 

A State and Input Constrained Control Method 

for Air-Breathing Hypersonic Vehicles 

Haoyu Du, Jie Yan, Yonghua Fan 

Northwestern Polytecnical University 

West Youyi Road 127, 710072, Xi’an city, Shaanxi, P.R.China 

duhaoyu@mail.nwpu.edu.cn, jyan@nwpu.edu.cn, fanyonghua@nwpu.edu.cn 

Abstract: Besides nonlinearity, high coupling and parameter uncertainties, the design of a 

hypersonic flight control system still faces challenges due to the unstable dynamics under 

various flight conditions and to the presence of state constraints required by a scramjet. 

This paper presents a state and input constrained control method for the longitudinal 

motion of an air-breathing hypersonic vehicle through combining tensor product (TP) 

model transformation and the command governor approach. This method consists of three 

steps. Firstly, the paper applies the tensor product (TP) model transformation, making the 

state space matrices depend on the vector   of time varying parameters. Secondly, it uses 

LQ (Linear Quadratic) method to design a set of controllers in the vertex of the TP model, 

and then, the controllers are checked with the parallel distributed compensation (PDC) 

controller design framework to ensure global stability and improving control performance. 

Thirdly, it introduces a command governor (CG) device for command optimization, which 

modifies the command signal to avoid state and input violations. The significance of this 

method mainly lies in its capability to avoid excessive flight constraints under various flight 

conditions. In order to demonstrate the effectiveness of this method, we carried out 

numerical simulations of the air-breathing hypersonic vehicle in its climbing phase which 

has state constraints and actuator constraints. 

Keywords: tensor product (TP) model; linear matrix inequalities (LMI); constrained 

control; parallel distributed compensation (PDC); command governor (CG) 

1 Introduction 

Air-breathing hypersonic vehicles (AHVs) receive great research attention 

because they present a more promising and economical technology for access to 

near space for both civilian and military applications [1-2], as witnessed by the 

success of NASA's scramjet-powered X-43A and X-51A. Compared with the 

traditional flight vehicles, the AHV flight control design still faces open 

challenges because the vehicle has high nonlinearity, inherently unstable and 

complex couplings and parametric uncertainties [3-7]. Most of the research 
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focuses on the cruising phase. When talking about maneuvering flight, another 

two aspects should be taken into consideration, the changing characteristics of the 

vehicle with various flight conditions and constrained flight status restricted by the 

requirements of the scramjet for safe running [8-12]. Therefore, pursuing an 

accurate varying model and designing a suitable constrained control method are 

key problems to be solved in the maneuvering phase. 

In the past few decades, the linear parameter varying (LPV) control underwent 

huge development. Through obtaining parameter-dependent controller in the 

framework of linear matrix inequalities (LMI), the LPV control system is capable 

of gain-scheduling in real time with the measured or estimated parameters and 

ensuring the robust stability and satisfied performance of the control system. 

Among the various LPV modeling methods, the tensor product (TP) model 

transformation is very attractive, as it is convenient to be combined with the LMI-

based control theory and has high accuracy [13-15]. These advantages have been 

taken to deal with extreme parameter variations caused by large flight envelope in 

flight control [9]. Together with the parallel distributed compensation (PDC) 

controller design, TP-based LMI controllers gain global stability in the area of 

parameter variation [16-17]. For air-breathing hypersonic vehicle control, flight 

status such as angle of attack and pitch rate must meet the restrictions by the 

scramjet. Otherwise, engine stall may fail the flight task. Focusing on state 

constrained flight control, researchers make great efforts [18]. The command 

governor approach gains a lot of attention in this field. The specific merit of this 

approach lies in handling constraints on both input and state-related variables 

without too many numerical burdens [19-20]. 

Motivated by the above, the paper addresses the command governor control 

method that incorporates the benefits of TP-based LPV control. To begin with, 

this paper transforms the state-space model of the plant by transforming a tensor 

product (TP) model into convex state-space TP model. Then, the control system is 

divided into two layers. The outer layer creates overload command for altitude 

tracking (which is not the focus of this paper). The emphasis lies in the design of 

inner layer design, which contains a command governor device and a set of LQ 

controllers. The aim of the inner loop is to improve the flight attitude control 

performance and implement the appropriate overload command without violating 

various restrictions. The values of the LQ controllers are checked by solving a set 

of LMIs generated by PDC technique according to desired specifications in all the 

TP-model vertex systems. As for the restrictions, the command governor device 

optimizes the overload command in every control period, which guarantees that 

all the related variables may not violate constraints. Finally, nonlinear numerical 

simulation results are provided to verify the effectiveness of the method. 
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2 Flight Model 

With the nonlinear model for longitudinal dynamics of an AHV considered, the 

nonlinear equations of motion for velocity ( / )V meter s , altitude ( )H meter , flight-

path angle ( )rad , the angle of attack ( )rad  and pitch rate ( / )q rad s  are 

described as follows: 
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where m denotes the mass of the flight vehicle; T  and L  represent thrust and lift 

force; zzI  stands for the longitudinal moment of inertia; zM  is the pitch moment. 

The control input [ ]eu  , whose unit is rad. 

The CFD results show the thrust coefficient TC , the lift coefficient LC , and pitch 

moment coefficient MC  are related to Mach ( Ma ) number, angle of attack ( ) 

and elevator ( e ). The forces and moments have the following forms: 
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where , , , TS c   stand for the air density, reference area, aerodynamic chord. The 

unit for ,L T  is Newton; the unit for M  is Newton times meter. 

The miscellaneous coefficients of the inner-loop control system, which involves 

the last two equations in Eq. (1), are simplified under the trimmed condition, 

while the state and  input and output vectors are chosen as follows: 

[ , ] , [ ], y [ ]T

s e zx q u n    , where zn  is the measured value of normal 

acceleration. 

Small perturbation linearized equations of the flight attitude are derived as 

follows: 
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, , ,e e

L L M MC C C C
    represent first order partial derivative of coefficients in Eq. (2). 

, , ,e e

L L M MC C C C
    vary with Ma  and  ;   changes with h , and V  equals Ma  

times speed of sound. The equations (3) and (4) vary with ( ) [ , , ]p t h Mach  . 

We assume that all these parameters can be obtained in real-time (In fact, the Ma 

and h can be measured by sensors, while   should be estimated according to the 

inertial guidance system). 

Eqs. (3) and (4) can be expressed in the LPV form: 
.
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( ) [ ( ), ( ), ( )]Tp t h t Ma t t  is the vector of varying parameters. The desired 

command values of the normal acceleration is denoted by ( ) [ ]zcr t n . The error 

integral equation is defined as follows: 

0
( ) [ ( ) ( )]

t

e t r t y t d    (6) 

The augmented system is as follows: 
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This paper focuses on the climbing phase to do the flight maneuver. The higher 

altitude corresponds to a faster cruising velocity. In the climbing phase, its engine 

works in full mode (which means the ratio of air and oil should always be 1). The 

mission is to maneuver the cruising vehicle to a higher altitude as soon as 

possible, without violating any constraints. The longitudinal control system can be 

considered as a two-layered control system. The outer-loop control system 

determines a reference longitudinal acceleration zcn  based on the altitude error. 

The inner-loop control system regulates the vehicle’s attitude to follow the 

reference signal using an elevator. Constraints exist in the angle of attack and 

pitch rate for the stable combustion of the scramjet. Constraints on the elevator 

prevent input saturation. These constraints can be represented by: 
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The attitude control should be quick and accurate with acceptable behaviours of 

the elevator. The paper uses the linear quadratic proportional plus integral (LQ-PI) 

controller to make the control performance satisfactory. 

3 TP Transformation and Control Method 

3.1 TP Transformation for the LPV Model 

The LPV state-space model is given as follows: 
.
( ) ( ( )) ( ) ( ( )) ( )

( ) ( ( )) ( ) ( ( )) ( )

x t A p t x t B p t u t

y t C p t x t D p t u t

  


 

 ( ) ly t  ¡  (10) 

with input ( ) ku t  ¡ , output  and state vector ( ) mx t  ¡ . The system matrix is 

written as 

( ) ( )
( ( )) ( ( ))

( ( )) :
( ( )) ( ( ))

m k m l
A p t B p t

S p t
C p t D p t

   
  
 

¡   (11) 

where ( )p t   is a time-varying N-dimensional parametric vector with the 

hypercube 
1 1 2 2[ ] [ ] [ ] N

N Na b a b a b    L ¡ . 

The TP model transformation is capable of converting a model given by a set of 

continuous multivariable functions into a polytopic TP model. If a model is 

established with the relevant aerodynamic data, it still works by substituting the 

sampling data produced by functions with these data. In this way, the establised 

model can be transformed into products consisting of orthonormal one-variable 

weighting functions. Based on the concepts of higher-order singular value 

decomposition (HOSVD), these products are constructed into a tensor product 

structure according to the significance of each component. For more details, see 

Ref. [14]. 

In the qLPV plant, the system matrix ( ( ))S p t  is transformed into the following 

polytopic TP model for parametric vector ( )p t : 

1

1

1
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which stands for a parameter-dependent convex combination of linear time-

invariant (LTI) system matrices, with the vertex systems 
1

( ) ( )

N

m k m l

i iS   L ¡  and 

the weighting function ( ( ))n nw p t . In Eq.(12), ( )np t  stands for the n th parameter 
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in ( )p t , with 1,n N L . nI  represents the number of singular values kept in each 

( )np t . The number of  vertices is 1 2 NR I I I L . After this, the system ( ( ))S p t  in 

Eq. (11) can be expressed by combining the R  vertex in Eq. (12). 

Based on the tensor product model transformation in a compact form, Eq. (12) can 

be rewritten as: 

1
( ( )) w ( ( ))

N

n n
n

S p t p t


 S   (13) 

which enables the application of matrix and tensor algebra methods. The (N 2)  

dimensional coefficient of the core tensor 1 ( ) ( )nI I m k m l     
S

L
¡  is constructed 

from the LTI vertex systems 
1 , , Ni iS L  and the row vector w ( ( ))n np t  that contains 

the one-variable weighting function , ( ( ))
nn i nw p t , 1n Ni I L . 

The weighting function satisfies the sum normalized, non-negative (SNNN) 

condition[14], which can be expressed as Eqs. (14) and (15): 

,, , ( ) : ( ( )) [0,1]
nn n n i nn i p t w p t    (14) 

,

1

, , ( ) : ( ( )) 1
n

n

I

n n n i n

i

n i p t w p t


  . (15) 

In the following, we show that types of weighting functions can be modified by 

the TP model transformation: 

Type 1: (the normality [NO] type). The resulting weighting functions satisfies  the 

SNNN conditions, and the largest value of each function is 1. 

Type 2: (the close-to-normality [CNO] type). The resulting weighting function 

satisfies the SNNN conditions, and the largest value of each function is 1 or close 

to 1. 

Type 3: (the inverse normality [INO] type). The resulting weighting function 

satisfies the SNNN conditions, and the smallest value of all functions is 0. 

For a CNO type TP model, some of its weighting functions can acquire 1, leading 

to ( ( ))S p t  being exactly mapped into some of the vertex systems. Compared to 

other types, the CNO type, which yields a tighter convex hull, is generally best 

suitable for controller design [14, 21]. We adopt the TP model that uses the CNO 

type weighting function. 

The systems in Eqs. (7-8) then can be rewritten with Eq. (10) to  form the 

following: 
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The systems’ core tensor S  has the following structure: 
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With this, we obtain the TP model-based LPV model in Eq.(7) as follows: 
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3.2 Designing LQ Controller in the PDC Framework 

The LQ method is widely used in flight control because of its good performance 

without excessive input. However, it is difficult to ensure the stabilization of a 

large flight envelope even with a large number of controllers. This part of the 

paper introduces a new method for combining the LQ controller design with the 

PDC framework to ensure that the global and asymptotic stabiliy is within the 

whole flight envelope. 

The PDC design technique determines one feedback to each vertex system 

( , _ )PDC stability theoremK = S   (21) 

Then define the control value as 

1
( ) w ( ( )) ( )

N

n n
n

u t p t x t


 
   

 
Kk   (22) 

The control performance should be guaranteed by the selected “stability_theorem” 

in Eq. (21), which is a symbolic parameter specifying the stability criteria and the 

desired control performance predefined in terms of LMIs [23-24]. For example, 

the 2 /H H  control performance and the pole placement can be considered 

through LMI-based stability theorems properly. We use the parallel distributed 

compensation method to guarantee the global asymptotic stability for a given 

dynamic system. 
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In order to have a direct link to the typical form of LMI-based stablity theorem, 

we define its indexing as follows: 

1 , , N

r r

r i i

r r

A B
S S

C D

 
  
 

L
  (23) 

where 1( , , )Nr ordering i i L                                                                        (24) 

The term ‘ordering’ presents in the linear index equivalent to an N -dimensional 

array’s index 1, , Ni iL , when the size of the array is 
1 2 NI I I  L , its expression 

is: 
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The basis functions can be defined according to the sequence of: 

,

1

( ( )) ( ( ))
n

N

r n i n

n

w p t w p t


   (26) 

Then the controller can be design with the Lyapunov stability theorems for global 

and asymptotic stability as follows: 

Find X > 0  and M r satisfies: 

T T T

r r r r r rXA A X M B B M 0       (27) 

for all r  and 
T T T T T T

r r s s r rXA A X XA A X + M B + B M M B B M 0s s r s s r         (28) 

for r s R  , except the pair ( , )r s  in which ( ( )) ( ( )) 0, ( )r sw p t w p t p t  . 

Finding a positive definite matrix X  and M r  or determining that no such 

matrices exist is a convex feasibility problem. Using the powerful tools in 

MATLAB-LMI toolbox [25], this problem can be solved very efficiently. The 

feedback gains can form the solutions X  and M r  as follows: 

1K M Xr r

   (29) 

Then, we can match the feedback 
1 , ,K

Ni iL from Kr with the 1( , , )Nr ordering i i L  

and store these gains into tensor K  of Eq. (21). 

To solve the above problem, we design the controller with the LQ method and 

check the control system with the PDC framework to enssure the global and 

asymptotic stability. The performance index becomes: 

0

( )T TJ x Qx u Eu dt



    (30) 

Q  and E  are symmetric positive definite matrices. By solving the LQ controller 
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for the vertex system in Eq. (16) with the algebra riccati equation, we obtain a set 

of controllers of rK  for the vertex system. Next, using Eq. (29), rM  can be 

expressed as follows: 

 

M K Xr r  (31) 

We substitute Eq. (31) into Eq. (27) and (28) and solve the new LMI problem; if 

there exists a matrix X > 0 , we conclude that the control system satisfies global 

and asymptotic stability in the whole flight envelope. Then, the closed loop 

control system in Eqs. (19) and (20) can be implemented: 
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As to the command signal of ( ) [ ]zcr t n , the closed-loop control system in 

Eq.(32) is obviously a Type-1 servo system. The static error is zero. In every 

sampling time, we derive the time-varying parameter vector ( )p t  according to the 

flight condition. The closed-loop system can be determined with the value of 

( )p t . 

3.3 Command Governor Design 

The model derived from Eqs. (32) and (33) is in continuous form. The discretized 

model with the sampling time Ts can be expressed with the following equations: 

( 1) ( (t)) ( ) ( (t)) ( )

( ) ( (t)) ( )y

x t p x t G p r t

y t H p x t

   


  (34) 

The matrix ( (t)), ( (t))p G p  are the discretized relevant parts in Eq.(32), while 

the matrix ( (t))yH p  is the discretized relevant part in Eq. (33), with [ ]T

sx x e . 
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With the state and input constrained control problem considered, we choose the 

command governor method to modify the command signal ( )r t and substitute it 

with the closest value ( )g t , thus meeting all the constraints in a long enough 

horizon. The system in Eq.(34) is modified as follows: 

 

( 1) ( (t)) ( ) ( (t)) ( ) ( )

( ) ( (t)) ( )

( ) ( ( )) ( )

y

c

x t p x t G p g t d t

y t H p x t

c t H p t x t

    





  (35) 

where  : 0,1,t  ¢ L . g( )t  is the command governor (CG) action. A suitable 

command input, which, if no constraints were present, would coincide with the 

command reference ( )r t . ( ) nd t  ¡ , discribes disturbance and ( ) dd t   ¡D ; 

( ) my t  ¡  describes the output, which is required to track the reference signal 

( )g t ; ( ) cc t  ¡ is the constrained vector. ( ( ))cH p t  represents the relationship 

between ( )c t  and state vector ( )x t . ( )c t t   C ¢， with C  represents a 

specified convex and compact set. In the sequel, the following assumptions are 

made: 

A1.   is a Schur matrix. 

A2. The system in Eq. (35) is offset free, that  is, 
1( (t))( ( (t))) ( (t))y n mH p I p G p I  . 

As to a Type-1 servo system, the A2 assumption is always satisfied. 

Under these assumptions, given a constant command ( ) ,g t t  , the 

disturbance-free and steady-state solution of Eq. (35) is 

1

1

1

: ( ( ( ))) ( ( )) ,

: ( ( ))( ( ( ))) ( ( )) ,

: ( ( ( ))) ( ( ))

n

y n

c n

x I p t G p t

y H p t I p t G p t

c H I p t G p t






















 

 

 

  (36) 

The , ,x y c 

  

 means the steady value of ( ), ( ), ( )x t y t c t  with a constant command 

( ) ,g t t  , when the disturbance ( )d t  is zero. 

Consider the following Minkowski difference recursions on the constrained set: 

0 1 1

0
: , : ~ ( ( )) , :

k
k k k k

c
k

H p t


  


    C C C C C CD   (37) 
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The equations show that a CG device can be designed for the system in Eq. (12) 

and compute the action ( )g   instantly and each time according to the convex 

optimization over a prediction horizon 0k ¢ : 

2

( ( ))
( ) arg min ( )

x t
g t r t





 

V
  (38) 

where 

 0( ) : ( , , ) , 0, ,kx c k x k k     WV C   (39) 

with 

 : , ~m c  
     RW C C C B   (40) 

1
1 1

0

( , , ) ( ( ( )) ( ( )) ( ( )) )
k

k k i

c

i

c k x H p t x p t G p t 


  



      (41) 

where B a ball of radius  centered at the origin, which covers the region where 

all constant virtual commands whose state evolution starts from the current 

x satisfy all the constraints during the transients, too. For computational details 

about Eq. (37), refer to Refs. [26-27]. 

In describing the current system, a small problem is that the ( ( ))p t  used in the 

prediction sequel is a constant matrix, which, however, should be time-varying 

like ( ( ))p t k  . Considering the computational efficiency and difficulties in 

solving complicated optimization problems, using ( ( ))p t k   instead of 

( ( ))p t  is impractical. Instead, a practical method is to increase the sampling 

frequency to reduce errors at the price of a moderate computational burden. With 

this method, a practical command governor device in the LPV form can be 

established. The following numerical simulations verify the effectiveness of this 

method. 

4 Numerical Simulation 

This section presents the  simulation results to demonstrate the effectiveness of the 

proposed method for state and input constrained control of the AHV. Suppose that 

the AHV cruises with the velocity of 1522 /m s  and the altitude of 20000 m. The 

cruise altitude of the maneuvering target changes to 21000 m. This orbital transfer 

capability is important because it improves the penetration probability and 

economical flight of the AHV. The initial attitude and angular velocity conditions 

are chosen as 0 0 02deg deg 0deg/ s, = 0 , q   . The attitude and input 

constraints are given as: 
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4deg 6deg

12deg/ s 12deg/ s

20deg 20dege

q





  

  

  

  (42) 

The AHV’s TP model-based LPV model is established with discrete flight 

dynamic data; the velocity Ma [5,5.5,6] , the altitude 

h [20,21,22,23,24,25,26]km , and the angle of attack 

[ 6, 4, 2,0,2,4,6]deg     . 

We utilize the tensor product transformation to establish the LPV models of the 

systems in Eq. (7)and (8). The rank of the discretized core tensor S  results in 

3,3,6 in the first, second and third dimensions; therefore, the 3 3 6 54    vertex 

describes the exact polytopic TP model of the qLPV state-space model. To acquire 

the relaxed qLPV state-space model, we disposed of small singular values, which, 

in each dimension, take the following singular values: 

Table 1 

The comparison results on paris of singular values 

Dimension ( ) :h t   18.8831 2.7874 1.217e-05    

Dimension ( ) :Mach t  18.7274 3.6515 0.5401    

Dimension ( ) :t  19.0624 0.7876 0.5556 0.1576 0.1054 0.0326 

The singular values kept in each dimension are 2, 3, 4, then the relaxed TP model 

can be described with 24 vertexes. 

The LTI vertex systems in Eq. (16) is given as follows: 
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1,1,1 1,1,1

1,1,2 1,1,2
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  (43) 
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Figure 1 

CNO-type scheduling parameter weighting functions for the established TP model 

Then, we use the inner-loop control structure (shown in Figure 2) to realize offset 

–free command tracking. 
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Figure 2 

The Inner-loop control structure with command governor 

Where the dash-line-surrounded part represents the primal controller. Using the 

LQ method shown in Eq. (30), we design the primal controller for vertex systems 

with Q and E as follows: 

80 0 0

0 1.2 0 , 3

0 0 0.3

Q E

 
 

 
 
  

  (44) 

We gain the following vertex controllers: 

(1,1,1) [ 5.3716, 0.6709,0.3162]

(1,1,2) [ 5.1731, 0.6289,0.3162]

(1,1,3) [ 5.1263, 0.6465,0.3162]

(2,3,4) [ 5.4605, 0.7560,0.3162]

K

K

K

K

  

  

  

  

g

g

g

  (45) 

Based on PDC theory, we use MATLAB LMI Toolbox to test the feasibility of 

Eqs. (27) and (28). The monitoring matrix is as follows: 

 

8.9962 10 4.886 09 5.6984 09

4.0886 09 3.9156 08 5.4979 09 0

5.6984 09 5.4979 08 1.1643 07

e e e

X e e e

e e e

    
 

     
 
    

  (46) 

The matrix indicates that the compensated LPV system is globally and 

asymptotically stable. Then the control value is computed according to Eq. (22): 
2 3 4

1, 2, 3, , ,

1 1 1

( ) ( ( ) ( ) ( ) K ) ( )i j k i j k

i j k

u t w h w Ma w x t
  

     (47) 

The compensated system can be described as: 
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We translate the system in Eqs. (48) and (49) into its discrete form with the 

sampling time of 0.005s, 

( 1) ( (t)) ( ) ( (t)) ( ) ( ),

( ) ( (t)) ( )y

x t p x t G p g t d t

y t H p x t

    


  (50) 

We also transform [ ]Tc q u  into constrained variables and describe it with 

the following state variables: 

( ) ( )cc t H x t   (51) 

1 2 3
1 1 1

1 0 0

0 1 0

K w ( ( )) K w ( ( )) K w ( ( ))

c

N N N

n n n n n n
n n n

H

p t p t p t
  

 
 
 
 
 

    

  (52) 

The ( )d t  should be the model error, and its region is estimated to be within 0.02. 

The nominal constraints are formulated into Eq.(42) and the command governor is 

design. Then, we design the outer-loop flight control system as the PD control of 
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height error. The total control system is depicted in Figure 3, with 0.02hK  and 

0.1dK  . 
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Figure 3 

The Framework that includes both the inner and outer-loop control systems 
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Figure 4 

Simulation results 
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Figure 4 illustrates that the AHV climbs for 1km and shows that: the settling time 

is less than 20 seconds; the steady-state error is within 50 m; the angle of attack 

stays within -3 to 6 degrees; the pitch rate stays within -5.5 to 6.5 deg/s; the 

elevator deflection remains -7.5 to 0 degrees. All the constraints are satisfied. The 

rate of elevator deflection remains -37 to 54 deg/s, indicating that the control 

signal satisfies the actuator’s constraints. The figure also shows that the angle of 

attack remains to be the maximum value available, namely for a period of almost 

10 seconds when the climbing begins, which gains a maximum lift to accelerate 

the climbing. This is because when the climbing begins, the error of the command 

signal Ch  and the measured altitude h  is big and leads to the big normal overload 

command of the inner-loop control system. Then, the command governor modifies 

the overload command to a maximum degree that satisfies all the constraints. In 

this way, the best use is made of the angle of attack available to realize a quick 

climbing. When the error decreases and the climbing velocity increases, the AHV 

adjusts its angle of attack to track the desired altitude without overshoot. The final 

altitude is 20970 meters, indicating that the altitude tracking system. It is because 

the altitude tracking system has a steady error. This is because the altitude 

tracking system is a Type-0 servo system. 

Conclusion 

The purpose of this study is to demonstrate the successful application of a state 

and input constrained controller to designing an AHV’s control system with a 

large flight envelope. Based on the TP transformation, the AHV’s accurate qLPV 

model is established with the acceptable number of vertexes and therefore lightens 

the computational burden for model description and controller design. As to the 

controller design, the authors use the LQ method within the PDC framework,,thus 

obtaining a good control performance near all the vertexes and a global stability in 

the flight envelope. Together with command governor design, the AHV meets all 

the constraints in the climbing phase. At the beginning of the climbing phase, the 

flight makes the best use of maximal angle of attack available to climb quickly. 

The simulation results on the altitude tracking system  demonstrate the 

effectiveness of the proposed state and input constrained control method. 
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