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Abstract: The Ornstein Uhlenbeck process is a Gaussian process thith independent
sl

increments and autocorrelation E(tht+s ) = T First the Laplace transform of the

probability density P(Xt = X|X0 = p) is computed. Using this, the Laplace transform

of Xt first time reaching a given value X is derived. It is proved that these results agree
with the special case derived earlier by Bellman and Harris (Pacific J. Math. 1, 1951).

1 Definitons

The Ornstein Uhlenbeck process is a stationary Gaussian-Markov process
X such that the joint distribution of X X, ...Xy,is a gaussian and is

dependent only on the differences t i t; where 1< j and the autocorelation

function is given by
1 -
B(X, X )=e " (L.1)

EX, =0and EX? =%. (1.2)

LetX be a random vector with normal distribution, then the density of its
probability distribution is:

1 IxTsx
e 2
273
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X
where X = . and 2 is the correlation matrix:

G P2
with p, =EX*,p, =EY?,0; =EXY and [ =p,p, —c°. Clearly

s1_\=o p)

P1P2 ~c’

Hence the joint probability density

2 2
— 20Xy +
P(X=x,Y=y)= p2X OXy +P1¥ J

1
2mypp,y — 6> eXP( 2(P192 _02)

It follows from here that

1 exp{— pzx2 —2c5xy+p1y2J
[0 o g2 2 ~c2
P(Y=y|X=x)= 2m\p1p, —O : (Plpz o )

X

2
e “PI

1/27tp1

2
o2
y——X
1 ( P1 j

2 —s2 |
ygPIP2 =0 o P1P2 =0
o P1

Applying this to what concerns us, the Ornstein-Uhlembeck process, we can
determine the probability density P(X; =x|X, =p).

Clearly
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(ll_e‘”j
P1 Pz_l,(5=i 2Pip> =0 )— 22 : —l-e 2 C et
2 2 P1 J; P1
2
Hence:
x—pe "

B -2t

e
P(X, =x|X, =p)=—2. (1.3)

all—e !

We shall denote this with P(t,p,X)or P(p,x)and call it the fundamental

function. The special cases p =0 and x =0 are important also:

e 1-e
P(X, =x|X,=0)= ———. (1.4)
nll—e 2t
ple2t
e_l_e—zt
P(X, =0|X =p) = ——. (15)
all —e™?!

By simple substitution it is easy to prove that (1.3) satisfies the forward equation:

u_10%u  _ou
—=———+Xx—+u
ot 2 ox? ot
and the backward equation:
ou_10%u o
ot 2¢p> op
This also implies that (1.4) satisfies the forward equation and (1.5) satisfies the
backward equation.
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2 The Laplace Transforms of the Fundamental
Functions

x—pe_t

x2
A _(_—Zt'
1-e e 1-e

;n(l_e_zt)and x/n(l_ezt)satisfythe u, =%uxx +u+Xxu,

forward  equation their Laplace transforms must satisfy  the

Since both

U
sU :% + U + xU, second order ordinary differential equation, that is the
equation
U"+2xU"+2(1-s)U=0 2.1

To find the solutions of (2.1) let us consider the confluent hypergeometric
equation

xy"=+(c—x)y'0—ay=0 (2.2)
The two solutions of this are the:

ax aa + l)x2

Fla,c;x)=1+
1Fifa,cix) cll c(c+1)2

and xl_chl (a+1—c,2—c;x) Kummer functions. Let us consider the

following transformation of (2.2) u =y(kx2)where k is an arbitrary nonzero

constant.
Clearly:
u= y(kxz)
u' =2kxy’
u"=2ky'+ 4k2x2y".
Hence:
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Yy=u

,

Y Tk
pou

Y
4k*x?

Substituting these into (2.2) gives:

sz[u"—uj ,
prERe X +(c—kx2)%—au=0
X

which in turn, after some simplification becomes:

u” + (2C -1 2kxju' —4kau =0.
X

1
Putting CE gives: u” — 2kxu’ — 4kau =0.
Let us compare this with (2.1)
U"+2xU"+2(1-s)U=0

—-2k=2
—4ka=2(1-5).

1—
Hence we get for kand for ak=—1and a :Ts' Therefore the solutions of

)

. .- . c
Now we are in the position to determine the Laplace transform of T(—Zt)
w\l—e

Clearly it must be of the form AF, + XxBF, where A and B some constans. To

N | »

(2.1)are F =F(1_TS,%;—X2] and F, =XF[1—

this end Laplace transform will be evaluated for some special cases. The Laplace

67 1—e
transform of is clearly:

\/El_e—Zt

-2t

-107 -



J. Dénes Level Crossing Probabilities of the Ornstein — Uhlenbeck Process

x2

o e_ e —st
~[0 me dt.

Writing t instead of e transforms it into a Mellin type integral:

x2

T2
e It

j t57'dt.
0 \/;(1 _ {2 )

Substituing \/? instead of t yields

1 J~1 (S 1-t i_l
2/n OV1-t
For x = 0 this becomes the beta funciton type integral:
54 r 1 n
Il t2 1 (1 s J _\2J 2

dt -, )
1 2°2 NEF(I;SJ

! = B
WrPi-t 2n

Hence

2
X
e ilfefzt'
Clearly A is the Laplace transform of T(—Zt)'TO determine the value of
w\l—e”

B let us consider the x derivative of the Laplace transform, which is:

x2

et S
1 Xe
x5
Io 3t dt.

Jr(-1)2
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In the present case we cannot take the X — 0 limit by simply substituing

t
Xe .
x — 0 for X because — does not converge uniformly to 0 as X — 0 .In

V- t2

fact it is a “delta function type function”, its integral being

x2

1xe ¢
jo —dt=1.

Jnt?
For it is know from theory of the heat equation that, for an arbitrary continous
function f(t)

Xz 2
lim J. f (r)dr = lim ‘
x—0 \/_ x—0 \/_

(t—r)2

T

é f(t—r)dr = f(t)

Hence in the present case:

-t 5y 2o
. 1 X¢
“lim [ 2 dt=t2 | =1,
x—0 %0 3

Jr(1-1)?

S S

thus B =—1. Therefore the The Laplace transform of
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2

- 1—e
e
Now we compute the The Laplace transform of . It has been shown

'\/El_eizt

u
that it statisfies the backward equation u; =—pu, + %. Therefore its Laplace

-2t

transform is the solution of the second order linear differential equation

Upp
sU=-—pU, +—— 2 P that is of the equation
U"+2pU"+2sU=0
Now the solution of u”"-2kxu'—4kau=0 are F(a,%;kxzj and

xF[a +l,§;kx2j.
2°2

Comparing the two equations we get for k

2k =2
4ka =2s
that is k=1and a —% Thus the Laplace transform must be the linear
. 1+s 3 2
combination of G, = and pG, =pF — 5 ;p” |- To find the

conficciens of Gjand szlet us inspect the Laplace transform itself.

e St

b

Writing t instead of e " it transforms again into the Mellin type integral:

2.2

t
1 e_(b) s—1

Substituing \/Y instead of t yields
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p2t2
. S
le e 7 o2
2Wr N1t
Again putting p = 0 this becomes:
s
2 gi-aA

Ly
2r 01—t

The coefficient of pG,can be evaluated the same way as was done for

X2

and it is found to be again —1. Thus the Laplace transform of

AG, -pG, =AFG,%;p2j—pF(l —H—S,é;pz}

€
x/;l—e_Zt :

To this end let us inspect

d

) 2,-t2
2t
l-e
© € —st
j e dt
0 /n 1— ef2t
using
2 -2t 2
pe _ —p?
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p2

5 e
This becomes eP j ﬂ—) e 'dtand the integra here is of the same
1

e (_6_2 )
form as of the Laplace transform of ‘(—Zt) except we have pinstead of
w\l—e

X.

e_(l_ o2t '
Therfore the Laplace transform of W—Zt) is
w\l-e"

f3)
&P’ 21 F[l_s Ly pF( ;—pz)
S+
zr[ j

2

Applying Kummer’s formula F(a,c;x)=e*F(c —a,c;x) we get for the Laplace
2,2t
e_ 1—¢ 2t '
transform of
Jn il —e )
r S)
B e L] [; PR L
ZF(S + 1} 272 272
2
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(x-pe” >
- 2t

(&

\/El_e—zt

3 The Laplace Transforms of

C(x-pe)?

l_e—2t

e
We have seen that the T(—zt) fundamental function satisfies both the
mil—e”

forward and backward equations, therefore its Laplace transform must satisfy both
of the ordinary differential equations:

U"+2pU"+2(1-s)U=0 G

U"-2pU’ - 2sU =0. (3.2)

Because of (3.1) must be of the form: HF, + KxF,, where Hand K must be

some linear combinations of Gand pG since it satisfies (3.2) as well. Let us
(x-pe™")?

B 2t

e 1-e

observe that T(—Zt)is analytic in X for all values pand t except when
wil-e
t=0and x =p, in the latter case it is undefined. Therefore its Laplace transform
(x-pe ")’
- 2t

e 1-e

is analytic in the X <p domain as well. Putting x =0in T(—zt) gives
nil-e

Ze—t2

_(1 e2t)
e
T(—zt)and we have seen that its Laplace transform is AG; —pG,, so
nil—e"

H=AG, —pG, (when x<p). The determination of K is more involved.
Differentiating the fundamental function by x gives:
2,-t2 2,-t2
_l —Zt' _( -2t)
2pe—te 1-e p2 zpe—te 1-e
=e .

3 3
Jali-e2)2 Jali-e)
Clearly the coefficient K is the Laplace transform of (3.3). To evaluate it let us
compute the following convolution integral:

(3.3)
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- 1-e 1
* : (3.4)

Jall —e*2t)% Yali-e)

-t
2 2pe e
P 2P

It has been shown that the Laplace transform of the second factor in (3.4) is A, so
the Laplace transform of (3.3) is the Laplace transform of (3.4) divided into A .
Next we evaluate (3.4):

putting 1 for e yields:

p

2 2pre_m 1
\/;(l—rz)% Jr(? -T2

where T=¢ " . Substituting \/; for r gives:

1
p
€
b

2

P
(1)
ep2 ;2 = 3 21 2 dr
Jali— )y Vrl? = 1?)
o
2 1—T2—r
=ep2 1-T*  pe 1 dr

pz _ pze—2t

- 2t

_ e7p2 ) pe t . 1 3 e (1-2 )

o =112 T TN
at® V! (1-272ty
: AG; -pG,
Thus we have for the coefficient K = —————=. Hence the Laplace transform
C(x-pet)?
2t
e I-e

of 5 is for X <p:
x/ﬂl—e_ ti
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AG, ~pG, _(AF, +xF, (AG, - pG,)
. .

Next let us consider the case p < X. If the same computation is repeated but

(AG, —pG,)F, +xF,

instead of x =0 we look at p =0, that is we compute the coefficients of G and

(x- pe 2 x2

(1 -e ' _ 17
pG, . Putting p=01in ‘(—) gives ‘(—) Its Laplace transform
—e —e

is AF, —xF,, carrying through similar computation as was done for the
AF, -

coefficient of xF, we get for the coefficient for pG, 2 Thus the
(x-pe”*)?
e_ _e2t
Laplace transform of 5 when p<x is:
\/E il —e % )
_(xpet)?
o2t
(AF, +xF, XAG, - pG,)

Hence the Laplace transform of

A ' \/_1_

(x-pe”")?
- l,ze—h (AF} +xF, )(AGl -pG,) ifp<x
9l £ = A (3.5)
Jrli-c?) (AF1+xF2)X%G1—sz) if x<p.

4 Level Crossing Probabilites

Let the random variable FCor FC(x) (first crossing) be the smallest possible
value of t such that X, =x given X, =p. Let @(t,p, x) be the distribution of
FC, clearly: o(t,p,x) *P(t,x,x)=P(t,p,x) .

C(x—pe™)? C(x—pe™h)?
o il_e—Zt ' B o il_e—Zt '
\/E(l—e_%)_ n(l—e_Zt).

That is: @(t,p,X) *
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Now the probability that X stays below X is: P( sup XTJ =1- J‘; o(r)dr.

0<r<t

Let us denote the Laplace transform of @by W, then ¥ for 0 <p <X using
(3.5) can be expressed as

(AG, (p)+ PG, ()NAF, (x) + XF, (x))

_ 4.1
(AGy(x)+ xG» (x)JAF, (x) + xF> (x)) @D
_AG, +pG, 42)
AG] =+ XG2

For the special case when p=0, that is when X, reaches level X subject to the

initial condition Xy =0 is

A
yo— (43)
AG, +xG,
For this case Bellman and Harris [l] found the following expression:
)
- 242xy sl 4.4
J‘°° oY Yy Ty
0
For the case p2x20:
(AF, +xF,)(AG, - pG,)
A
N = 4.5
VP X) = AR, 4 xF, AG; —xG,) *
A
AG, -pG
_ A TPy, (4.6)
For the special case p >0, x =0 we have:
AG, -pG
v(p.0)= =2 (47

Using (4.7) it is not difficult to show that (4.2) holds for p < xand holds for
p = x as well. Formula (4.7) easily invertable, for
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e
———~is the Laplace transform of 2+ ———
F(; + lj v “(1 —e )

Laplace transform of:

Clearly . Hence (4.7) is the

d| e ¢ e! d 1 (o 2 2pet e e 2t
2. — * =2-—— | _ e*dz=
o) e e T

5 The Equivalence of Bellman-Haris’ and our Result

To show that formulas (4.3) and (4.4) are the same, we have to evaluate the

0 n jgn —y2
>y

n=0 n! dyn

2

o _2 2 (R
integral .[0 eV Y _ X oY) _ox
Substituting this into the integral we get:

2
© _y2ioxy sl x2 [ (x-y)® s-1 N n X' ode™
Ioe Yy dy =e -joe y ldy=e* Y. (-1) — -

— n! d
n=0 Y

.1)

Let us observe that the integrals on the right hand side are the Mellin transfroms of

n —y2

yS—l dy

2
the functions . First we compute the Mellin transform of € which is:

dy"

S
0 _y2 o l 0 _, 51 1 S
ey ldy==["eVy2 dy==T|=|
ey y=[ey yz(z}
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Let us denote the Mellin transform of a function f by ?or F. It is not difficult to
see that:

M(E") = —(s — 1)E(s —1)
M(f")=~(s = 1)s - 2)F(s - 2)

M(F" )= (= 1) (s~ 1)s — 2)- (s - n)F(s — n).

) 2 2
— 2 Y 3 Y
, 2 de™ dce d’e
Hence the Mellin transforms of e |

, , ... are
dy dy? dy’

r[_j _(s—l)r(s—l) (s—2)(s—1)F(S—2) (s—3)(s—2)(s—1)r(8—3)
2) 2 2 2 2 7 2 2’
—4)(s—3)(s—2)(s—) (S- )’(S—S)(s—4)(s—3)(s—2)(s—l)l_,(S—S)’m

2 2 2
Substituing these into (5.1) gives:

exz{ér(i}%s”r( -1), x? s=2s=1) 6-2)

) 2 2! 2 2

1
2
(

LX (s—3)(s—2)(s—) (s - )+ﬁ(s—4)(s—3)(s—2)(s—1)r(s—4)

3! 2 2 4!

2 2
( 5)(s—4)(s—3)(s—2)(s—) (s— )+}
5! 2
oL (s +x_(s—2)(s—1)r(s—2)
{2 [2] 2 2 2

41

+£(s—4)(s—3)(s—2)(s—1)1_,(s—4)+“}
2 2

e><2{§s—1r(s—l)+ﬁ(s—3)(s—2)(s—1)r(s_3)

2 2 3! 2

+£(s—5)(s—4)(s—3)(s—2)(s—l)r(s—5)+”}
2 2
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1-s 1-s 3-—s
_2l(s) e xt gy
2 (2 T EE
2 2 2
S S S
5 2 l=-— 4l-22-
oS J X 2 X 22,
2 13 23 5
2 2 2
2 —_ 2
_e LS es. L oot S -8 32
2 (2) 22 2 272

o) 1)

o _2 _ - :
J‘Oe y+2xyys ldy lriFi,l;Xz 4T s+1 <F 1+S,3;X2
2 \2 22 2 2 2

Diving both the numerator and the denominator of the right hand side into

s+1 A
I'| —— |gives ——————— and this completes the proof.
2 AG, +xG,
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