
Acta Polytechnica Hungarica Vol. 12, No. 4, 2015

 – 147 –

Performance Issues in Cloud Computing:
KVM Hypervisor’s Cache Modes Evaluation

Borislav Đorđević1, Nemanja Maček2, Valentina Timčenko3

1,3 Mihailo Pupin Institute, University of Belgrade, 15 Volgina Street, 11060
Belgrade, Serbia; borislav.djordjevic@pupin.rs, valentina.timcenko@pupin.rs

2 Department of Computer Technologies, The School of Electrical and Computer
Engineering of Applied Studies, Vojvode Stepe 283, 11000 Belgrade, Serbia
e-mail: nmacek@viser.edu.rs

Abstract: This paper examines the performance of bare-metal hypervisors within the
context of Quality of Service evaluation for Cloud Computing. Special attention is paid to
the Linux KVM hypervisors’ different cache modes. The main goal was to define analytical
models of all caching modes provided by hypervisor according to the general service time
equation. Postmark benchmark software is used for random performance testing with two
different workloads, consisting of relatively small objects that simulate a typical mail
server. Sequential performance is evaluated with Bonnie++ benchmark software. The
experiments were conducted separately with a single virtual machine, and, two and three
virtual machines running on the hypervisor. The interpretation of obtained benchmark
results according to the proposed models is the main contribution of this research.

Keywords: cloud computing; virtualization; hypervisor; KVM; cache modes

1 Introduction

Cloud computing (CC) is a concept of sharing hardware and software resources
that are available on request. CC is based on virtualization, which allows hardware
consolidation, provides resource isolation, leads to a higher level of security and
reliability of the available IT infrastructure and significantly reduces maintenance
costs [1-4]. The CC is closely related to the Quality of Service (QoS), which is a
guaranteed level of performance and availability of service provided to users [5].

The hypervisor (virtual machine manager) is a software layer that creates and
manages virtual machines. Guest operating systems (OS) are executed on virtual
machines. There are the two types of hypervisors. Type-1 (also known as bare-
metal or native) hypervisor is executed directly on the physical hardware, while
type-2 (also known as hosted) hypervisor runs on the host OS, thus providing the
guest OS with lower performance due to overhead produced by the host OS.

B. Đorđević et al. Performance Issues in Cloud Computing: KVM Hypervisor’s Cache Modes Evaluation

 – 148 –

Linux Kernel-based Virtual Machine (KVM) [6] is type-1 hypervisor integrated
into the Linux OS as a kernel module. This type of implementation allows KVM
to follow modern kernel improvements. KVM uses a modified QEMU emulator
for the block and network devices [7]. KVM provides a large number of tuneable
parameters to the administrators, including three different caching modes, which
differ in performance and achievable reliability.

In this paper, KVM hypervisor block device performance and reliability are
examined. The obtained results are interpreted according to analytical models of
workloads, reading, normal write cycles and flushing or direct writing in different
caching modes. We have set up several preliminary research hypotheses on I/O
performance, which were validated, along with the model, with the synthetic
benchmarking. The main contribution of this paper is the proposed analytical
modelling of workload and read/write (R/W) operations in the specific caching
virtual environment, which allows us to make recommendations for the optimal
KVM cache mode selection in specific situations.

2 Related Work

QoS in CC is a complex concept which includes many factors such as,
performance, reliability, availability and security. These factors are mutually
dependent, thus making the QoS evaluation a hard task. For example, security in
CC is a research area that includes, but is not limited to the following issues:
privileged user access, regulatory compliance, data location, data segregation,
recovery, defence against the attacks and long-term viability. Availability and
recovery are mutually dependent, as well as performance and reliability. Hence,
analyzing all the factors would outreach the scope of this research.

The scope of this research is hypervisor performance evaluation as one of
fundamental factors of the QoS. There are several different performance
evaluation approaches reported in the literature that differ in methodology. For
instance, the most common is the comparative performance analysis of Xen,
KVM, VMware and OpenVZ hypervisors using different benchmark tools such as
Bonnie++, IOzone, LINPACK and LMbench [8-12].

Some recent studies have focused on the emerging problem of fast input/output
(I/O) support for a growing number of applications in the CC, thus targeting block
device and general I/O performance analysis in virtual environment [9, 13-15].
Thus, it is often seen that the experimental results draw the attention mainly to the
impact of performance overheads on the adoption of CC technology.
Consequently, it is important to pay attention when making decisions or choices of
virtual infrastructure management solutions, as there can be a rather limited
capacity to react to changes on demand in stochastic and dynamic environments
where not all the choices would be appropriate [9].

Acta Polytechnica Hungarica Vol. 12, No. 4, 2015

 – 149 –

Another class of topics arise from the need for resource management optimization,
virtual machine migration and resource replicas in CC [16-18]. These issues are
highly correlated to the dynamic fluctuation of the system workload, further
producing load imbalance, lower utilization and workload hotspots. Some of these
approaches enforce the introduction of automatic management of virtualized
resources in cloud environments, and the particular control system that would
compute the necessary resource allocations for each used application, provide
dynamic adjustment and virtual machine rearrangement in the cloud, mainly based
on statistical machine learning techniques [17].

Studies that target a highly pervasive need for energy efficiency in the context of
performance in CC are presented in [19-20]. These studies provide some
fundamental insights on the impact of virtualization on energy usage, consider the
energy overhead increase correlation with the increase of physical resources
utilization, and also suggest some possibilities of CC server consolidation in data
centers for reducing energy cost [19]. Alternatively, an approach for applying
appropriate allocation schemes of dynamic requests for virtual servers is proposed
for server farms applications [20], and efficient and secure use of system resources
[21]. Additionally, CC technology can highly improve different business
processes, e.g. in the context of universities where CC can provide a more intense
data processing environment and enhance specific I/O quality dimensions [22].

The research presented in this paper belongs to the comparative performance
analysis approach group. Although it is partially similar with the research
presented in [9], which analyzes caching modes without any in-depth
interpretation, all results presented here are interpreted according to the proposed
analytical model. Best practices for block I/O performance and recommendations
for the selection of appropriate KVM cache mode according to the type of storage
that is used are discussed in [23]. For example, writethrough mode is
recommended for local or direct-attached storage, as it ensures data integrity and
provides acceptable I/O performance, while "none" mode is recommended for
remote NFS storage, as it effectively turns all guest I/O operations into direct I/O
operations on the host.

3 KVM Cache Modes

The operating system’s page cache improves the disk read/write operation
performance. Within the Kernel-based Virtual Machine (KVM) environment, both
the host and the guest OS maintain their own page caches. The page cache is
copied to a permanent storage using flushing (fsync), while direct I/O requests
bypass the page cache. There is also a disk R/W cache, resulting in three
independent caches. There are three caching modes available for KVM guest

B. Đorđević et al. Performance Issues in Cloud Computing: KVM Hypervisor’s Cache Modes Evaluation

 – 150 –

operating systems – writethrough, write-back and none, resulting in three different
write operation options:

• data will be cached in the host-side page cache if the cache mode is set to
writeback;

• data will be immediately flushed to the physical disk cache if the cache mode
is set to none;

• data will be immediately flushed to the physical disk platters if the cache mode
is set to writethrough.

If KVM caching mode is set to write-back, both the host OS page cache and the
disk write cache are enabled for the guest. QEMU-KVM interacts with the disk
image file with writeback semantics for guest’s flushing and direct write cycles:
write operations are reported to the guest as completed when the data is placed in
the host page cache. The guest's virtual storage controller is expected to send
down flush commands. Guest OS application’s I/O performance is good, but the
data is not protected from power failures. As a result, writeback caching mode is
recommended only if the potential data loss is not a major concern.

If KVM caching mode is set to none, the host OS page cache is disabled. QEMU-
KVM interacts with the disk image file with writethrough semantics for guest’s
flushing and direct write cycles; the host page cache is bypassed and I/O is
performed directly between the QEMU-KVM buffers and the storage device.
Write operations are reported to the guest as completed when the data is placed in
the disk R/W cache. The guest's virtual storage controller is expected to send
down flush commands. Guest’s write performance in this mode is expected to be
optimal because the write operations bypass the host OS page cache and go
directly to disk R/W cache. However, due to host OS page cache being disabled,
the guest’s read performance is not as good as in writeback and writethrough
modes. This cache mode is suitable for guests with large I/O requirements, and is
generally the best choice, as it is the only mode that supports migration.

KVM’s writethrough mode enables different caches for reading and writing. Host
OS page cache and the disk cache are enabled for the guest’s reading operations.
QEMU-KVM interacts with the disk image file with write-through semantics for
guest’s flushing and direct write cycles, and write operations are reported as
completed only when the data has been fully committed to the storage device. The
guest's virtual storage controller does not need to send down flush commands.
Guest’s application read performance is good as in the write-back mode, as the
host OS page cache is enabled for reading. However, this mode provides lowest
writing performance and is prone to scaling problems, because data is written
through to the physical storage medium. This cache mode is suitable for systems
with small number of guests that have low I/O requirements.

Acta Polytechnica Hungarica Vol. 12, No. 4, 2015

 – 151 –

4 Modelling the Workload and Cache Modes

Performance characteristics of each workload are based on times required to
complete read and write operations. Both reading and writing can be either
random or sequential. Thus, the total workload processing time TW is given by:

W RR SR RW SWT T T T T= + + + , (1)

where TRR denotes random read time, TSR sequential read time, TRW random write
time and TSW sequential write time. For the specified workload, expected access
time for the file system includes five components given by the following equation:

W DIR META FL FB JT T T T T T= + + + + , (2)

where TW is the total time needed to complete all operations on the workload, TDIR
the time needed to complete all directory related operations, TMETA the time needed
to complete all metadata operations, TFL the time needed to complete all free lists
operations, TFB the time needed to complete direct file blocks operations and TJ
the time needed to complete journaling operations.

General service time equation that can be applied to any caching system is:

srv HIT CACHEsrv MISS CACHEsrvT P T P T= ⋅ + ⋅ , (3)

where TCACHEsrv denotes an effective disk access time with caching functionality
(cache hit/miss service time), and PHIT and PMISS denote probabilities of hits and
misses in the cache, respectively.

Cache service time is calculated as ratio of request size and cache transfer rate (the
throughput of the cache).

4.1 Reading Operations in Different Cache Modes

Most of the timing equations presented here are based on the proper application of
general service time equation (3).

Reading cycles in writeback and writethrough, as shown on Figure 1 (left), use all
three caches. Application’s reading service time is a function of guest OS page
cache for the hit cycles, while host OS page cache and disk R/W cache are
included in the miss cycles:

_ _ _ _ _ _srvR HIT R guest srvR GuestPageCache MISS R guest srvR VirtDiskT P T P T≈ ⋅ + ⋅ . (4)

Virtual disk read service time is the function of host OS page cache for hit cycles,
while disk R/W cache is included in the miss cycles:

_ _ _ _ _ _ _srvR VirtDisk HIT R host srvR HostPageCache MISS R host srvR PhysDiskT P T P T≈ ⋅ + ⋅ . (5)

B. Đorđević et al. Performance Issues in Cloud Computing: KVM Hypervisor’s Cache Modes Evaluation

 – 152 –

Physical disk service time is the function of disk R/W cache for hit cycles, while
disk platters are included in the miss cycles:

_ _ _ _ _ _ _srvR PhysDisk HIT R disk srvR DiskCache MISS R host srvR DiskPlattersT P T P T≈ ⋅ + ⋅
. (6)

Throughputs of guest and host OS page cache depend on the operating memory,
while disk R/W cache throughput is considerably smaller and depends on the disk
interface speed. Disk platters’ reading service time is given as a sum of consumed
seek time Tseek, generated rotational latency Tlatency and media transfer time Tmedia:

_srvR DiskPlatters seek latency mediaT T T T= + + . (7)

Figure 1
Reading when cache mode is set to writeback or writethrough (left) and set to none (right)

If the KVM cache mode is set to none, only guest OS page cache and disk R/W
cache are active for reading operations, while host OS page cache is disabled, as
shown in Figure 1 (right). Disabling the host OS page cache degrades reading
performance, compared to writeback or writethrough mode.

Application’s reading service time depends on guest OS page cache, while disk
R/W cache is included into miss cycles, as given in (4). The virtual disk read
service time, which is now an equivalent of physical disk service time given by
equation (6), is the function of disk R/W for hit cycles, while disk platters are
included into the miss cycles.

Acta Polytechnica Hungarica Vol. 12, No. 4, 2015

 – 153 –

4.2 Normal Write Operations in all Cache Modes

Normal writing cycles use only guest OS page cache in all cache modes, as shown
in Figure 2 (left). Host OS page cache and disk R/W cache are used for miss
cycles as the disk block allocation function.

Figure 2
 Normal writing operations in all cache modes (left) and flushing or direct-sync writing when cache

mode is set to writeback (right)

Application’s writing service time is a function of guest flushing time, guest OS
page cache for hit cycles, while host OS page cache and disk R/W cache are
included into the miss cycles as guest block allocation service time:

_ _ _ _ _srvW HIT W host srvW GuestPageCache MISS W guest GuestBlockAllocate GuestFlushT P T P T T≈ ⋅ + ⋅ + . (8)

If we exclude guest flushing, guest application’s writing service time is almost
identical to guest OS page cache service time; normal write performance without
guest flushing time is almost identical for all three cache modes. However, guest
flushing time is different for these modes: in writeback, flushing goes into the host
OS page cache, in none caching mode flushing goes into the disk R/W cache, and
in the writethrough mode it goes into the disk platters.

B. Đorđević et al. Performance Issues in Cloud Computing: KVM Hypervisor’s Cache Modes Evaluation

 – 154 –

4.3 Flushing or Direct-sync Writing in Different Cache Modes

Let the direct write service time denote guest flushing and direct sync write time.

In writeback cache mode, only host OS page cache is active for flushing – direct
writing, while disk R/W cache is active for miss cycles as disk block allocation
function. Flushing and direct-sync write cycles are shown in the Figure 2 (right).
Direct write service time is a function of host OS page cache for hit cycles, while
disk R/W cache is defined as host block allocation service time in the miss cycles:

_ _ _ _ _srvDW HIT W host srvW HostPageCache MISS W host HostBlockAllocate HostFlushT P T P T T≈ ⋅ + ⋅ + . (9)

If host flushing is excluded, the guest’s direct writing service time is almost
identical to host OS page cache service time (very fast).

If cache mode is set to none, only disk R/W cache is active for flushing – direct
writing, while disk platters in miss cycles are considered for disk block allocation
function. Flushing and direct-sync write cycles are shown in the Figure 3 (left).

Figure 3
Flushing or direct-sync writing when cache mode is set to none (left) and set to writethrough (right)

Direct write service time is a function of disk R/W cache for hits, while disk
platters are included in the miss cycles as disk block allocate service time:

_ _ _ _ _srvDW HIT W disk srvW DiskCache MISS W disk DiskBlockAllocate DiskFlushT P T P T T≈ ⋅ + ⋅ + . (10)

Acta Polytechnica Hungarica Vol. 12, No. 4, 2015

 – 155 –

If disk flushing is excluded, the guest’s direct writing service time is almost
identical to disk R/W cache service time.

If writethrough cache mode is used, each guest flushing or direct write cycle
finishes directly to disk platters, as shown in Figure 3 (right). Direct write service
time is a function of disk platter service time, and host page cache and disk R/W
cache for hits:

_ _ _ _ _ _srvDW HIT W host srvW HostPageCache HIT W disk srvW DiskCache DiskPlattersT P T P T T≈ ⋅ + ⋅ + . (11)

4.4 Hypotheses on KVM I/O Performance

KVM virtual environment provides three levels of caching (guest OS cache, host
OS cache and disk R/W cache) and three different cache modes that mainly differ
in write semantics and interaction with the host OS cache. Writeback and
writethrough modes employ all three levels of caching in writeback and
writethrough semantics, respectively, while "none" cache mode bypasses the host
OS cache and employs disk R/W cache in writeback semantics. Single or multiple
virtual machines running different applications can be executed on a hypervisor.

The following research hypotheses on overall I/O performance, based on the
proposed model, are set:

• H1: I/O performance depends on the type of applications running on VMs.

• H2: I/O performance depends on number VMs running.

• H3: Number of VMs running on the hypervisor affects the amount of RAM
available to the host OS cache, resulting in overall I/O performance
degradation; this is more evident if the hypervisor runs on the system with
smaller amount of RAM and large number of VMs running.

According to the presented model, writeback and writethrough cache modes are
expected to provide a distinctive reading operations advantage over the "none"
cache mode on the basis of equation (5). The preliminary hypotheses on reading
operations performance are set as follows:

• H4: Writeback and writethrough are expected to provide remarkably better
throughput for workloads with dominant random read components.

• H5: If the dominant component of the workload is the sequential reading, the
writethrough and writeback should also provide much better performance
under the following conditions: the host page cache is large enough and it
relies on applied read ahead technology.

• H6: The impact of equation (5) directly depends on the size of available host
page cache and on the usage of the read ahead technologies.

B. Đorđević et al. Performance Issues in Cloud Computing: KVM Hypervisor’s Cache Modes Evaluation

 – 156 –

Write operations are correlated to flushing and direct sync cycles and the
writeback mode should provide the best results according to equation (9). The
preliminary hypotheses on writing operations performance are set as follows:

• H7: If the workloads’ dominant components create a large number of random
and sequential flushing and direct sync cycles, the usage of writeback caching
should provide the system with the best performance.

• H8: Under the same circumstances, the writethrough mode is expected to
provide the system with the worst performance, according to equation (11).

• H9: The impact of the equation (9) directly depends on the size of the available
host page cache and on the usage of the block-allocation technologies. Also, as
with the reading operations, the larger cache is expected to provide the system
with better performance.

These hypotheses and the presented model are validated by a set of performance
measurements (synthetic benchmarking) and result interpretation presented in next
section of the paper.

5 Experiments

We have used Postmark benchmark [24] for hypervisor’s random performance
testing and Bonnie++ benchmark [25] for hypervisor’s sequential performance
testing. Postmark simulates Internet mail server workload. It creates a large pool
of randomly generated files, performs a set of operations, such as creation,
reading, and deletion, and measures the time required to perform these operations.
Bonnie++ is a benchmark with the ability to perform several performance tests on
the file system, including sequential throughput and CPU overhead monitoring
during the test.

Experiments were performed on the dual core Intel Xeon CPU E3110 @ 3.00GHz
server with 4GB RAM, 1TB hard disk (7200 rpm, 6Gb/s). Centos_OS_6.5_final is
the underlying operating system with the ext4 as the test file system. Centos based
Linux Kernel 2.6.32-358.18.1.el6.x86_64 is chosen as a native host for KVM
hypervisors. Centos 6.5_final is also the guest operating system.

The test environment with only one virtual machine running is not completely
valid representation of a cloud. Thus, we have performed three sets of
experiments: one with the single VM running, and two additional tests with two
and three VMs running. All the results obtained with one VM running are
interpreted according to the analytical model presented in section 4 of this paper.
The model is also validated with the results obtained from the experiments with
multiple VMs, which are more representative of the CC environment.

Acta Polytechnica Hungarica Vol. 12, No. 4, 2015

 – 157 –

5.1 Random and Sequential Performance Testing with Single
VM Running

Random performance is measured with two different test sets. Obtained
experimental results are given in Table 1 and graphically presented in Figure 4.

The workload specifications for the first test set are: small number of files (4,000)
ranging in size from 1 KB to 100 KB, moderate number of create/delete
operations, and smaller amount of read/write operations (1.6 GB for reading, 1.8
GB for writing). The workload specifications for the second test set differ in file
size ranging in size from 100 KB to 300 KB, and a larger amount of read/write
operations (4.6 GB for reading, 5.4 GB for writing).

Table 1
Postmark random performance testing results

 Cache mode
Workload Operation Writeback Writethrough None
Test Set 1 Random read 59.77 MB/s 3.98 MB/s 5.41 MB/s

Random write 69.89 MB/s 4.66 MB/s 6.33 MB/s
Test Set 2 Random read 26.83 MB/s 7.36 MB/s 8.57 MB/s

Random write 31.15 MB/s 8.55 MB/s 9.94 MB/s

Figure 4
Random performance testing results

The writeback mode provides the best performance on both workloads. The results
obtained from this test set indicate that random read and write components are
dominant in (1), while the direct file block component is dominant in (2). The
second test set enforces the workaround of sequential components. Writeback
mode remarkably outperforms the writethrough mode. Although read (4-7) and
normal write operation performances (8) are almost identical, as both modes
employ host and guest OS page cache, there is a huge throughput difference due to
the flushing and direct write cycles. Writeback mode uses the host OS page cache

B. Đorđević et al. Performance Issues in Cloud Computing: KVM Hypervisor’s Cache Modes Evaluation

 – 158 –

with the writeback semantics given by (9) which is remarkably faster than
writethrough synchronous writing mode (11). Big throughput differences indicate
that the flushing and direct write cycles are very intensive, with the dominant
random components of the workload; throughput difference decreases with the
second test set, which increases the sequential component of workload.

Writeback mode remarkably outperforms the hypervisor with cache mode set to
none as well. Although normal write operation performances (8) are almost
identical, read cycles and flushing and direct write cycles provide huge throughput
difference. Writeback mode’s usage of host OS page cache with writeback
semantics (9) provides faster write cycles than disk R/W cache with writeback
semantics used if cache mode is set to none (10). Sequential components of
workload are more pronounced in the second test set, resulting in smaller
differences in read performance and flushing and direct write performance related
to first test set.

The performance of hypervisor with the cache mode set to none is slightly better
than the writethrough cache. Although normal write operation performances (8)
are almost identical, read cycles and flushing and direct write cycles provide
minor throughput difference. There are two reasons for the throughput differences.
Writethrough read cycles through host OS page cache (5-8) are much faster than
reading cycles without any cache. Flushing and direct write cycles using disk R/W
cache with writeback semantics (10) are remarkably faster than writethrough
synchronous writing mode (11). To conclude, writethrough mode reads data
faster, data is written faster if cache mode is set to none. Differences in
performance decrease if the workload with stronger sequential components is
used.

Bonnie++ sequential throughput test is used to measure sequential writing, reading
and rewriting performance of different KVM cache modes. Obtained experimental
results are given in Table 2 and graphically presented in Figure 5.

The throughput differences for sequential writes providing writeback’s superior
performance appear as the result from formulas (9-11) for flushing and direct
write cycles.

Rewrite operation reads the contents of the file, deletes the contents and writes
new data into the file. Writeback’s top performance results from flushing and
direct write cycles. Throughput differences between writeback and writethrough
modes in rewriting operations are decreased due to read cycles, as both cache
modes use host OS page cache (4-7). Writeback mode outperforms the
hypervisor’s none cache mode, due to the flushing and direct write cycles (10-11)
and due to the read cycles, by using host OS page cache.

The writeback slightly outperforms writethrough mode in sequential reading
operations, as they both use host OS page cache. If caching mode is set to none,
host OS page cache is not used resulting in 6 times lower throughput.

Acta Polytechnica Hungarica Vol. 12, No. 4, 2015

 – 159 –

Table 2
Bonnie++ sequential performance testing results

 Cache mode
Operation Writeback Writethrough None
Sequential write 97.585 MB/s 37.797 MB/s 85.681 MB/s
Sequential rewrite 42.722 MB/s 26.006 MB/s 36.366 MB/s
Sequential read 618.881 MB/s 584.503 MB/s 98.082 MB/s

Figure 5
Sequential performance testing results

5.2 Validation of the Model and Hypotheses with Single VM
Running

Regarding validation of the presented model for different caching modes, the
experiments with one VM running have provided the results that were expected.

It is evident that with a single virtual machine running, the host operating system
has more RAM than when multiple virtual machines are running. This results in
the largest host page cache, i.e. the greatest impact to read and write operation
performances, given by equations (5) and (9), respectively.

For the group of random tests, the performance of the writeback mode is,
according to semantics given by equation (9), much better than the performance of
writethrough mode, given by equation (11). The reading in writeback and
writethrough, performed according to equation (5), is faster than reading when
caching mode set to none. As the host page cache is larger than disk R/W cache,
writeback also writes faster – which validates equations (9) and (10).
Writethrough also provides better read performance than cache mode set to none
according to (5), but significantly lower write performances, which validates
equations (10) and (11).

B. Đorđević et al. Performance Issues in Cloud Computing: KVM Hypervisor’s Cache Modes Evaluation

 – 160 –

According to the group of sequential tests:

• The results of the sequential write tests have shown that writeback caching
mode is superior, resulting from (9), while according to (11) the writethrough
is the worst option.

• Sequential rewrite operation combines sequential read and write operations on
the same blocks. The performances of systems with the caching modes set to
none and writeback mode are similar. This results from a big positive impact
provided by disk R/W cache (10). Writethrough is the worst option again (11).

• With the largest possible host page cache size, the writeback and writethrough
modes provide much better read performances (5) when compared to caching
mode set to none.

5.3 Experiments and Validation with Multiple VMs Running

The next set of the experiments is carried out with multiple VMs running on the
same hypervisor. The same Postmark workload is used for the two and three VMs
running scenarios, and average values were used for result interpretation.

The results of random read and random write experiments with two and three
VMs are given in Tables 3 and 4, respectively.

Table 3
Postmark random performance testing results (two VMs running)

 Cache mode
Workload Operation Writeback Writethrough None
Test Set 1 Random read 21.15 MB/s 1.76 MB/s 2.28 MB/s

Random write 24.73 MB/s 2.06 MB/s 2.67 MB/s
Test Set 2 Random read 4.75 MB/s 2.60 MB/s 3.26 MB/s

Random write 5.51 MB/s 3.02 MB/s 3.78 MB/s

Table 4
Postmark random performance testing results (three VMs running)

 Cache mode
Workload Operation Writeback Writethrough None
Test Set 1 Random read 8.20 MB/s 1.08 MB/s 1.89 MB/s

Random write 9.59 MB/s 1.26 MB/s 2.21 MB/s
Test Set 2 Random read 3.09 MB/s 1.63 MB/s 2.57 MB/s

Random write 3.59 MB/s 1.89 MB/s 2.99 MB/s

According to random test results, the performance of the virtual machine used for
measurement decreases with each new VM added to the hypervisor, as each VM
added to the system consumes a part of the available RAM (1 GB in our case).

Acta Polytechnica Hungarica Vol. 12, No. 4, 2015

 – 161 –

Thus, there is less memory available to host OS, resulting in smaller host page
cache. This has a direct impact on the equations (5) and (9): reading performances
are decreased according to equation (5), and writing performances are decreased
according to (9).

The results obtained from the first test set indicate that writeback caching mode
slightly decreases its superior performance with the increased number of VMs
running. However, it is still the very best option for the test set 1. Results of this
test are in accordance with the expected ones, thus validating the analytical model
properly.

Writeback caching mode outperforms the writethrough mode, mostly due to
writeback semantics given with equation (9) that depends directly on the host page
cache size, unlike writethrough semantic given with the equation (11). This
difference decreases with each virtual machine added to the system, as each
addition provides a negative impact on writeback performance, which is, as
expected, in accordance with the equation (9).

Writeback provides faster reading operations if compared to the caching mode set
to none, which is in accordance with (5) and mostly depends on the host page
cache size. Writeback also provides better write operations performance, as given
with equation (9) and (10). The increased number of VMs running decreases the
performance difference between aforementioned modes, as equation (5) has
weaker impact on writeback performance.

Writethrough provides the system with better reading operation performance than
the system with caching mode set to none according to equation (5), which highly
depends on host page cache size. But, when the write operations are analyzed, the
so called "none" caching mode is outperforming writethrough, and this originates
from differences expressed by equations (10) and (11). With the increasing the
number of VMs running, this difference becomes even more evident. The
explanation relies on application of the equation (5), as it has weaker effects with
the writethrough, and in those circumstances the "none" mode overtakes the
precedence in performance analysis.

According to the results obtained from the test set 2, the writeback mode loses
some of its superiority with the increased number of VMs running, while system
with caching mode set to none still outperforms writethrough mode. The
explanation of this behaviour is similar to the one provided for the test set 1 –
smaller amount of host page cache used for reading and writing.

The results of sequential read, write and rewrite operations obtained from
Bonnie++ with two and three VMs are given in Tables 5 and 6, respectively.

According to the obtained test results, the performance decreases with each new
VM added to the hypervisor.

B. Đorđević et al. Performance Issues in Cloud Computing: KVM Hypervisor’s Cache Modes Evaluation

 – 162 –

Table 5
Bonnie++ sequential performance testing results (two VMs running)

 Cache mode
Operation Writeback Writethrough None
Sequential write 37.98 MB/s 22.58 MB/s 32.21 MB/
Sequential rewrite 10.62 MB/s 6.77 MB/s 13.96 MB/s
Sequential read 36.45 MB/s 32.35 MB/s 28.08 MB/s

Table 6
Bonnie++ sequential performance testing results (three VMs running)

 Cache mode
Operation Writeback Writethrough None
Sequential write 31.19 MB/s 14.64 MB/s 21.09 MB/s
Sequential rewrite 6.79 MB/s 4.39 MB/s 7.24 MB/s
Sequential read 23.90 MB/s 21.48 MB/s 20.40 MB/s

The results of the sequential write tests have shown that writeback caching mode
dominates over the other two modes, for both scenarios with two and three VMs
running. The explanation of such behaviour relies on equation (9), and it's
comparison to equations (10) and (11), which is in accordance with the presented
analytical model.

The best results in sequential rewrite operations testing are achieved when caching
mode is set to none. When testing the rewriting operation, the overall effect of
reduced host page cache from equations (5) and (9) influences in such a way that
the “none” mode (which does not utilize the host page caching, but still utilizes
disk R/W cache) provides better results than writeback mode. That behaviour was
detected for the sequence that covers: sequential block reading, editing, and
writing. Writethrough mode provides remarkable lower performance when
compared to other caching modes.

The results of sequential read operations test indicate that, for both two and three
VMs running, writeback and writethrough cache modes still provide higher I/O
throughput. Thus, the presented model is completely validated for sequential read
operations. When testing is performed with only one virtual machine, the available
host page cache is large, thus writeback and writethrough modes significantly
outperform the system with caching mode set to none, according to equation (5).
This difference is decreased with each virtual machine added into the testing
system, and in those circumstances the equation (5) has a weaker influence on the
writeback and writethrough modes performances. With sufficient number of
virtual machines, host page cache available to each virtual machine would be
reduced and the cache mode performances would probably not differ that much.

Acta Polytechnica Hungarica Vol. 12, No. 4, 2015

 – 163 –

Conclusions

While comparing the results obtained from testing the system with the one, two
and three virtual machines running, we have detected the biggest performance
difference between different cache modes employed in the single virtual machine
scenario. This difference results from the hosts OS provided with largest amount
of RAM. With the introduction of two or three VM, the performances of all cache
modes were reduced, as well as the difference between them. The writeback mode
employs three different caches in the writeback semantics resulting in superior
performance. The best performances are achieved for random read/write
workloads, as for sequential workloads when the amount of host OS page cache is
large and the read ahead technique is dominating. However, writeback can
endanger data integrity in case of power surges. Writethrough mode also employs
three cache types with all caching outside of the virtual machines working with
the writethrough semantics. Although data integrity is ensured, writethrough
performs poorly, especially with the random workload when flushing and direct
write cycles are dominant. Hypervisor’s none cache mode, which employs disk
R/W cache only outside of virtual machine, is faster than writethrough and slower
than writeback mode, but does not provide total data integrity.

The results indicate that the amount of RAM has a huge impact on the
performance, as it directly affects the host OS page cache size. According to the
results, the writeback cache mode provides the system with the best performance
if a small number of VMs is running. Each VM added to the system with fixed
RAM size results in overall performance degradation, regardless of the employed
cache mode, and decreased performance difference between the systems that
employ "none" and writeback cache modes. Due to decreased impact of host OS
cache it is expected that this performance difference between "none" and
writeback modes will become almost negligible when a large number of VMs (10
or more VMs) is running. According to that, we strongly recommend the usage of
writeback mode on hypervisors running a small number of VMs and "none" cache
mode on hypervisors running a large number of VMs. It should be noted that that
the amount of RAM available to the host directly affects the performance
differences between systems that run large numbers of VMs – the larger amount
of RAM available to the host results in bigger performance difference between
systems that employ different cache modes.

Experimental results are not surprising and they are not contradictory to our
preliminary hypotheses. The exception that was not expected is the rewrite
operation results. This indicates that in some rare situations I/O performance does
not benefit that much from the cache.

Further research will include KVM cache mode examination while running large
number of virtual machines, as well as the impact of disk schedulers, I/O modes
and virtual disk image formats towards virtualization performance.

B. Đorđević et al. Performance Issues in Cloud Computing: KVM Hypervisor’s Cache Modes Evaluation

 – 164 –

Acknowledgement

This paper has been partially financed by Serbian Ministry of Education, Science
and Technical Development (Development Projects III 43002, TR 32037 and TR
32025).

References

[1] K. Xiong, H. Perros: Service Performance and Analysis in Cloud
Computing. In SERVICES 2009, 5th 2009 World Congress on Services,
Bangalore, India, 2009, pp. 693-700

[2] J. G. Hansen, E. Jul, Lithium: Virtual Machine Storage for the Cloud. In
2010 SoCC’10: Proc. 1st ACMSymp. Cloud Comput., ACM Press,
NewYork, USA, 2010, pp. 15-26

[3] D.-J. Kang, C.-Y. Kim, K.-H. Kim, S.-I. Jung: Proportional Disk I/O
Bandwidth Management for Server Virtualization Environment. In 2008
Int. Conf. Comput. Sci. Inf. Technol., Piscataway, NJ, USA, 2008, pp. 647-
653

[4] J. Nakajima, K. M. Asit: Hybrid Virtualization—Enhanced Virtualization
for Linux. In 2007 Proc. Linux Symp, 2007

[5] T. Imada, M. Sato, and H. Kimura: Power and QoS Performance
Characteristics of Virtualized Servers. In Proc. 2009 10th IEEE/ACM Int.
Conf. Grid Computing (GRID), Piscataway, NJ, USA, 2009, pp. 232-240

[6] KVM, Kernel-based Virtual Machine. http://www.linuxkvm.org

[7] QEMU, Open Source Processor Emulation. http://www.qemu.org

[8] T. Deshane, Z. Shepherd, J. Matthews, M. BenYehuda, A. Shah, B. Rao:
Quantitative Comparison of Xen and KVM. 2008 Xen Summit, Berkeley,
CA, USA, USENIX Association, 2008

[9] D. Armstrong, K. Djemame: Performance Issues in Clouds: An Evaluation
of Virtual Image Propagation and I/O Paravirtualization. The Computer
Journal, Vol. 54, No. 6, 2011, pp. 836-849

[10] P. Padala, X. Zhu, Z. Wang, S. Singhal, K. G. Shin: Performance
Evaluation of Virtualization Technologies for Server Consolidation. Tech.
Report, HP Labs, USA, 2008

[11] X. Xu, F. Zhou, J. Wan and Y. Jiang: Quantifying Performance Properties
of Virtual Machine. In 2008 Linux; Program Testing; Software
Performance Evaluation; Systems Analysis; Virtual Machines, Vol. 1,
Piscataway, NJ, USA, 2008, pp. 24-28

[12] J. Che, Q. He, Q. Gao, D. Huang: Performance Measuring and Comparing
of Virtual Machine Monitors. In 2008 IEEE/IFIP 5th Int. Conf. Embedded
and Ubiquitous Computing. EUC2008, Vol. 2, Piscataway, NJ, USA, 2008,
pp. 381-386

Acta Polytechnica Hungarica Vol. 12, No. 4, 2015

 – 165 –

[13] S. Y. Liang, X. Lu: An Efficient Disk I/O Characteristics Collection
Method Based on Virtual Machine Technology, In 2008 Proc. 10th IEEE
Int. Conf. High Performance Computing and Commun., HPCC2008,
Dalian, China, 2008, pp. 943-949

[14] Y. Dong, J. Dai, Z. Huang, H. Guan, K. Tian, Y. Jiang: Towards High-
quality I/O Virtualization. In 2009 ACM Int. Conf. Proc. Series, Haifa,
Israel, 2009, pp. 12-22

[15] X. Liao, H. Jin, J. Yu, D. Li: A Performance Optimization Mechanism for
SSD in Virtualized Environment. The Computer Journal, Vol. 56, No. 8,
2013, pp. 992-1000

[16] A. Sallam, K. Li: A Multi-objective Virtual Machine Migration Policy in
Cloud Systems. The Computer Journal, Vol. 57, No. 2, 2014, pp. 195-204

[17] Q. Li, Q. Hao, L. Xiao, Z. Li: An Integrated Approach to Automatic
Management of Virtualized Resources in Cloud Environments. The
Computer Journal, Vol. 54, No. 6, 2011, pp. 905-919

[18] W. Zhao, P. M. Melliar-Smith, and L. E. Moser: Low Latency Fault
Tolerance System. The Computer Journal, Vol. 56, No. 6, 2013, pp. 716-
740

[19] Y. Jin, Y. Wen, Q. Chen and Z. Zhu: An Empirical Investigation of the
Impact of Server Virtualization on Energy Efficiency for Green Data
Center. The Computer Journal, Vol. 56, No. 8, 2013, pp. 977-990

[20] T. V. Do: Comparison of Allocation Schemes for Virtual Machines in
Energy-Aware Server Farms. The Computer Journal, Vol. 54, No. 11,
2011, pp. 1790-1797

[21] L. Vokorokos, A. Baláž, N. Ádám: Secure Web Server System Resources
Utilization. Acta Polytechnica Hungarica, Vol. 12, No. 2, 2015, pp. 5-19

[22] I. Petkovics, P. Tumbas, P. Matković, Z. Baracskai: Cloud Computing
Support to University Business Processes in External Collaboration. Acta
Polytechnica Hungarica, Vol. 11, No. 3, 2014, pp. 181-200

[23] Kernel Virtual Machines (KVM): Best Practices for KVM (second edition).
IBM Corporation, 2012

[24] J. Katcher: PostMark: A New File System Benchmark, Technical Report
TR3022. Network Appliance Inc, 1997

[25] Bonnie++ Benchmark Suite. http://www.coker.com.au/bonnie++/

	1 Introduction
	2 Related Work
	3 KVM Cache Modes
	4 Modelling the Workload and Cache Modes
	4.1 Reading Operations in Different Cache Modes
	4.2 Normal Write Operations in all Cache Modes
	4.3 Flushing or Direct-sync Writing in Different Cache Modes
	4.4 Hypotheses on KVM I/O Performance

	5 Experiments
	5.1 Random and Sequential Performance Testing with Single VM Running
	5.2 Validation of the Model and Hypotheses with Single VM Running
	5.3 Experiments and Validation with Multiple VMs Running

