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Abstract: In this paper the influence of the initial conditions and the interaction of the 

parameters on the motion of the strong nonlinear Duffing oscillator are investigated. The 

initial conditions are arbitrary and need not be zero. An analytical procedure for solving 

the strong nonlinear differential equation with excitation term is developed. The obtained 

solutions give the physical explanation of the excited vibrations caused by the excitation 

force and non-zero initial conditions. The analytical results are compared with numerical 

results and show good agreement. 
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1 Introduction 

Vibration data, obtained by repeated measurement in a forced system (for 

example, motor-support system), represent a spectra of different values, in spite of 

the fact, that the measuring position and conditions, as well as, the excitation of 

the system has not changed. Using the theoretical consideration of the excited 

vibration of non-linear systems, it is to be expected that the obtained results have 

to be highly repeatable and to satisfy certain rules (see [1]-[13] and References 

mentioned in them). For all of the aforementioned analytical investigations, it is 

common to assume that the motion is steady state, with non-zero initial 

conditions. Namely, it is stated that the initial conditions have nothing to do with 

the long term motion properties and need not to be taken into account. The 

discrepancy between the experimental and analytical values gives us an idea to 

investigate nonlinear excited vibrations by including the initial conditions. In the 

paper [14], the vibrations of a harmonically excited pure nonlinear oscillator (the 

linear displacement term fails) with non-zero initial conditions is analyzed. It has 

been noticed that in spite of long term motion, the influence on the initial 

conditions on the motion remains. The intention of this paper is to analyze the 
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effect of the initial conditions on the motion of an excited nonlinear oscillator of 

Duffing type. For this model the linear displacement force is also taken into 

consideration. The model of the system is a strong nonlinear second order 

differential equation with an excitation term 

),cos(0

3 tFyyy          (1) 

and arbitrary initial conditions 

,)0(,)0( 00 yyyy          (2) 

where α and γ are the coefficients of the linear and cubic terms, F₀  and Ω are the 

excitation amplitude and frequency, y0 and 0y  are the initial displacement and 

velocity, respectively. The solution of (1) is assumed in the form which is usual 

for the linear vibration model. Using the harmonic balance method the coefficients 

of the solution are determined. For the special group of parameter values the 

jump-up and jump-down phenomena are investigated with special attention to the 

influence of the initial values. The interaction between the oscillator parameters 

and arbitrary initial conditions on the vibration are also analyzed. For certain 

numerical values the analytically obtained results are compared with numerical 

results. They are in good agreement. 

2 Analytical Solving Procedure 

Let us assume the solution of (1) as a sum of trigonometric functions 

),sin()cos()cos( 1tCtBtAy        (3) 

where A, B, C and also  and 1 are unknown values. This form corresponds to 

the usual solution of the harmonically excited linear oscillator. Substituting (3) 

and its first and second time derivative into (1) we obtain 
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Separating the terms with the first order trigonometric functions cos(t), cos(t) 

and sin(1t) in (4), the following system of three algebraic equations is obtained 
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The initial conditions (2) with (3) give two additional algebraic equations 

./, 010 CyAyB          (6) 

Substituting (6) into (5)3 the parameter C as the function of A follows 
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Using (6) and (7), the relations (5)1 and (5)2 transform into 
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Eq. (8) is a sixth order algebraic equation for parameter A. The solution for A has 

to be substituted into (9) and the solution for . 

3 Solution for Non-Zero Initial Displacement 

For the case when the initial velocity is zero ( 00 y ) but the initial displacement 

is a non-zero one ( 00 y ) 

,0)0(,)0( 0  yyy                    (10) 

the aforementioned relations (7)-(9) transform into 
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The general solution (3) simplifies into 

),cos()()cos( 0 tAytAy                   (12) 



L. Cveticanin et al. Parameter Influence on the Harmonically Excited Duffing Oscillator 

 – 148 – 

where A and  are the solutions of the equations 
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The relation (13)2 can be rewritten in the form 
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where 4/3 2

0yf    is the approximate frequency of free vibration [15]. Eq. 

(14) represents the corrected frequency of vibration caused by harmonic 

excitation. The frequency depends not only on the initial amplitude, as in the case 

for free vibrations of cubic nonlinear oscillator, but also on the excitation 

properties. Introducing the new variable 9/4 0yYA   into (13)1, we have a 

cubic algebraic equation. 
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The number of real solutions of (15) depends on the relation between the 

parameters of the excitation force F0 and , ant the initial displacement y0. As 

suggested by mathematicians the number of real solutions (one or three) depends 

on the sign of the discriminant )27/()4/( 32 pqD  which is according to (16) 
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For D>0 the number of real solutions of (15) is one and for D<0 it is three. The 

boundary discriminant of (13)1 is D=0, when two of the real solutions are equal 

and the third differs. 

3.1 Discussion of the Domain of Solutions 

For computational reasons, let us rewrite the relation (17) in the form more 

suitable for analysis 
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where according to (16) the (p) and Q(p) functions are 
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The discriminant (18) is zero for (19) and 
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Substituting(19) into (20) the boundary F0- functions for various values of initial 

displacement y0 are obtained as 
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Analyzing the relations (19) and (21) it is obvious that for 
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the excitation amplitude is minimal and has the value F0min=0. 

    

  Figure 1     Figure 2 

F0-Ω curves with characteristic points for   A-Ω curves with characteristic points α=γ=1,  

α=γ=1 and various initial displacements  F0 =0.05 and various initial displacements 

In addition, if the discriminant is zero, it follows 
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as the value of p is zero. The values (22) and (23) correspond to two characteristic 

points in the F0- plane. In Fig. 1 the F0- curves (21) for several values of initial 
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displacements (y0=0;0.5;1) are plotted. The parameters of the system are =1 and 

=1. The excitation amplitude is positive, i.e., F0>0. It can be seen that for y0=0 

the F0- curve is single-valued. Namely, the relations (21) transform into only 

one and give a curve which separates the F0- plane into two regions: left from 

the limit curve where the discriminant D is positive and right of the curve where 

the discriminant is not positive (D≥0). For y0>0, the F0- curves are multi-valued. 

The two curves (21) give in the F0- plane an additional region where D≥0. The 

obtained region is larger for higher values of initial displacement. The Ω and F0 

coordinates for the peak points of the region are ( 81/16,6/1 3

0

2

0 yy ) and 

( 0,2/31 2

0y ) according to (22) and (23). The higher the value of y0 the peak 

values move toward higher values of Ω and F0. For F0 higher than the peak value 

only one jump frequency is evident for which the discriminant changes the sign. 

For the 'jump frequency' there is the transition from the region where D>0 to the 

region where D<0. 

3.2 Analytical Expression of Solutions 

As it was previously mentioned the number of real solutions of (13)1 depends on 

the sign of the discriminant D. 

a) For D=0 three real solutions of (13)1 exist, where two of them are equal 
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b) For the values of excitation F0 and  which are inside the area (21) the 

discriminant is negative and three real solutions are 
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c) Outside the region (21), where the discriminant D of (13)1 is positive, only 

one real solution exists 
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The result (27) is valid for all values of F0 and for the excitation frequency which 

satisfies the relation 

2

0
6

1
y                    (28) 

where the parameter p and the discriminant are always positive. 

In Fig. 2 according to (23)-(27) the response amplitude A as a function of the 

excitation frequency Ω for several initial displacements (y0=0;0.5;0.6326;0.75;1) 

is shown. The excitation amplitude is F0=0.05 and the parameters of the oscillator 

are α=γ=1. We note that, depending on the value of y0, some of the curves are 

multi-valued while others are single-valued. It is of special interest to determine 

the characteristic points in A-Ω curves where the bifurcation of the solution 

appears. 

3.3 Characteristic Points 

Let us rewrite the relation (13)1 into the form 
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To obtain the characteristic peak values in the aformentioned A-Ω curves, the first 

derivative of (29) for  as a function of the amplitude A has to be equated with 

zero 
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The cubic algebraic equation has one or three real solutions dependent on the sign 
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For D1>0, when 81/16 3

00 yF  , only one real solution for A exists 
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For D1=0, i.e., 81/16 3

00 yF   two real solutions exist 
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For D1<0, i.e., 81/160 3
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where 
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Analyzing the relation (30) the initial displacement as the function of the response 

and excitation amplitude is expressed 
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Substituting (36) into (13)1 we eliminate the initial displacement and we have the 

A() function for various values of F0 
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Substituting the values of the amplitudes Am (32)-(34) into (37) the frequencies Ωm 

are obtained 
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where i=1,2,3. The values (Am,Ωm) correspond to certain constant value of F0 and 

initial displacement y0. 

In Table 1, the characteristic amplitudes and frequencies for the oscillator with 

parameter values F0=0.05, α=γ=1 and various initial conditions y0 are calculated. 

It can be concluded that for y0<0.6326 one solution exists, while for y0≥0.6326 

number of solutions is three. Comparing the values in Table 1 with the 

characteristic points in Fig. 2, it can be seen that they are in good agreement. 
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Table 1 

Characteristic amplitudes and frequencies for various initial conditions 

Y0 A1 1 A2 2 A3 3 

0 -0.22314 1.1559     

0.5 -0.15140 1.4085     

0.63257 -0.14057 1.5057 0.28114 1.0328 0.28114 1.0328 

0.75 -0.13254 1.5996 0.18902 1.1110 0.44351 1.0843 

1 -0.11893 1.8191 0.14610 1.3295 0.63950 1.1931 

3.4 Explanation of the Solution 

Based on the approximate analytical solution (12), and results given in the 

previous Section, the physical phenomena and vibration of the harmonically 

excited Duffing oscillator with non-zero initial displacement are discussed. The 

parameters α and γ and also the initial displacement y0 are treated as constant 

values. For the constant values of excitation amplitude F0 the excitation frequency 

Ω is increased from zero to infinity. 

1) For the excitation frequency Ω≈ε>0, where ε is a small positive value, the 

parameter A is positive and satisfies the relation A<y0 (see Eq. (13)1). The 

approximate solution (12) for vibration simplifies into 
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The harmonic vibration with amplitude (y0-A) and frequency ω (40) is around the 

position A. If the calculated parameter A is small, i.e. A<<y0, the relation (39) 

simplifies into 

)cos(0 tyy                     (41) 

The frequency of excited vibration ω is smaller than the frequency of free 

vibration ωf. The period of excited vibration is longer than for free vibration of the 

system. Comparing the excited frequency ω with the excitation frequency Ω it has 

been concluded that the second is significantly smaller than the first one. 

2) For the excitation frequency 
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we have A=y0. The solution (12) simplifies into 

)cos( *

0 tyy                     (43) 

The vibration is harmonic in nature, with amplitude y0 and frequency Ω
*
 which 

represents the corrected value of the frequency of free vibration of the system ωf. 

The correction parameter depends on the excitation amplitude and the initial 

displacement. The higher the amplitude of excitation, the more significant is the 

variation of the frequency to that of free vibration. The period of excited vibration 

is longer than for free vibration. The relation (42) is valid only for 1)/( 2

00 fyF  . 

3) For Ω>Ωm1, where Ωm1 is the jump down frequency (37) in A-Ω diagram (see 

Table 1), the calculated parameter A becomes negative with absolute value 

|A|<<y0. The oscillations are approximately periodical (39) with frequency 
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Due to (44) it is evident that the frequency of excited vibration ω is higher than 

for free vibration ωf and the period of excited vibration is shorter than for free 

vibration. For Ω>>ωf the value |A| tends to zero and the frequency of vibration is 

close to ωf. The effect of excitation disappears. 

4) According to (13)1 it is evident that for Ω<Ω
*
 the parameter A satisfies the 

relation A<y0. As the difference between the excited and excitation frequency is a 

small positive value ε, i.e. ω-Ω=ε>0, it is convenient to rewrite the solution (12) 

into the form 

)
2

sin()
2

sin()(2cos 00 ttAytyy





              (45) 

which is suitable for analysis. The second term in the relation (45) describes 

trembling with negative amplitude and period T=2π/(ω-Ω). The period of 

trembling is lengthened by decreasing the difference between the frequencies ω 

and Ω. The period is longest for the minimal value of the difference (ω-Ω). 

5) For Ω
*
<Ω<Ωm1 the parameter A satisfies the relation A>y0 and according to 

(13) the difference between the excited and excitation frequencies is positive. The 

relation transforms into 

)
2

sin()
2

sin()(2)cos( 00 ttyAtyy





              (46) 

For the small difference between frequencies ω and Ω the trembling effect is 

added to the harmonic vibration. The smaller the frequency difference is the 

higher the trembling period. 



Acta Polytechnica Hungarica Vol. 11, No. 5, 2014 

 – 155 – 

4 Examples 

Here three numerical examples are considered in an oscillator: 1. The excitation 

frequency is varied, 2. The excitation amplitude is varied and 3. The initial 

displacement is varied.Consider the vibrations of an oscillator with values α=γ=1 

and initial displacement y0=1. 

     

     Figure 3      Figure 4 

F0-Ω curve with characteristic points for α=γ=1      A-Ω curve with characteristic points for and                

initial displacement y0=1α=γ=1                          F0=0.05 and initial displacement y0=1 

In Fig. 3 the F0-Ω curve is plotted. The F0-Ω curve separates the region where 

D>0 and the region where D≤0 (shaded area). Four (Ω, F0) sets of excitation 

parameters are selected: point 1 (0.5, 0.05) for D>0, point 2 (1.3, 0.05) for D<0, 

point 3 (1.4, 0.05) for D>0, and (2, 0.05) for D<0. In Fig. 3 the characteristic 

points calculated in Table 1 for y₀ =1 and also the peak values of F0-Ω are given. 

In Fig. 4 the A-Ω curve for F0=0.05 is plotted. The points 1-4 are plotted and the 

numeric values of the characteristic points are signed. In Fig. 5 the y-t diagrams 

obtained analytically and numerically for the four mentioned parameter values are 

plotted. 

From the Figures the following is evident: 

For the parameter values α=γ=1, initial displacement y0=1, and excitation values 

F0=0.05 and Ω=0.5 (point 1) the mathematical model of the system is 

).5.0cos(05.03 tyyy   According to the previous consideration the 

approximate analytical solution is ).(1.31030.97709cos)(0.50.02291cos tty   

Point 1 is in the region Ω<Ω1=1.1931, where only one solution for A exists (see 

Fig. 4). 
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  (a)               (b) 

 

(c) (d) 

Figure 5 

Time history diagrams obtained analytically (yA), numerically (yN) and the ‘carrying curve’ y* for y0=1, 

α=γ=1, F0=0.05 and:a) Ω=0.5, b) Ω=1.3, c) Ω=1.4 and d) Ω=2 

In Fig. 5a the analytical and numerical solution are plotted. The difference 

between the time history diagrams y-t is negligible. The vibration has two terms: 

the first is with amplitude A<<y0 and with period 4π, and the second vibration 

term is with frequency ω<ω0. In Fig. 5a it has been shown that the first term in the 

analytical solution can be treated as the 'carrying vibration' and the second term is 

the 'carried vibration' which is along the first one. The total vibration is with 

maximal amplitude y0. 

Differential equation of motion for Ω=1.3 (point 2) is ).3.1cos(05.03  yyy  

Point 2 is in the region Ω1=1.1931<Ω<Ω2=1.3295, where three real solutions for A 

exist (Fig. 3): A1=0.25058, A2=0.089264, A3=0.99349. As for Ω1=1.1931 the jump 

phenomena for amplitude A occurs, (see Fig. 4), the biggest value A3 is valid for 

further analytical calculation. The approximate analytical solution is 

y=0.9935cos(1.3t)+0.0065cos(1.575t). In Fig. 5b the analytical solution is 

compared with numerically obtained one by solving the differential equation. As 

the amplitude A>>B, the term with excitation frequency Ω is dominant. For this 
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case the term with excited frequency ω can be treated as a correction function. 

The approximate solution y≈0.9935cos(1.3t) is almost harmonic with amplitude 

close to y0. 

Point 3, with excitation frequency Ω=1.4, is in the region 

Ω2=1.3295<Ω<Ω3=1.8191 where only one real solution for A exists (Fig. 3). The 

calculated value is A=1.0717 and is higher than the initial value of the amplitude 

(y0=1) while coefficient B is negative (B=-0.0717). For )4.1cos(05.03  yyy  

the approximate solution is )..65130.717cos(1)1.41.0717cos( tty   In Fig. 5c 

the analytical and numerical solutions y-t are plotted. The obtained solutions are in 

good agreement. From the analytical solution it has been seen that the term with 

excitation frequency Ω=1.4 is still the dominant one. Comparing the analytical 

solution by neglecting the second term as a small value, with the free vibration it 

has been concluded that the amplitude of vibration is higher and the period of 

vibration is shorter. 

The excitation frequency Ω=2 in point 4 is in the region Ω>Ω3=1.8191 where 

three real solutions for A (see Fig. 4) can be calculated (A1=-3.5994×10-², A2=-

0.35752, A3=1.7268). For Ω3=1.8191 there is a jump in the value of A and the 

smallest absolute value of A corresponds to the real vibrating system. Thus, for 

Ω=2 (point 4) the solution is ).(20.03599cos)(1.34421.03599cos tty   In Fig. 5d 

the analytically obtained solution is compared with the numerical result, which is 

the solution of the differential equation )2cos(05.03 tyyy  . The second 

term in the approximate solution is negligible in comparison to the first term. 

Comparing the approximate solution y≈1.03599cos(1.3442t) with y=1cos(1.322t) 

for the free vibrations of the oscillator [15] described with 03  yyy  it can be 

seen that the amplitude and frequency of vibration of the harmonically excited 

oscillator is smaller than for Ω=1.4 and tends toward the properties of the free 

oscillator. 

In Fig. 6 the time history diagram for α=γ=1, Ω=1.3, initial amplitude y0=1 and 

excitation amplitude F0 =0.25 is plotted. There is only one real solution for A (see 

Fig. 3) which gives the approximate analytical solution y=1.0976cos(1.3t)-

0.0976cos(1.6776t), which in comparison with the numerical one shows good 

agreement. Comparing Fig. 6 with Fig. 5b the influence of increase of the 

excitation amplitude on the vibration properties of the oscillator is visible. For a 

higher value of F0 the trembling effect is evident, while for smaller F0 the motion 

with approximately constant amplitude occurs. 

In Fig. 7 the time history diagrams for an oscillator with α=γ=1, Ω=1.5, F0=0.05 

and various initial conditions (y0=0.5 and y0=1) are plotted. It has been shown that 

the oscillating properties deeply depend on initial displacement. 
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Figure 6    Figure 7 

Analytical yA-t and numerical yA-t diagrams for          Time history diagrams for Ω=1.4,α=γ=1,F0=0.05 

Ω=1.3,α=γ=1,F0=0.25 and y0=1                  and: y0=0.5 and y0=1 

Conclusions 

The following has been concluded: 

1) The vibration of a non-linear undamped harmonically excited oscillator 

depends on initial conditions and their influence cannot be neglected 

independently on the value of the excitation parameters. 

2) Upon analyzing the total vibration of the harmonically excited Duffing 

oscillator, it can be concluded that it contains two terms: first, a harmonic 

vibration with excitation frequency and second, a harmonic vibration with excited 

frequency. When varying the excitation frequency from zero to a higher values the 

vibration terms vary as follows: 

a) For zero excitation frequency the first term is a constant value and the second 

term is a harmonic vibration. The sum of these two terms yields the vibration 

around the constant value and the maximal amplitude corresponds to initial 

displacement. 

b) By increasing the excitation frequency the first term transforms into a harmonic 

function with a long vibration period: the period of vibration decreases and the 

amplitude of vibration decreases from the constant value by increasing the 

excitation frequency. For the second term, the period of vibration decreases and 

the amplitude increases when the excitation frequency increases. The total 

vibration represents the vibration of the second term, around the first one and the 

total amplitude is equal to the initial displacement. 

c) By further increasing the excitation frequency, the relation between the 

frequencies of vibration of the first and the second term give the trembling effect, 

where the total vibration period decreases by increasing the excitation frequency 

and the amplitude remains equal to the value of the initial displacement. 

d) For a further increase of excitation frequency, the second term becomes a 

dominant vibration with a longer period than that of the first term. The period of 



Acta Polytechnica Hungarica Vol. 11, No. 5, 2014 

 – 159 – 

trembling increases and the difference between the maximal and minimal 

amplitude decreases. 

e) By further increase of the excitation frequency, up to a certain value, when the 

amplitude of the first term is equal to initial displacement and of the second term 

is zero, the total vibration is a pure harmonic, with an amplitude equal to initial 

displacement and with that certain excitation frequency. For such excitation force, 

the vibration response is independent on the elastic properties of the oscillator. 

f) For an even further increase of excitation frequency, the trembling effect 

appears, but with a positive sign: the period of the first term decreases and its 

amplitude is higher than the initial displacement while the frequency of the second 

term increases and the amplitude is smaller than initial displacement. In spite of 

that, the total amplitude of vibration is higher than initial displacement. By further 

increase of excitation frequency the trembling in vibration of the excited oscillator 

disappears and the vibration tends to a periodical with an amplitude equal to initial 

displacement and frequency which tends to the frequency of free vibration of the 

oscillator. 

g) For significantly high excitation frequency, the excitation force has only a 

marginal influence on the vibration of the oscillator. Namely, the amplitude of 

vibration and the frequency of the excited oscillator do not depend on the 

parameters of excitation. The vibration is almost harmonic in nature, with an 

amplitude equal to initial displacement and with frequency of a free vibration. 

Based on this conclusion, it is recommended to use an excitation force with a high 

excitation frequency. 

3) The initial displacement has an influence on the excitation domain which gives 

one, two or three steady-state vibrations. The excitation amplitude - excitation 

frequency curve is single-valued, if the initial displacement is zero and it separates 

the domains of one and three steady state motions equally. For arbitrary initial 

displacement, the excitation curve is multi-valued: for excitation parameters inside 

the region of this curve, three steady-state motions exist, while outside this region 

the motion only one steady state amplitude exists. The obtained region is larger 

for higher values of initial displacement. The higher the value of initial 

displacement the peak values move toward higher values of excitation frequency 

and excitation amplitude. 

4) The number of peak amplitudes, which define the position of jump phenomena, 

depend on initial displacement. If the initial displacement is zero, only one 

characteristic peak value in the excited undamped Duffing oscillator exists. 
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