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Abstract: A class of cascade filters, orthogonal with respect to a new inner product, is 

presented in this paper. A sequence of generalized Malmquist orthogonal rational functions 

is used for design of these filters. In addition, by using these functions Müntz polynomials 

which are orthogonal in respect to a special inner product were derived. Obtained Müntz 

polynomials are applied in determination of outputs of the proposed filters. Depending on 

whether the design of the filters is performed in the s-domain or complex z-domain, we can 

derive a class of analogue or digital filters, respectively. Outputs from these filters are 

orthogonal with respect to the two different inner products. Both classes of filters are 

practically realized and their application in modeling of continuous-time and discrete-time 

dynamical systems is given. Obtained results show that there are great agreements between 

the outputs of models and real dynamical systems. 

Keywords: orthogonal filters; inner product; dynamical systems modeling; Malmquist 

functions; Müntz polynomials 

1 Introduction 

Around the middle of the last century, a new class of orthogonal rational functions 

were developed [1–3], and later they were used for synthesis of orthogonal filters. 

Also, classes of generalized Legendre polynomials and generalized orthogonal 

polynomials of Szegö were derived [4, 5]. Further generalization of classical 

orthogonal polynomials and orthogonal rational functions is given in [6, 7]. 

Derivation of Müntz orthogonal polynomials from these functions is described, as 

well in [8]. An overview of the theory of such orthogonal systems and some 

problems in applications of orthogonal polynomials are given in [9]. A few years 

later, the paper [9] was translated to English [10]. 
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A method for obtaining a sequence of orthogonal rational functions is given in 

[11–14]. The method is based on the pole–zero and zero–pole mapping by using 

symmetric transformation. In this way obtained rational functions were used to 

design of new classes of orthogonal filters, quazi-orthogonal filters [15], almost 

orthogonal filters [16-21] and finally, generalized orthogonal filters with complex 

poles [22]. Using the same method, new classes of Malmquist orthogonal 

functions can also be obtained. These classes involve already known classes of 

Malmquist rational functions [23]. The method for obtaining Müntz orthogonal 

polynomials from sequence of orthogonal Malmquist functions is presented in [13, 

14]. 

In this paper, generalized Malmquist functions are used for derivation of Müntz 

orthogonal polynomials (associated Müntz polynomials). By using these 

polynomials, a new class of filters, orthogonal with respect to a special inner 

product, is designed. Orthogonal rational function was derived by using the 

special symmetric transformation for pole–zero mapping and vice versa. Rational 

functions are used for structure design of filters, and appropriate Müntz 

polynomials are used to determine the outputs of these filters. Two subclasses of 

these filters are designed: subclass of analogue filters and subclass of digital 

filters. Practical realization of these filters was performed and their applications in 

modeling continual and discrete systems are given. 

2 The Sequence of Orthogonal Rational Functions 

and Associated Müntz Orthogonal Polynomials 

Let us introduce the sequence of rational functions: 
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where the zeroes *

k  are obtained by mapping the poles k , and the poles k  are 

obtained by mapping the zeroes *

k , using the following symmetric 

transformation: 

   * *,  k k k kf f     . (2) 

Substituting (2) in (1), transformed sequence is obtained: 
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As we can see, the zeroes of the transformed sequence are equal to the poles of 

 nW s  and vice versa.  

Now, let us consider the inner product: 

        ,
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n m n m n m

C
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where Cp involves all the poles of  nW s . In the cases of: m n  and m n , 

poles in the integrand (4) inside the contour Cp are annulled with appropriate 

zeroes. Applying Cauchy theorem, we have 
, 0n mJ  . In the case of m n , there 

exists one first-order pole inside the contour Cp, so 

    2

,
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J W s W s ds N  . Hence, applying symmetric transformation of 

poles to zeroes of  nW s , we obtain the orthogonal sequence of the rational 

functions. 

Let us apply symmetric transformation which maps the zeroes to poles and the 

poles to zeroes of  nW s  in the following way: *

k
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sequence (1). In this way, we obtain two sequences orthogonal with respect to 

inner product (4): 
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where  nW s  and  nW s  are generalized Malmquist functions. 

Using (4) and (5), we obtain: 
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One class of Müntz polynomials, orthogonal on (0, 1), derived from the sequence 

of orthogonal rational function is given in [8, 11]. In the similar way, Müntz 

polynomials [9] can be obtained from the orthogonal sequence (5) as follows: 
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Using (5) and (7), we obtain: 
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A new operator for product over monoms x  and x
 is defined in the following 

manner [9]: 

x x x   . (9) 

Then, we define a new product of two Müntz polynomials  
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On the basis of the product of polynomials defined above, the new inner product 

can be defined as: 
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Applying this inner product to Müntz polynomials (8), we obtain: 
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In this way, we showed that Müntz polynomials obtained by using a class of 

generalized Malmquist functions are orthogonal with respect to the new inner 

product (12). A connection between orthogonal sequences of rational functions 
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(generalized Malmquist functions) and Müntz orthogonal polynomials is 

established (see Eq. 6). 

3 Design of a New Class of Orthogonal Filters 

When  nW s  have real poles, then associated Müntz polynomials have real 

exponents. In this case, substituting tx e  into  nP x , we obtain the sequence of 

exponential functions: 
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These functions are orthogonal with respect to the new inner product: 
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where:     , ,
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The sequence of orthogonal rational functions (5) provides for the design of a new 

class of cascade orthogonal filters. Let us suppose that these functions have real 

poles. Now, we can design a cascade filter with real poles shown in Figure 1. 

 

Figure 1 

Block diagram of proposed orthogonal filter 

Outputs from the filter in the time domain are: 

      1 1

2
p

st

l l l

C

t W s W s e ds
i




  L , (15) 

where:  
0

l
k

l

k k

b
s

W s
s










 , 0,1,2,...,l n . 

Therefore, comparing (7), (8), and (15), we can notice that filter outputs are 

determined when we introduce substitution tx e  in Müntz polynomials (8), 
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obtained using the sequence of rational functions  lW s . Thereby, the contour Cp 

involves all poles of  lW s , and all zeroes of  lW s  lie outside this contour. 

Outputs  l t  are orthogonal in the time domain on the interval (0, ∞) with 

respect to the new inner product (14). The diagram in Figure 1 is used for design 

of two new classes of orthogonal filters: analogue and digital version. The class of 

analogue orthogonal filters is obtained when we introduce s as an operator for 

differentiating. These filters are orthogonal in the complex domain on the contour 

which involves all poles of the filter. In the time domain, the filter outputs  l t  

are orthogonal with respect to the inner product (14). 

Digital orthogonal filters are obtained after moving in z-domain using the 

transformation 
1

lns z
T

 , where z presents the operator of prediction for one 

sample period in the time domain. These filters are also orthogonal in the complex 

domain, while outputs in the time domain are orthogonal in the classical sense. 

4 Practical Realization of the New Orthogonal Filters 

The obtained filter block scheme given in Figure 1 is suitable for practical 

implementation. For the purpose of analogue filter realization, we will write the 

transfer function in the following form: 

 
 

 

1
*

*

*0 1

10

0

1
, , , 0

n

k n
k k

n k k kn
k k k

k

k

s
s b

W s R
s s

s




  
  





 








    
 







. (16) 

In such a way the modified filter is orthogonal both in the complex and time 

domain. We have practically realized proposed filter in our Laboratory for 

modeling, simulation, and control systems and it is shown in Figure 2. The setup 

includes a printed circuit board with the realized new type of orthogonal filter, a 

microprocessor unit, an acquisition unit, and power supply. The realized filter has 

real and adjustable poles. 



Acta Polytechnica Hungarica Vol. 13, No. 7, 2016 

 – 69 – 

 

Figure 2 

The analogue orthogonal filter, a printed circuit board 

For the illustrative purpose, a sequence of functions on the outputs of the first five 

cascades of the proposed analogue filter (16) for the following values 

0 1 2 3 41, 1, 2, 3, 4, 5b             is obtained mathematically and 

given by: 
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The outputs from the realized filter are shown in Figure 3. Orthogonality with 

respect to the new inner product (14) of these outputs can be easily verified.  

As we have already said, when we get into z-domain (i.e., the operator s is 

substituted with z), a digital filter can be realized on the basis of the modified 

scheme by using the following transfer function: 
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 . (18) 

Practical realization of the proposed digital filter, which is also performed in our 

laboratory, is shown in Figure 4. It too, has real and adjustable poles.  
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Figure 3 

Outputs  l t  from the analogue filter, signals sensed on a printed circuit board 

 

 

Figure 4 

The digital orthogonal filter, a printed circuit board 
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A sequence of functions on the outputs of cascades of the proposed digital filter 

(18) is obtained mathematically for the following values 

0 1 2 3

1 1 1 1
1, , , ,

2 3 4 5
b         , and the first few outputs are given by: 
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 (19) 

The same outputs are obtained by simulation in the Matlab/Simulink software 

package (Figure 5) and from the practically realized digital filter (Figure 6).  
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Figure 5 

Outputs  , 0,1,2,3l K l   from the digital filter, signals sensed in Matlab 
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Figure 6 

Outputs  , 0,1,2,3l K l   from the digital filter, signals sensed on a printed circuit board 

Channel 1 in Figure 6 represents a step input signal, while channel 2 represents an 

appropriate signal from the filter section. Signals were recorded by using GW 

INSTEC digital storage oscilloscope (series GDS-3254). 

The outputs from realized filter are orthogonal with respect to the inner product 

(14): 

         2

, ,

1

,n m m n m n n n m

k

J K K K K N    




   . (20) 

5 Case Study—Application in Modeling Continuous 

and Discrete Systems 

Analogue and digital versions of the proposed orthogonal filters will be applied by 

modeling one continuous and one discrete system, both well known and 

commonly used in practice. 

5.1 Modeling of a Protector Cooling System 

The analogue version of the newly designed cascade orthogonal filter has been 

applied in modeling of one technological process in the tyre industry. It is a 

process of tyre strip cooling, more precisely protector (outer part of a tyre) cooling 

[15, 22, 24]. This is a complex electromechanical and thermodynamic system 
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which usually consists of 5–16 cascades about 15m long. There are about several 

hundred systems like this in the world. The model is obtained by successively 

modeling cascades, starting with the first one. Modeling is performed applying a 

genetic algorithm. We used the adjustable model shown in Figure 7. Thereby, the 

output from i-th cascade in the model is described by: 

 
3

,

0

, 1,2,...,M i k k

k

y b t i N


  , (21) 

where N is an order number of the system cascade, and 
jb  are summation 

coefficients. 

 

Figure 7 

Block diagram of an adjustable model with the proposed orthogonal analogue filter 

For determining model of the first cascade, step response is used, while for the 

models of other cascades, previous ones are used (for modeling i-th cascade, (i-1)-

th cascade is used).  

The outputs from the first cascade of the process,  Sy t , and the model,  My t , 

are shown in Figure 8. 

Using a genetic algorithm with minimization of the mean squared error 

    
2

0

1
N

S MJ y t y t dt
N

  , we obtained poles of the process i , summation 

coefficients ib , and mapping parameter b . In our previously study, we have 

already used the genetic algorithm for the adjustment of parameters and 

minimization of criteria function J [14, 17, 22]. 

The specific genetic algorithm used in experiments has the following parameters: 

initial population of 1000 individuals, a number of generations of 600, a stochastic 

uniform selection, a reproduction with ten elite individuals, and Gaussian 

mutation with shrinking. The used structure of chromosome was with 8 

parameters coded by real numbers: α0, α1, α2, α3, b0, b1, b2 and b3. The main goal of 

the experiments was to obtain the best model of the unknown system in regard to 

the criteria function, i.e. mean squared error. 



N. Danković et al. A New Class of Cascade Orthogonal Filters based on a Special Inner Product  
with Application in Modeling of Dynamical Systems 

 – 76 – 

 

Figure 8 

Outputs from the first cascade of a protector cooling system and the adjustable model 

The model of the first cascade has the following form: 
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b
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b
W z b

s s
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 
 

 , (22) 

where 0.62b   and obtained values for poles and summation coefficients are 

given in Table 1. The obtained value for the mean squared error is: 
3

min 0.77954 10J   . 

Table 1 

Obtained parameters of the orthogonal analogue model 

k 0 1 2 3 

k  1.68 1.21 4.53 6.53 

kb  2.08 -0.22 3.35 3.35 

The transfer function of the model (22) after substituting the values from Table 1 

can be rewritten in the following way:  

 
3 2

4 3 2

8.57 51.31 103.12 76.38

13.96 63.65 108.17 60.25

s s s
W s

s s s s

  


   
. (23) 

In order to verify quality of the model based on the proposed orthogonal filter, 

comparison with the model based on orthogonal Legendre's filter was performed 

(zeroes of the filter, *

k  are shifted for l related to poles αk [21, 22]). Filter shown 

in Figure 7 is now modified according to the mapping function *

k k l   , and 
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outputs from both models are given in Figure 8. The following results were 

obtained: l=0.7, α0= 5.82, α1=4.20, α2=0.54, α3=1.31, b0=6.48, b1=-0.38, b2=0.18, 

b3=-0.08, and 3

min 5.3457 10J   . Hence, in this case, mean squared error is much 

bigger. 

5.2 Modeling of a Linear Part of DPCM System 

On the other hand, a cascade orthogonal digital filter has been applied in modeling 

of the linear part of differential pulse code modulation transmission system [25]. 

Differential Pulse Code Modulation—DPCM is a well known and commonly used 

technique for signal transmission in telecommunications. An estimation, i.e. a 

prediction of the present value of the input signal is based on knowledge of its 

earlier values [26, 27]. This is why one of the most important parts of every 

DPCM and ADPCM (Adaptive Differential Pulse Code Modulation) is a predictor 

(a linear part of the system). The linear part in DPCM encoder will be modeled. In 

the encoder, the predictor is situated in the direct branch of a positive feedback 

loop as opposed to the decoder [27]. 

For the purpose of modeling a linear part of the encoder in DPCM system (in 

further text DPCM linear part), we use an adjustable model shown in Figure 9, 

which is based on the new orthogonal digital filter. In this particular case, we use 

filter with six sections and it has real and adjustable poles.  

The output from the orthogonal model can be calculated as:  

   
0

n

M k k

k

y K b K


 , (24) 

where K represents the number of samples. 

 

Figure 9 

Block diagram of an adjustable model with the proposed orthogonal digital filter 

The desired model of DPCM linear part is obtained by adjusting the following 

parameters: orthogonal filter poles k  (k=0,1,…,5), coefficients kb  (k=0,1,…,5), 

and the mapping parameter b. In the case of modeling a particular unknown 

system, parameters of the model should be adjusted in such a way that the model 
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in Figure 9 corresponds as closely as possible to the unknown system. The process 

of modeling is performed in the well-known manner by introducing the same 

input to the system itself, as well as to its adjustable model based on the new 

cascade orthogonal digital filter (Figure 10) [15, 17, 18, 20].  

 

 

Figure 10 

The input of DPCM linear part and the adjustable model 

The next step is measuring the outputs from the system  Sy t  and the filter 

 My t , and calculating the mean squared error (criteria function) as in the 

previous experiment:     
2

0

1 N

S M

K

J y K y K
N 

  . Unknown parameters are 

obtained by minimization of J. 

The genetic algorithm used in the experiment has same values for initial 

population, the number of generations like in previous one, and reproduction with 

six elite individuals. Also, we used the stochastic uniform selection and Gaussian 

mutation with shrinking. The used structure of chromosome was with 12 

parameters coded by real numbers: α0, α1, α2, α3, α4, α5, b0, b1, b2, b3, b4 and b5. 

The original signal (output from DPCM linear part) and the signal obtained using 

the adjustable model based on the orthogonal digital filter are given in Figure 11. 
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Figure 11 

Outputs from DPCM linear part and the adjustable model 

The results obtained for the optimal values of the parameters of the adjustable 

model are presented in Table 2. The obtained value for the mean squared error is: 
3

min 13.182 10J   . 

Table 2 

Obtained parameters of the orthogonal digital model 

k 0 1 2 3 4 5 

k  0.89880 0.80415 0.95560 0.71041 -0.16135 0.86723 

kb  0.80535 0.55137 0.30523 0.05137 -0.10907 0.02849 

 

We can notice a high level of matching between signals from DPCM linear part 

and the proposed orthogonal digital filter from the Figure 11.  

Now, we have the model of DPCM linear part in the following form: 

 
*5

*1

1

0 0

, 0
k

i

M k

k i i

z
W z b

z









 


 


  , (25) 

where * 0.82k k   and appropriate values of parameters are given in Table 2. 
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Conclusion 

This paper presents a new class of cascade orthogonal filters based on the special 

inner product. A new method is applied in obtaining orthogonal Müntz 

polynomial from Malmquist rational functions and generalised Malmquist 

functions. Müntz polynomials obtained in this way are orthogonal with respect to 

the new inner product. Generalised Malmquist orthogonal functions were used for 

design of two new classes of orthogonal filters, for continuous (analogue) and 

discrete systems (digital filters). Müntz polynomials are used to prove 

orthogonality in the time domain, as well as to determine the outputs of these 

filters.  

New filters are in the complex domain orthogonal on the contour which surrounds 

all the poles of the filters, while all zeroes lie outside this contour. Outputs of the 

filter are orthogonal with respect to the new inner product. Both analogue and 

digital filter were realized in our laboratory. Great matching between outputs from 

these filters and outputs obtained mathematically, by using Müntz polynomial, is 

shown. 

The effectiveness of new classes of cascade orthogonal filters, analogue and 

digital, is demonstrated in the cases of determining a model of complex 

technological process in the tyre industry and for modeling the linear part of 

DPCM system, respectively. These filters can be applied in case of modeling 

dynamical systems when we adopt different mean squared errors (criteria 

functions) between the output of the process being modeled and the output from 

the adjustable filter (e.g. when the mean squared error is given in dB).  

The class of these filters with complex poles (both analogue and digital) can be 

also a subject for consideration in some future works. 
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