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Abstract: Modeling the effect of therapeutic drugs on tumor dynamics is a fundamen-
tal step that leads to the optimization of cancer therapy using mathematical tools. We
discuss three tumor dynamics models starting from a minimalist model describing the ef-
fect of bevacizumab based on experiments where the measurements can be defined with
one parameter exponential curves, and finally discussing a more complex model that de-
scribes the effect of pegylated liposomal doxorubicin (PLD) based on measurements with
richer dynamics. The differential equations are created with the analogy of formal reac-
tion kinetics, enabling universal interpretation of the modeled phenomena. Parametric
identification is carried out based on measurements to prove the efficacy of the models.
The results of the parametric identification show that the discussed models can sufficiently
describe the experimental results. The between-subject variability of the model parame-
ters is given which highlights the parameters that may change the most in a virtual patient
set.

Keywords: antiangiogenic therapy; chemotherapy; pegylated liposomal doxorubicin;
stochastic approximation expectation maximization

1 Introduction
Model-based optimization and personalization of tumor therapies require tumor
growth models which reliably describe the effect of the drug used during the
therapy [1]. Creation and validation of tumor models can be carried out using
time series measurements in mice experiments involving drugs for cancer treat-
ment [2]. Mathematical models, i.e, differential equations, however, can be hard
to interpret by clinical experts, thus we use formal reaction kinetics analogy [3]
to create the tumor models, similar to the work of Kuznetsov et al [4].

The most common tumor growth models assume Gompertzian growth function
[1, 5], which introduces a nonlinear term in the differential equation. Although,
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Gompertzian growth function expresses the fact that the tumor volume (or cell
number) has an upper limit, we do not use Gompertzian function in our model.
Since our modeling is driven by mice experiments, and during the experiments,
the tumor never reaches its upper limit, but operated on the linear dynamics range
(i.e., tumor growth is exponential), we use linear dynamics to describe the tumor
growth.

The tumor modeling is built up starting from a simple model ending with com-
plex one incorporating nonlinear pharmacokinetics and pharmacodynamics. Sec-
tion 2 covers the simplest model incorporating the effect of tumor proliferation,
drug clearance and drug effects [6], resulting in a planar system with one bilinear
term in the differential equations and two linear terms. The solution of the dif-
ferential equation can be written symbolically if the input is one single injection,
which was used for least squares parameter estimation in [6]. This model is also
referred to as the minimal model some papers related to tumor control [7–10].

The minimal model is extended with dead tumor volume dynamics, nonlinear
pharmacokinetics and pharmacodynamics in Section 3. The model is validated
using measurements with angiogenic inhibitor bevacizumab [11]. The extension
of the model with dead tumor volume enables more realistic identification, since
in the experiment, the sum of the volume of the dead and living tumor volume
is measured [12]. The mixed-order pharmacokinetics and nonlinear pharmaco-
dynamics makes the model even more realistic, with the latter incorporating the
effective median dose (ED50) parameter, which introduces an input saturation.
The qualitative analysis of the extended model is carried in [13].

The extended model is used to model the effect of chemotherapeutic agent pegy-
lated liposomal doxorubicin (PLD) in Section 4, where the dead tumor volume
washout is also added to the model. The results show that the model can suffi-
ciently describe the effect of chemotherapeutic agent applied to mice with breast
cancer [2], which has been used for therapy optimization in [14] with a modified
optimization algorithm of [15].

2 Minimal Tumor Model
The first version of the tumor model based on formal reaction kinetics was pub-
lished in 2017 [6]. The tumor growth model is given by the planar system

ẋ = ax−bxy (1)
ẏ = −cy (2)

where x is the time function of tumor volume given in mm3, y is the time function
of the level of drug in the patient given in mg/kg (i.e., mg of inhibitor per body
mass kg of the host). The parameters of the model are

• a : the tumor growth rate [1/day];

• b : the drug efficiency rate [kg/(mg ·day)];
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• c : the clearance of the drug [1/day].

The drug depletion is defined with linear pharmacokinetics in (2). Thus, the
depletion of the drug is governed by a linear differential equation, yielding that
the time function of drug level is given by

y(t) = y(0)e−ct (3)

with y(0) being the initial condition. Suppose, that we give y(0) amount of the
drug to the patient at time t = 0. If there are no more injections, the level of the
drug in the patient is described by (3) if there was no drug present in the patient
before the injection.

The parameter c used in (3) is the clearance of the drug. The clearance and half-
life of drug are both used in medical practice. The clearance parameter can be
acquired from the half-life of the drug denoted by T1/2 using

c =
ln2
T1/2

. (4)

The tumor growth dynamics is described by (1), where the first term on the right-
hand side characterizes exponential growth of tumor volume with growth param-
eter a. This term defines an unstable system if a is positive, i.e., the tumor grows
uncontrollably (described by an exponential function with positive exponent),
and there is no upper bound for the tumor volume. Tumor growth dynamics is
typically described as a Gompertzian growth function [5], i.e., the tumor volume
has an upper bound, however, we found that this model without upper bound
fits the measurements adequately and we were not able to observe the saturation
process of the tumor volume throughout many experiments [12].

The effect of the drug is described by the second term on the right-hand side of
(1). This bilinear term is the product of the tumor volume and the drug level, thus
if there is no tumor, then there is no therapeutic effect regardless of the amount
of drug present in the host. This bilinear term is the most simple term that can
describe this phenomenon. The rate of drug efficiency is the constant b, and since
the sign of the second term is negative, b is positive if the drug acts against the
growth process (thus inhibits tumor growth).

The solution to the differential equation (1) is

x(t) = x(0)exp
(

at− by0

c

(
e−ct −1

))
, (5)

with x(0) being the initial tumor volume and y(0) being the amount of drug in-
jected at time 0, provided that there was no drug present in the host before injec-
tion and there are no other injections during the therapy.

The minimal model given by (1)-(2) which describes unstable tumor growth, ef-
fect of the drug and linear pharmacokinetics can be formulated as a fictive chem-
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ical reaction given by the following reaction steps with species X representing
the tumor volume and the species Y representing the drug level:

• X a−−→ 2X that defines that tumor cells divide with rate a, i.e. species X
doubles its volume with a reaction rate coefficient a. Considering mass
action kinetics, the corresponding differential equation is ẋ = ax;

• Y c−−→ O that defines that there is an outflow of the species Y with a re-
action rate coefficient c, i.e., the drug is cleared from the body of the host,
considering mass action kinetics, the corresponding differential equation
is ẏ =−cy;

• X + Y b−−→ Y that defines that the species X and Y react and after the re-
action the species X disappears with a reaction rate coefficient b, i.e., the
drug destroys tumor volume; considering mass action kinetics, the corre-
sponding differential equation is ẋ =−bxy.

The connection of formal reaction steps and the corresponding differential equa-
tions (1)-(2) can be described by the methods that can be found e.g., in [3, 16, 17].

The minimal model can not capture the following phenomena that are physiolog-
ically important:

• giving an upper bound for the tumor growth, typically described by Gom-
pertzian functions in the literature [5];

• describing the indirect effect of the inhibitor on tumor growth through
modeling the dynamics of the supporting vasculature, if the model is used
to describe antiangiogenic therapy;

• modeling the dynamics of dead tumor volume (this will be incorporated
into the models in Sections 3 and 4);

• modeling the pharmacodynamics of the drug, i.e., the increase of the drug
dose does not yield linear increase in the effect, but the effect has a sat-
uration (this will be incorporated into the models in Sections 3 and 4 as
well).

The minimal model has only one equilibrium point specified by (1)-(2), which is
the trivial equilibrium, i.e., the equations

0 = ax∞−bx∞y∞ (6)
0 = −cy∞ (7)

are satisfied only at x∞ = 0 and y∞ = 0. This equilibrium is unstable, since the
Jacobian of the system of differential equations (1)-(2) at the equilibrium point is(

ax−bxy
−cy

)′∣∣∣∣
x=0,y=0

=

(
a−by −bx

0 −c

)∣∣∣∣
x=0,y=0

=

(
a 0
0 −c

)
(8)
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which is a saddle if a > 0 (i.e., it implies unstable tumor growth without drug).
Thus, if we give only one injection at the beginning of the treatment, the tumor
volume will not be stabilized in an equilibrium, but it will grow with growth rate
a after the drug is depleted.

However, if we extend the inhibitor dynamics by adding drug inflow rate I (e.g.,
to model further injections or infusion), i.e., (2) becomes

ẏ =−cy+ I, (9)

then the equilibria of the model are the solutions to

0 = ax∞−bx∞y∞ (10)
0 = −cy∞ + I∞ (11)

that are

y∞ =
a
b

(12)

I∞ = c
a
b

(13)

with x∞ ∈ R+. This implies that if there is an exogenous drug dosage, then
the equilibrium is independent of the tumor volume, and only depends on the
parameters of the model, thus after we drive the tumor volume in the given state,
we give the amount drug described by (12)-(13) to keep the tumor in that state.

Parametric identification of the tumor model based on mice experiments [12] was
carried out using mixed-effect model with Stochastic Approximation Expectation-
Maximization detailed in [18, 19]. The results of parametric identification fit for
each mouse in the experiment is shown in Figure 1. The individual parameter
sets show good fit for the measurements.

The identified values of the parameters with 95% confidence intervals and between-
subject variability are shown in Table 1. In the identification process, the initial
volume appears as an identified parameter. The between-subject variabilities of
the parameters are relatively small, the only parameter in the identification with
large between-subject variability of the initial tumor volume, which is not a real
parameter of the model.

In conclusion, although the model given by (1)-(2) is relatively simple and mod-
els only a few physiological phenomena and some critical processes are not mod-
eled, the results in Figure 1 show that the model can describe the measurements.
In the next section, the model is extended to incorporate the missing, critical
physiological phenomena; the extended model will have similar fit results as the
minimal model discussed in this section.
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Parameter Identified value (95%CI) BSV(CV%)
a 0.206 (0.179, 0.238) 15.4<
b 0.117 (0.00163, 8.47) 23.9>
c 0.0709 (6.35e-005, 79.1) 4.01>
x10 76.4 (47.5, 123) 84.9<

Table 1
Estimated parameters of the non-linear mixed effects model for the tumor model given by the
differential equations (1)-(2)., CI: confidence interval, BSV: between-subject variability, CV:

coefficient of variation

3 Tumor Model for Antiangiogenic Therapy
The minimal model was extended to incorporate the dynamics of the dead tumor
volume, the pharmacodynamics of the drug and mixed-order pharmacokinetics
of the drug in [11] and used to explain the effect of the angiogenic inhibitor
bevacizumab [12]. The model was also described using formal reaction kinetics
analogy as follows: the species X1 represents the proliferating tumor volume, the
species X2 represents the dead tumor volume and the species X3 represents the
inhibitor serum level. The equations of the model are:

• X1
a−−→ 2X1 that defines that the tumor cells proliferate (divide) with a

tumor growth rate a. Using mass-action kinetics, this equation results in
the term ẋ1 = ax1;

• X1
n−−→ X2 that defines the necrosis of tumor cells with necrosis rate n.

Note that this necrosis is independent of the treatment. Using mass-action
kinetics, this equation modifies the dynamics of the proliferating and dead
tumor volumes with the terms ẋ1 =−nx1, ẋ2 = nx1;

• X3
c−−→ O that defines that there is an outflow of the drug with a reaction

rate coefficient c, i.e. the clearance of the drug. We use Michaelis-Menten
kinetics in order to have a mixed-order model for the pharmacokinetics, so
this equations results in the term ẋ3 =−cx3/(KB+x3), where the parameter
KB is the Michaelis-Menten constant of the drug;

• X1 + X3
b−−→ X2 that defines that if the drug meets living tumor cells, the

result is dead tumor cells, i.e., the effect of the drug in a general way. This
equation is considered with Michaelis-Menten kinetics with Michaelis-
Menten constant ED50 (called the median effective dose [20]) resulting
in the velocity term x1x3/(ED50 + x3). The drug effect on the volumes is
considered with reaction rate coefficient b. The effect of this equation on
the dynamics of the proliferating and dead tumor volumes is expressed by
the terms ẋ1 = −bx1x3/(ED50 + x3) and ẋ2 = bx1x3/(ED50 + x3). Since
these terms have the dimension mm3/day, these terms can not be directly
used to modify the dynamics of the drug level, since that has the dimension
mg/(ml ·day). Thus, we use the constant κ with dimension mg/(ml ·mm3)
to define the term ẋ3 =−κbx1x3/(ED50+x3). However, for simplicity, in-
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Figure 1
Actual tumor volumes (magenta) from the experiments in [12] and (individual) estimations (blue)

from the model described by (1)-(2). The mice got one large dose of bevacizumab at the first day for
the cases C1–C5 and one small dose each day for the cases T1–T9.

stead of κ , we introduce the constant bκ = κb.

The combination of these terms give the differential equation of the extended
tumor growth model:

ẋ1 = (a−n)x1−b
x1x3

ED50 + x3
(14)

ẋ2 = nx1 +b
x1x3

ED50 + x3
(15)

ẋ3 = −c
x3

KB + x3
−bκ

x1x3

ED50 + x3
+u, (16)

where x1 is the time function of proliferating tumor volume in mm3, x2 is the
time function of the dead tumor volume in mm3, x3 is the time function of drug
serum level in mg/ml, u is the input that is the time function of drug injection
rate in mg/(ml ·day).

The output y of the system is the measured tumor volume in mm3 that is the sum
of the proliferating (x1) and dead (x2) tumor volumes, i.e.

y = x1 + x2. (17)
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The dynamics of the output is described by the differential equation

ẏ = ax1 (18)

that is the sum of (14) and (15), thus the change of the measured tumor volume
depends only on the tumor growth rate constant a and the actual volume of the
proliferating tumor volume.

The trivial equilibrium of the model is

x∗1 = 0 (19)
x∗3 = 0 (20)

with x∗2 ∈ R+. This equilibrium is a stable node if a− n < 0, i.e., the tumor is
defeated by the host, and a saddle, if a− n > 0. In the latter case, the tumor
grows without therapy. Qualitative analysis of the model extended with a linear
state feedback control law was carried out in [13], and it has been shown that the
therapy can be efficient (i.e., there is a positive equilibrium achieved during the
therapy) if and only if a− n− b < 0. This inequality is also the sufficient and
necessary condition to achieve decreasing proliferating tumor volume as it has
been shown in [11].

Parametric identification of the tumor model based on mice experiments [12] was
carried out using mixed-effect model with Stochastic Approximation Expectation-
Maximization detailed in [18, 19]. The identified values of the parameters with
95% confidence intervals and between-subject variability are shown in Table 2.
In the identification process, the initial volume appears as an identified parameter,
and shows the largest between-subject variability, while the real model parame-
ters have small BSV.

The results of parametric identification fit for each mouse in the experiment is
shown in Figure 2. The individual parameter sets show good fit for the measure-
ments, similar to the results in Section 2.

The model described by (14)-(16) has similar modeling power as the model given
by (1)-(2) based on the identification using the measurements from [12]. How-
ever, the model discussed in this section is more complex, and the equations of
the model are physiologically more feasible, the measurements suggest that the
complexity of the model is not required. However, in the next section, we mod-
ify the model given by (14)-(16) to describe measurements from chemotherapy
where the measurement results show much richer dynamics than the simple expo-
nential growth that can be observed on the measurements with bevacizumab [12]
in Figures 1 and 2.
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Parameter Identified value (95%CI) BSV (CV%)
a 0.373 (0.349, 0.399) 7.56%
b 0.124 (0.116, 0.132) 1.55%
c 0.132 (0.124, 0.14) 4.30%
n 0.176 (0.154, 0.202) 16.2%
bk 7.25e-7 (6.43e-7, 8.16e-7) 8.01%
x1(0) 46.5 (30, 71.9) 80.6%
KB 0.591 (0.497, 0.703) 8.80%
ED50 4.63e-005 (2.48e-005, 8.63e-005) 17.1%

Table 2
Estimated parameters of the non-linear mixed effects model for the tumor model for antiangiogenic

therapy described by (14)-(16), CI: confidence interval, BSV: between-subject variability, CV:
coefficient of variation

4 Tumor Model for Chemotherapy
The model given in [11] was further modified to add the effect of dead tumor cell
washout in [18] in order to make it able to describe the dynamics of chemother-
apy using PLD [2]. Since the effect of the drug was specified with a general
mechanism (i.e., meeting of the proliferating tumor cell and drug results in dead
tumor cell), it was unnecessary to modify the corresponding stoichiometric equa-
tion to make it mores suitable to describe chemotherapy. The dynamics of dead
tumor cell washout is given by the stoichiometric equation

X2
w−−→ O

which describes the washout of the dead tumor cells with washout rate w. Using
mass-action kinetics, this reaction step has the rate−wx2, which modifies the dy-
namics of the dead tumor cell volume. Thus, the modified differential equations
of the model are

ẋ1 = (a−n)x1−b
x1x3

ED50 + x3
(21)

ẋ2 = nx1 +b
x1x3

ED50 + x3
−wx2 (22)

ẋ3 = −c
x3

KB + x3
−bk

x1x3

ED50 + x3
+u, (23)

where x1 is the time function of proliferating tumor volume in mm3, x2 is the
time function of dead tumor volume in mm3, x3 is the time function of drug level
in mg/kg and u is the input that is the time function of drug injection rate in
mg/(kg · day). Since the injection doses were provided in mg/kg [2], the units
of x3, u, ED50, and KB differ from the units of the corresponding variables and
parameters in the model (14)-(16) where the basic unit was mg/ml.

The output y of the system is the measured tumor volume in mm3 that is the sum
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Figure 2
Actual tumor volumes (magenta) from the experiments in [12] and (individual) estimations (blue)

from the model described by (14)-(16). The mice got one large dose of bevacizumab at the first day
for the cases C1–C5 and one small dose each day for the cases T1–T9.

of the proliferating (x1) and dead (x2) tumor volumes, i.e.

y = x1 + x2. (24)

The dynamics of the output is described by the differential equation

ẏ = ax1−wx2 (25)

that is the sum of (21) and (22), thus the change of the measured tumor volume
depends directly only on the tumor growth rate constant a, the necrotic washout
w and the actual volume of the proliferating tumor volume and the dead tumor
volume.

The output dynamics (25) effectively describes a behaviour that seems like the
drug has delayed effect on the tumor volume. The delayed effect is produced by
the fact that initially the living tumor cells die (and become dead tumor cells),
thus the output (the sum of living and dead tumor cell volume) does not change,
and the remaining living tumor cells proliferate, resulting in increasing output,
and the dead tumor cells start to be cleared during the washout process, which
decreases the output. However, as long as the living tumor cells dominate (25),
i.e., the ratio of x1 and x2 is such that (25) is positive, the output is increasing,
and will only start to decrease when the ratio of the dead and living tumor cells
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Figure 3
Actual tumor volumes (magenta) from the experiments in [2] and (individual) estimations (blue)

from the model described by (21)-(23). The black arrows indicate 8 mg/kg injections of PLD in the
experiments.

reach a value when (25) becomes negative. This effect can be observed in the
measurements as well in Figure 3, where the measurements are indicated by ma-
genta diamonds, while the injections are indicated as arrows on the horizontal
axis. The injections were 8 mg/kg of PLD, a cytotoxic agent injected to mice
with breast cancer [2].

Parametric identification of the tumor model based on mice experiments [2] was
carried out using mixed-effect model with Stochastic Approximation Expectation-
Maximization detailed in [18, 19]. The identified values of the parameters with
95% confidence intervals and between-subject variability are shown in Table 3.
In the identification process, the initial volume appears as an identified parameter,
and shows the largest between-subject variability, while the real model parame-
ters have small BSV. The only exception is the effective median dose parameter
(ED50), which shows large between-subject variability.

The results of parametric identification fit for each mouse in the experiment are
shown in Figure 3. The individual parameter sets show good fit for the measure-
ments, except for the cases PLD1, PLD8 and PLD9. The most possible expla-
nation of the bad fit for these cases maybe that the tumor acquired resistance for
PLD1, PLD8 and PLD9, and the model is not able to describe this phenomenon.
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[t!]

Parameter Identified value (95%CI) BSV (CV%)
a 0.306 (0.265, 0.354) 6.08%
b 0.166 (0.126, 0.219) 18.2%
c 0.257 (0.2, 0.329) 31.9%
n 0.144 (0.127, 0.163) 16.3%
bk 6.12e-7 (5.57e-7, 6.73e-7) 6.60%
x1 (0) 6.94 (1.44, 33.4) 6050%
KB 0.36 (0.253, 0.514) 34.5%
ED50 9.71e-5 (2.17e-5, 0.000434) 152%
w 0.34 (0.292, 0.397) 7.43%

Table 3
Estimated parameters of the non-linear mixed effects model for describing the effect of PLD with

the equations (21)-(23), CI: confidence interval, BSV: between-subject variability, CV: coefficient of
variation.

Conclusions
The tumor models based on formal reaction kinetics analogy demonstrate that
the modeling approach can be beneficial for the modeling of physiological sys-
tems. The reaction kinetics analogy makes the differential equations interpretable
for experts not familiar with the theory of differential equations (e.g., clinical
experts), while the different modeling alternatives (e.g., mass-action kinetics or
Michaelis-Menten kinetics) can be used to find the optimal choice between model
complexity and modeling power.

The simple model, also called the minimal model, has good modeling power in
a small ”operative” range only, however, if the tumor is controlled, the states of
the system can be kept in that range, where the model is realistic. The simplicity
of the model is advantageous for model-based controller design, and allows the
use of numerous sophisticated control design techniques.

More complex models have the power to describe physiological processes in
more detail, however, the complexity makes controller design more difficult. As
the results showed with chemotherapy, the complex models can be used to de-
scribe the effect of therapy on a larger scale on both time and state space, thus
more complex models are more beneficial for designing impulsive therapies.
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antiangiogenic tumor therapy. IFAC-PapersOnLine, 50(1):13504 – 13509,
2017. 20th IFAC World Congress.
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