
Acta Polytechnica Hungarica Vol. 16, No. 2, 2019 

 – 35 – 

Placing Event-Action-based Visual 

Programming in the Process of Computer 

Science Education 

Gábor Csapó 

University of Debrecen, Faculty of Informatics, Kassai út 26, 4028 Debrecen, 

Hungary, csapo.gabor@inf.unideb.hu 

Abstract: Based on research results and experience, students who finish K-12 education 

lack the necessary computational thinking skills that they would need to continue their 

studies effectively in the field of computer sciences. Our goal was to examine the currently 

used methods and programming languages in K-12 education and to find and present an 

alternative approach. Using visual programming environments in education to develop 

students’ computational thinking and algorithmic skills is a widespread practice in K-12 

education. These environments mostly provide simplified versions of “real” programming 

languages. In this paper, we present event-action-based visual programming, as an 

alternative to today’s most frequently used methods, which do not restrict the students’ 

development ability to simplified and basic applications while retaining the advantages of 

visual languages. We organized four workshops in which we presented this programming 

approach to four distinct groups involved in education. The participants were guided to 

develop a multiplatform mobile application using Construct 2 event-action-based visual 

programming. At the end of the sessions we collected data in the form of group interviews 

and questionnaires on the possibilities of including event-action based visual programming 

in computer science education. Based on the results, the participants found the method 

suitable for beginner programmers to help them lay the foundations for more complex, text-

based programming languages and to develop a positive attitude towards programming. 

Keywords: visual programming; algorithmic skills; computational thinking; computer 

science education; Construct 2 

1 Introduction 

One of the most important aspects and goals of computer science education is to 

develop students’ computational thinking and algorithmic skills [1]. These skills 

are not just important in the context of computer science, but in everyday life as 

well because they provide the basics for slow thinking approaches [2], [3], [4] 

used to solve novel problems in various situations. Based on the results of an 

international research project [5], first-year undergraduate students lack the 



G. Csapó Placing Event-Action-based Visual Programming in the Process of Computer Science Education 

 – 36 – 

required level of these skills to continue their studies efficiently. Therefore, it is 

not uncommon that these students need reiteration and sometimes complete re-

learning of basic topics in order to develop an adequate level of computational 

thinking on which their following courses can be built. 

1.1 Developing Computational Thinking 

Computational thinking and algorithmic skills are considered most important in 

the field of programming and software development. Some educators focus on 

developing these skills through various forms of programming environments. The 

text-based programming languages used in education range from modern object-

oriented languages (for example: Java, C++, C#) to older procedural examples 

such as Pascal, which are not widely used and can only be found rarely in the 

contemporary IT industry. These languages present students with steep learning 

curves and tend to confuse them with syntax and instructions which seem complex 

for beginner programmers [6] [7]. Therefore, the teaching efficiency of the topic 

in K-12 education cannot completely fulfill the requirements stated in the 

curriculum [8]. To solve this problem, numerous EPLs (Educational Programming 

Languages) have been developed in order to help students understand the basic 

concepts of programming logic, often through visual programming approaches. 

While using these languages to teach programming in education has been a 

widespread practice over recent years, they have not solved the problem that 

students who complete K-12 education cannot solve basic tasks that require 

algorithmic skills [5]. We provide an overview of the most commonly used EPLs 

in the following section. 

In an ideal educational environment, the development of computational thinking is 

not only focused on the programming topic, but rather integrated into all topics of 

ICT (Information and Communication Technology) education, such as Sprego and 

ERM (Spreadsheet Lego and Error Recognition Model), respectively [9], [10], 

[11], [12], [13], [14], [15]. Teaching birotical software receives great emphasis in 

the Hungarian K-12 curriculum [8], but most educators miss the opportunity to 

develop students’ algorithmic skills by using such software [16]. Either by 

assuming that these skills can only be developed in the programming topic, or by 

being unaware of methodologies that focus on this area of computer science 

education [17]. 

1.2 Goals of the Present Work 

Following on from the papers by Soloway and Ben-Ari, and on the principles of 

the Sprego and ERM methodologies, our goal was to analyze the EPLs currently 

used in computer science education and present an alternative approach for 

teaching programming which has the potential to increase the efficiency of the 



Acta Polytechnica Hungarica Vol. 16, No. 2, 2019 

 – 37 – 

learning processes and the development of algorithmic skills though event-action-

based visual programming. 

2 Visual Programming 

Visual programming uses graphical elements to represent and build up algorithms 

while focusing on the underlying logic of the application under development. The 

developers combine various pre-defined elements to construct the visual code. 

These building blocks differ from each other in terms of their purpose and 

functionality and revolve around the design of the visual language. While this 

approach to software development is not new, as a result of continuous 

progression of visual languages, today various IDEs (Integrated Development 

Environments) integrate distinct forms of visual programming to aid development 

processes. These languages help developers construct and define the logic behind 

their applications without the need to focus on the syntactical details of 

programming languages. The novel versions of such languages come with easy to 

understand presentations and self-explanatory instruction sets. These advantages 

over text-based programming languages make visual programming a compelling 

tool in the educational field as well. However, it is worth mentioning that while 

these languages tend to provide an easier and more rapid development experience, 

they are usually limited in terms of functionality. With some general-purpose 

exceptions on the market, visual programming languages do not hold the same 

potential as text-based languages, considering the complexity of the logic they are 

capable of handling. For this reason, experienced programmers do not favor visual 

programming throughout the whole development cycle of their applications, but 

rather use them as supplementary tools. In some cases, the visual programming 

IDEs offer the opportunity to include custom text-based code alongside the visual 

elements to customize the projects and to break free of any possible limitations the 

environments might pose on the developer. 

The various forms of visual programming languages create a divergent market, as 

the user cannot find two identical implementations of this programming method. 

Furthermore, these implementations are not compatible with each other - the 

visual code created in an IDE cannot be transferred directly to a different 

environment as is possible with text-based languages. After analyzing various 

popular occurrences of visual programming languages on the market, we defined 

4 categories into which these languages can be classified [12]. Note that an ideal 

visual programming language incorporates more than one of the following 

categories. 

 Behavior-based languages: Behaviors are pre-coded scripts that the developers 

can implement into their projects with minimal effort. The goal of these scripts 

is to speed up the development process rapidly by removing the need for 



G. Csapó Placing Event-Action-based Visual Programming in the Process of Computer Science Education 

 – 38 – 

developers to define basic functionalities. On the other hand, the behaviors are 

limited to basic operations with few customization options and are not suitable 

for constructing complex, custom algorithms. For this reason, this form of 

visual programming rarely stands alone and is rather accompanied by one of 

the following, more flexible approaches. The Construct 2 [18], Construct 3 

[19] and GameMaker: Studio [20] development environments all include 

behaviors. 

 Event-action-based languages: As the name of this category implies, the 

developers define events in the visual code and assign actions to them which 

run when the events’ conditions are met. The complexity of the logic that can 

be constructed with this method depends heavily on the available, pre-defined 

event and action arrays. It provides an easy to understand and transparent 

visual code, even for more complex projects. From all the visual programming 

categories, the event-action approach has the smallest professional market 

share and only a few IDEs can be found which integrate this method: 

Construct 2 [18], Construct 3 [19], GDevelop [21] and Clickteam Fusion [22]. 

In education, only the Kodu Game Lab [23] and the Lego Mindstorms [24] 

environments are known to be based on this method. 

 Block-based languages: These languages resemble the syntax of text-based 

programming and provide building blocks with traditional programming 

elements to construct the code visually. The developers combine these 

elements by simple drag and drop means. This form of visual coding is 

considered a general-purpose approach and rarely limits the user in terms of 

logical complexity. However, due to the fact that they are based on text-based 

languages, beginner programmers might find it difficult to start learning with 

block based visual languages. The Stencyl [25] IDE, the Scratch [26] and 

Alice [27] EPLs all focus on this approach. 

 Node-based languages: The last category of visual languages provides a 

flowchart or mind map-like experience for the developers, who define nodes 

from a pre-constructed array and relate them together using various types of 

connections. This form poses the least limitations on developers and is usually 

accompanied with the ability to create custom nodes using text-based 

languages. Working with complex projects using this approach can prove to be 

difficult because defining complex logic on a flowchart can easily result in an 

unreadable visual code. Despite this, this method has the largest professional 

market share as more and more environments integrate it into their code 

editors. For example, the popular Unreal Engine 4 [28] calls this form of 

programming “blueprints” and its applications range from creating application 

logic to designing materials or animations, as well. In 2017 the Godot Engine 

[29] and the GameMaker Studio [20] also implemented node-based 

programming. In the current state of our research, we do not know of any 

EPLs which are based on this type of visual code and would be suitable for 

low-complexity software development. 



Acta Polytechnica Hungarica Vol. 16, No. 2, 2019 

 – 39 – 

2.1 Visual Programming EPLs 

Using visual programming languages and environments designed specifically for 

educational usage to teach students the fundamentals of programming and to 

develop their computational thinking and algorithmic skills is an accepted practice 

in contemporary education. While tertiary education focuses primarily on text-

based languages, we can find various EPLs that are used in K-12 and higher 

education. The following environments were designed for beginner programmers 

and just as with visual programming languages, these development environments 

also vary in their approach to the topic and in the form of programming they 

implement. 

2.1.1 Alice 

Alice [27] is a block-based visual programming environment designed for 

education. With its help, students can create interactive 3D animations and by 

design, it serves as an introductory language for object-oriented programming 

[30]. While it also includes events in its workflow, it is not to be confused with the 

event-action based visual programming approach as the majority of the code 

follows the block-based principle. Alice is used in a wide range of educational 

institutes in secondary and tertiary education, mainly as an introduction to 

programming. Based on student feedback, measurements and educators’ 

observations, students find the 3D animations made with Alice interesting and 

entertaining, while the workflow of the software is useful and easy to understand 

and to get into for beginners [31]. 

2.1.2 Lego Mindstorms 

The idea of building robots and programming them in education is an approach 

popularized by Lego Mindstorms [24] although it was not the first endeavor in this 

area. The kits available come with a variety of programmable parts that can be 

built into the robots, for example motors, sensors, and lights. The students build 

algorithms to pass instructions to the robots and control them in different 

situations. This provides several opportunities to teach programming concepts and 

gives real-world feedback to students. The official visual programming 

environment available uses a special case of event-action-based visual 

programming and is only recommended for beginners based on its instruction 

array. While for advanced users, the robots can also be controlled with text-based 

languages (C++ and Java), in this paper we only focus on the visual programming 

aspect of this approach. Lego Mindstorms is used not only in public education, but 

also in tertiary education [32]. However, despite the advantages and visually 

engaging experience of this approach, according to research conducted at Hanover 

College, students learning programming with Mindstorms did not achieve better 

results than learners who used text-based language IDEs. Also, robot 

programming seems to offer no additional motivational drive to encourage 



G. Csapó Placing Event-Action-based Visual Programming in the Process of Computer Science Education 

 – 40 – 

students to continue their studies at higher levels in tertiary education [33]. If the 

goal is to make every student learn to build algorithms, then every learner must be 

provided with the opportunity to write code, therefore, they must work in small 

groups. Although the Mindstorms kits are not the priciest, they are still expensive 

for educational purposes, especially if every student needs a kit. A large number 

of K-12 institutes do not have the resources to buy even one robot. Another 

potential problem with teaching with Lego Mindstorms is that the robots have to 

be built before the programming part of the lessons can begin. This process needs 

to be either part of the classes with the accompanying sacrifice of time, or teachers 

have to build all student robots outside of teaching time as additional work. 

Educators who decide to use Lego Mindstorms to teach programming should keep 

in mind that while its visual language is easy to understand, it focuses on the 

concept of controlling robots and is not a general-purpose method of 

programming. Beyond these concerns, most students in the target groups do not 

have the necessary background knowledge in physics for building and using the 

robots. 

2.1.3 Scratch 

Scratch [26] is a well-known EPL at all levels of education. It was developed by 

MIT Media Lab Lifelong Kindergarten Group and it uses a block-based visual 

programming language to construct the logic of interactive stories, games, and 

animations. It was designed for beginner programmers, even for young (8-16 

years old) students who could not imagine themselves as developers before trying 

out Scratch [34]. It has several design features to aid educational processes; for 

instance, completed projects can be shared with the Scratch community and 

students can open every shared work to view its source code. The visual 

programming approach of this environment even allows learners to construct 

highly complex projects. The Theme Park God [35] is a prominent example of 

what can be achieved with this EPL. Note that while building composite projects 

is possible with Scratch, the resulting source code can be difficult to read and see 

through. Although students found this environment easy to use, several studies 

point out potential problems regarding its workflow and effectiveness. In a 

primary school, learning programming with Scratch did not result in increased 

problem-solving skills for 5th grade students as opposed to learning with 

traditional methods [36]. Teaching computer science concepts is only possible 

with this EPL if it is paired with an adequate, purposefully designed educational 

context, because learners tend to follow bad programming practices while 

developing their projects. Instead of focusing on the algorithms, students usually 

drag and drop into their codes all the blocks they think are necessary to solve the 

problem. This can result in bricolage projects, instead of a well-analyzed approach 

to a problem. Overly deconstructed elements without logical coherency are also 

common in students’ work [37]. Scratch does not reinitialize the value of the 

variables between project executions by default. This leads students to mistaken 

initialization practices and makes knowledge transfer to future environments 



Acta Polytechnica Hungarica Vol. 16, No. 2, 2019 

 – 41 – 

troublesome [38]. While this visual language was designed for education, its 

popularity inspired developers who created a visual programming environment 

aimed for production called Stencyl [25], which uses the same programming 

approach as Scratch. 

2.1.4 Kodu Game Lab 

The developers of Kodu Game Lab [23] reacted to the increasing popularity of 

video games and created an environment in which students have the ability to 

build simple visually appealing 3D interactive games and stories that are rich in 

multimedia elements and are able to stimulate multiple sensory organs 

simultaneously. Kodu uses a simplified event-action based visual programming 

approach. It targets young students, and by its design it promotes learning through 

independent exploration [39]. This visual language is based on a when-do 

structure, where students first have to define the events with conditions (when) 

and then the actions (do) which are run when the corresponding event’s conditions 

are met. This EPL is suitable to teach computer science concepts with its language 

structure and can be used as a launching point for learning text-based languages 

[40]. Interestingly, Kodu Game Lab was first developed for the Xbox360 console 

and was later ported to Windows operating systems, which makes it exceptional in 

terms of supporting a popular gaming platform. 

2.1.5 Summarizing EPLs 

The visual EPLs described above are used in practice to teach programming at 

various levels of computer science education. Most of them focus on games or 

game-like projects being aware of their effects on educational processes through 

positive emotions, not exclusively restricted to ICT education [41] [42] [43] [44]. 

With these environments, students can create their own, visually more appealing 

projects compared to traditional texts-based IDEs. Similar attempts for content-

development-focused approaches can be observed in other fields of education [45] 

[46] [47] [48]. Content creation can also be suitable in the area of self-learning; 

however, teachers favoring this approach must take into consideration the 

difficulty level of such tasks they pose towards students [49]. 

The educators (just as with every educational tool) have to be well informed and 

cautious about the limitations of these environments, what can be achieved with 

them and in what educational contexts they should be used to make developing 

computational thinking and algorithmic skills more effective. Based on our 

analyses and feedback from students, learners usually find these environments 

childish, which make working with them with higher age groups difficult. 

Moreover, these programming environments were all designed for educational 

purposes and therefore they are not suitable for use outside of the educational 

context. Following on, we also have to consider the integration of BYOD (Bring 

Your Own Device) approaches. Students trying out or developing their own 

projects on their own devices would be extensively motivating for them [50]. 



G. Csapó Placing Event-Action-based Visual Programming in the Process of Computer Science Education 

 – 42 – 

However, we must be aware that most EPLs do not provide functionality to 

achieve this goal regardless of its potentials. It is important to emphasize that this 

is also true for other widespread EPLs, which are not necessarily based on visual 

programming, such as Logo [51]. In the following section we introduce an event-

action based visual programming environment that was designed with software 

development in mind, but has all the elements which are required to make it a 

compelling candidate for educational usage. 

2.2 Construct 2 

Developed by Scirra, Construct 2 [18] is an integrated development environment 

which implements the event-action and behavior based forms of visual 

programming languages. This environment is designed to develop video games 

and multimedia web applications, and therefore uses a general-purpose approach 

in terms of its language and instruction set. After examining several visual 

programming environments designed primarily for software development and not 

only for education, we chose Construct 2. Mainly, because its implementation of 

event-action-based visual programming poses few limitations in terms of possible 

logic complexity and diversity, and because students can develop interactive 

projects during the first lessons effortlessly. Furthermore, the design of the 

environment supports learning through experience and offers convenient help 

tools. Despite the English language of the user interface, we found it simple to use 

and, based on our observations, after a few translational explanations, Hungarian 

high-school students had no problem navigating and using the features of 

Construct 2. 

The environment is based on an in-house developed lightweight HTML5 2D 

engine and primarily aims for the web platform, with other options available using 

wrappers. The developers implemented various optimizations in their engine to 

make the applications developed with it run as efficiently as possible, including 

optimized GPU (Graphics Processing Unit) draw calls, and optimized collision 

checks. 

2.2.1 The Development Workflow in Construct 2 

The interface of Construct 2 is separated into 3 columns. The most dominant 

central area is the workspace where the majority of the development process takes 

place. This is where the user designs the graphical layout of the project, as well as 

defines the visual code on different tabs. On the left side of the interface, the 

properties of the selected element are listed. In the right column, the project tree is 

displayed, similar to what in-service developers use in various IDEs focusing on 

text-based programming languages. 

The main building blocks of the projects are the objects; these are the elements 

which define the usable instruction array (conditions and actions). The System 



Acta Polytechnica Hungarica Vol. 16, No. 2, 2019 

 – 43 – 

object is present in every application and handles various system related tasks (for 

example, managing variables and creating loops). It is important to distinguish 

local and global objects: while local objects are only available and visible at the 

parts of the project to which they were added, global objects can be accessed 

throughout the whole application. Objects cover various functionalities of the 

underlying engine, such as displaying an image, playing an audio file or 

processing user inputs. 

Everything the end-user sees is placed on layouts. These elements can be 

interpreted as canvases on which the objects are drawn. Layouts possess all the 

required functionality to construct visually complex applications, as managing 

different layers with their own changeable properties make them similar in this 

field to raster graphics editor applications and students can build upon the 

knowledge they learned in that topic of computer science education. It is worth 

mentioning that similarly to other game engines on the market, Construct 2 allows 

objects to be placed on the layouts outside of their boundaries. 

Behaviors (as described in Section 2) are pre-written scripts with a few 

customization options to allow rapid implementation of commonly used 

functionalities (for instance 8-directional movement or applying physics to an 

element). Behaviors have to be attached to objects in order to access their 

functions and while they provide an easily understandable and swift option to 

make interactable objects, they are not suitable for developing custom algorithms. 

However, using behaviors in education can improve student motivation because 

learners receive spectacular feedback on their work instantly. Note that setting 

behaviors to objects will expand the available instruction array with the conditions 

and actions of behaviors. 

 

Figure 1 

An example of the event-action based visual code of Construct 2 

The event-action based visual programming is used to create the logic of the 

projects on event-sheets in the work-space area. When the developer creates an 

event, referencing an already existing object, a condition first has to be selected 

from the available array, and then the parameters of the condition have to be set. 

When the first condition is defined, an event block is automatically created with 



G. Csapó Placing Event-Action-based Visual Programming in the Process of Computer Science Education 

 – 44 – 

the condition in it. The next step is to attach actions to this block using the same 

approach as is used with conditions. The completed event block lists the added 

condition and actions with object references in an easy to read, natural text format 

with highlights of the defined parameters. For instance, on Figure 1, the keyboard 

is the object, the first event has a condition which requires a button to be set to 

monitor its state when it is pressed down. This form of event-action based visual 

programming, provides the developers with several options to create high-

complexity algorithms (for example: AND or OR logical connections between 

multiple conditions, sub-events, embedding event-sheets into each other). 

While it is obvious that the defined events and actions run in a sequential order 

and conditions inside an event block are realizing selection as usual, iterations can 

be confusing for developers who only use text-based programming languages. 

Construct 2 has several hidden functionalities that make the development progress 

easier and smoother, but some can potentially interfere with the education of 

programming concepts. For instance, the third event block in Figure 1 checks for 

collisions between the player and enemy objects. If the developer places multiple 

instances of the same object on the layout, the event block watches all of them 

automatically, which requires a loop using text-based languages. Furthermore, the 

engine iterates events periodically in a loop to check for the conditions defined at 

each rendered frame. These particularities of this environment require novel 

methods for introducing loops, because the educators have to design specific cases 

in which using the loop events included (for, for-each instance of an object with 

ordered option, repeat N times, and while) are required. 

Developers have the option to include three types of variables, based on their 

declaration location: global, local, and instance. The latter is associated with an 

object and follows the object-oriented paradigm, just as managing multiple 

instances of the same object. Functions are also available in the environment, by 

using the Function object type which manages defined functions, parameters, 

calls, and return values through events and actions. 

The environment includes a debugger functionality to help developers monitor 

various aspects of their projects during runtime, and receive performance 

measurements on used resources. While some of the features of the debugger are 

not available in the free version of Construct 2, it is a powerful tool which could 

be used to teach student-project analysis and code debugging. 

2.2.2 Supporting Materials for the Educational Use of Construct 2 

The developers of this environment and the user community (with in-service 

teachers included) created numerous resources to help beginner programmers 

understand the fundamentals of the workflow of the software and to aid its 

integration into educational processes. The official manual [52] explains the 

individual elements of the environment in an easy to understand composition with 

a logical structuring in compliance with the design of the software. The tutorials 



Acta Polytechnica Hungarica Vol. 16, No. 2, 2019 

 – 45 – 

listed on the official website [53] are primarily community created materials that 

cover specific problems and their solution over a wide range of topics. Students 

can find resources to help grasp the basic development process of Construct 2, but 

they are provided with tutorials that cover more advanced, platform-specific topics 

or optimization techniques as well. It is important to note that while these user-

created resources are available in several languages, at the time of our research no 

Hungarian tutorials can be accessed on the website. For those users who prefer 

learning from video materials instead of written guides, given the popularity of the 

environment amongst developers, various educational videos are also available. 

For instance, the Construct 2 Academy channel on YouTube [54] offers the 

opportunity to learn by creating different types of projects. Professional online 

courses [55] created for Construct 2 are also an option that further widens the 

range of supporting materials. The official community forums [56] present a place 

for English speaking students to post their questions and receive help directly 

from either a more experienced user or from the developers of the environment. 

Furthermore, the forums include a section for educational use of Construct 2 

where teachers and students can share their experiences regarding the software 

and provide help and advice for each other. While it is not essential in the context 

of education, developers who find the functionality of the core environment 

limiting have the option to install third-party add-ons which are shared in the 

appropriate section of the forums. Computer science teachers experienced in 

JavaScript can also create their own add-ons by using the official SDK [57]. 

Similarly to the service Scratch provides, students have the option to share their 

completed works on the Scirra Arcade website online [58] for free. This service 

provides opportunities for learners to optionally share the source code of their 

projects, as well, and to gather feedback in the form of ratings or comment-based 

discussions. Detailed statistics are displayed for each shared project to help the 

developers analyze user traffic, play times, and downloads based on locations. 

While Scirra Arcade might not be the ideal platform for deploying completed 

commercial projects, it is suitable for educational usage for students and teachers 

alike. It allows them to share their prototypes or simple applications with easy to 

integrate online high-score management. 

The free version of Construct 2 comes with a variety of limitations compared to 

paid licenses. The most notable restrictions are the limited number of event blocks 

(100), layers (4), no object grouping options or sub-folder creation in the project 

tree, limited export platforms (only web applications, including publishing to the 

Scirra Arcade are allowed) and commercial usage is forbidden. It is important to 

note that the developers of this environment allow educational usage of the free 

version and, based on our observations and experiences; it can completely cover 

the requirements of the Hungarian curriculum [8]. For those developers, 

companies and institutions who find the restrictions of the free version too 

limiting for their needs, various paid license options are available which all unlock 

the full potential of Construct 2. 



G. Csapó Placing Event-Action-based Visual Programming in the Process of Computer Science Education 

 – 46 – 

2.2.3 Developing Projects in the Web Browser 

While in this paper we focus on the educational possibilities of Construct 2, it is 

important to note that its successor, Construct 3 has been released which includes 

further potential features for education. Alongside the new functionalities to aid 

the smooth development principles which its predecessor embodies, the most 

notable addition is that the environment runs completely in a web browser as a 

PWA (Progressive Web App). While managing to keep all functionalities of an 

integrated development environment with a responsible interface, Construct 3 also 

opens new possibilities in terms of supported platforms. Every device that has a 

modern web browser installed is capable of running the environment without the 

need for additional installation. It is compatible with Construct 2 projects which 

do not rely on third party add-ons, so students can effortlessly import and convert 

their work. One of the additions to the new version we would like to point out is 

the option to translate the user interface into several languages. Consequently, 

bridging language gaps is now possible for students who might have problems 

understanding the English interface. While the free version of Construct 3 can also 

be used in education, all of the licensing options have switched to a subscription 

based model. 

2.3 Visual Programming within the Frame of CogInfoCom 

CogInfoCom emphasizes a systematic viewpoint on how modern 

infocommunication tools can develop synchronously with the cognitive processes 

of the users [59] [60] [61] [62]. In our current work we focus on the software tools 

within the scope of the mathability sub-field of CogInfoCom [3] [4] [63]. 

Using programming with high mathability problem solving aids the educational 

and cognitive processes with the development of logical reasoning and sequencing 

skills and abilities [63] [64] [65] [4] [15]. Furthermore, using visual programming 

technologies also develops the students’ spatial visualization abilities [66]. 

Construct with our concept-based methodology [4] offers the advantages of high 

mathability visual programming methods in addition with the possibility to extend 

the capabilities of the human brain through interactive 3D educational 

environments. Because Construct 3 is built solely on web technologies, similar 

educational spaces can be created such as the Sprego virtual collaboration space 

presented in our prior work [67] in MaxWhere [68] [69] [70] [71] [72] [73]. 

Consequently, developing spaces for teaching and learning with Construct 3 is a 

compelling future research project. We have to emphasize that our methodology 

focuses on the core of high mathability product-creation with the use of existing 

tools [3]. 



Acta Polytechnica Hungarica Vol. 16, No. 2, 2019 

 – 47 – 

3 Event-Action-based Visual Programming 

Workshops 

In order to accomplish our goals (Section 1.2), four workshops were held during 

the 2016/2017 academic year, in which the participants created a simple 

interactive mobile game in Construct 2. We wanted them to experience the 

workflow of the event-action based visual programming first hand, so during the 

workshops we provided the conditions necessary for individual work alongside 

lecturer guidance with a presentation. Depending on the participants’ work speed, 

each workshop lasted between 2 and 4 hours, and finished when the project was 

completed and was tested by everyone. Because we set out to collect feedback and 

experience regarding the visual programming approach of Construct 2, and about 

its possibilities for integration into classes, we targeted four distinct groups with 

our workshops which are all involved in computer science education at different 

levels. 

3.1 The Characteristics of the Target Groups 

The first workshop was organized for high-school students (N = 2, the other 

students who registered did not show up) at a local institute in Debrecen, Hungary. 

Choosing this school was a compelling option because it focuses mainly on 

humanities and its primary profile is drama education. Therefore, based on our 

prior experience with several classes, the students do not view computer science 

as an important subject and only a few of them have experience with 

programming or software development outside the classes based on the 

curriculum [8]. Our second target group was undergraduate students (N = 14) at 

the University of Debrecen Faculty of Informatics. We held the workshop during 

the Professional Days event organized in each semester. The students in this group 

are taking computer science courses; therefore, they have an overview and 

experience of software development and programming languages. While there are 

four majors available at the institute each specialized for a different area of 

computer sciences, we did not filter the students by the courses they had taken, or 

by their terms. The third experiment group was pre-service teachers of informatics 

(N = 5) studying at the University of Debrecen Faculty of Informatics. Developing 

the workshop project with these participants using Construct 2 was an obvious 

choice as these students had tried various forms of educational programming 

languages during their studies and could provide feedback on the educational 

possibilities of the event-action based visual programming language from a 

contemporary perspective. While all the students from the chosen group 

participated in the workshop, their small number can be justified by the fact that 

only a few students regularly enroll for informatics (computer science) teacher 

education in the institute. We targeted in-service computer science teachers 

(N = 19) with our latest workshop at a postgraduate training organized in Zamárdi, 

Hungary. We counted on the participants’ field experience and the wide range of 



G. Csapó Placing Event-Action-based Visual Programming in the Process of Computer Science Education 

 – 48 – 

their knowledge of teaching programming for our data collection. Similarly to the 

previous pre-service computer science teacher group, the participants worked with 

several EPLs, but they also view these tools through their long involvement in the 

educational processes. In summary there were 40 participants at all workshops. 

During our workshops we collected data regarding the possible options for 

integrating the selected visual programming method and environment into 

computer science education. We presented questionnaires at the end of each 

session to inquire about the previous programming (including visual 

programming) and software development experiences of all participants and the 

previous programming languages and methods they learned in the student groups. 

After the questionnaires, we conducted group interviews in which we collected 

data and feedback about the workflow of Construct 2, the project and the software 

development potential of the environment, with additional information about the 

possible integration and placement of the event-action based visual programming 

method in computer science education in tandem with currently applied 

approaches. We extended the collected data with our observations on the 

participants and their reaction to the environment and its workflow during the 

development process. 

3.2 The Composition of the Developed Project 

In advance of the workshops, we designed a 2D, interactive, simple, mobile game 

project targeting the HTML5 platform, supported by the free edition of 

Construct 2. Besides the goals we described above (Section 1.2), we also wanted 

the participants to experience that simple applications can be developed with this 

environment in only a few hours. 

While the logic of the project and the accompanying sound files were our design, 

the assets we used for its visual appearance originated from a package whose 

license we purchased [74]. The created project also served as an example of multi-

platform application development because it was designed to be playable both on 

desktop operating systems and on touch screen devices. The concept of the project 

was the following: fish appear at random generated Y coordinates at the left side 

of the game layout (outside of the visible area) and they swim towards the right 

side of the screen. The user’s goal is to catch the fish by touching or clicking on 

them. The game counts the captured fish and displays this number for user 

feedback. While this game does not terminate and as such plays endlessly, it was 

an appropriate way for us to include and present various programming concepts in 

a short time. Because each workshop was limited in terms of available time 

depending on the hosting event and environment, we focused on developing the 

core functionalities of the project during the workshops. Therefore, functionalities 

we considered supplementary (for example the game menu, creating particle 

effects and using the vibrate function of smart devices) were left out as required, 

in order to provide time for implementing user ideas and functions. 



Acta Polytechnica Hungarica Vol. 16, No. 2, 2019 

 – 49 – 

Although due to the time restrictions, the project operated with simple algorithms 

(Figure 2), it allowed us to provide an example for the participants of how the 

following programming concepts can be implemented into a project with this 

environment: declaring and initializing global variables, setting variable values, 

displaying and changing strings on the screen during runtime, playing sound files, 

creating and destroying object instances with code, defining conditions on stored 

values, generating random numbers in a pre-defined value range, listening to user 

touch inputs, and using platform specific functionalities (in this case, the vibration 

function of smart devices). 

 

Figure 2 

The visual source code of the core functionalities of the workshop project 

Note, that in this chapter we do not describe the basic and self-explanatory 

functionalities of the software that were necessary to create the project (for 

instance adding new objects to a layout, or setting behaviors). We also touched 

briefly on the optimization topic of software development by showing the 

participants the debugger and creating the 2nd event block seen in Figure 2 to 

avoid fish object instances that left the visible game area filling up memory. 

4 Summary 

In this section we highlight the results of our research in a summarized form. 

Based on the data we received from the questionnaires relating to the participants’ 

prior knowledge and experience regarding text-based or visual programming 

languages, only four undergraduate students had no programming knowledge 

before the workshop. The participants who learned text-based programming 

languages divide equally between procedural (N = 26) and object-oriented 

(N = 26) languages. While the undergraduate students had more experience with 

procedural languages, the in-service teachers of informatics tend to work with 

object-oriented programming practices (whether for educational or personal 



G. Csapó Placing Event-Action-based Visual Programming in the Process of Computer Science Education 

 – 50 – 

purposes was not specified in the inquiry). There was no difference between the 

proportion of the two types of programming languages in the high-school 

students’ and in the pre-service teachers’ groups. It is worth mentioning that 

several participants (N = 11) listed web, data-management and special-case 

programming languages beside the aforementioned two categories. 

Regarding prior knowledge in visual programming, a considerable number 

(N = 19) of participants had no experience of this type of programming. Amongst 

those students and teachers who had used some form of visual programming 

beforehand, the Scratch [26] EPL was the most widespread (N = 16), and 8 other 

environments with high differentiation were listed. Interestingly, only 1 

participant mentioned LabView [75], the well-known environment in tertiary 

education. As regards software development experience, 10 participants stated that 

they did not have any background in the area, while 28 claimed that they 

developed software on their own. Note that the questionnaire did not specify the 

scope of these applications. It is also important to point out that the participants 

responded to the majority of the questions with multiple answers and therefore 

some of the summarized results are above 100%. For instance, the summarized 

number of participants who had experience in procedural and object-oriented 

programming would indicate that there were 52 total responders. Furthermore, a 

varying number of uncategorizable answers were found for each question which 

were disregarded in the summarized results described above. 

The group interviews were focused on the Construct 2 environment and its 

workflow. After the questionnaires, we interviewed the participants and recorded 

their answers. We also kept in mind to encourage all members of the groups to 

speak up and gave everyone the opportunity to express their opinion and feedback. 

To the question considering the overall experience of the environment, almost all 

of the groups responded positively, with some exceptions in the undergraduate 

students’ group. These students found the progression slow in the development 

process, which can be explained by the time needed to understand the basic 

principles of the software. 

As regards using the environment easily, and how difficult it is to learn the basics, 

the high-school students found the initial learning process troublesome, while the 

undergraduates stated that it was exceptionally easy to get into, and they made the 

comparison that Construct 2 feels like a toy. The pre-service teachers found the 

software easy to use, and in their opinion it would be much less complicated to 

start learning programming with this approach. However, they also pointed out 

that they would have liked to see the whole source code of the project as multiple 

event sheets on one page. The in-service teachers also learned the basics without 

complication, but highlighted that to complete the basic operations routine, this 

environment requires more practice and time than we had during the workshop. 

Responding to the question about the difficulty level of coding the algorithms with 

event-action based visual programming, both the high-school and undergraduate 



Acta Polytechnica Hungarica Vol. 16, No. 2, 2019 

 – 51 – 

students answered that it was straightforward. The environment seemed a well-

structured system and the participants claimed that programming in text-based 

languages is more complicated. The pre-service teachers of informatics provided 

more details, by stating that this form of programming should be used before any 

other programming methods and with this environment the coding part of the 

learning process can be hidden to help students understand the background 

processes of their projects. They also added that unlike text-based languages, 

Construct 2 provides spectacular feedback for the students. The in-service teachers 

saw this environment as an intermediate step in teaching the topic, because 

mastering the environment may be difficult for young learners and can be limited 

for students on more advanced programming levels. However, they saw it as a 

compelling option for project work that lasts over several weeks. 

To the questions about whether this environment could be integrated into 

computer science education and whether students would be learning or teaching 

programming with its help, the high-school students’, the pre-service and in-

service teachers’ groups responded positively. The pre-service teachers also stated 

that they would rather learn and teach programming using this method than text-

based languages and that the knowledge gained from this visual programming 

approach can be utilized in different areas of computer science education. In 

contrast, the undergraduate students only saw the environment as a starting point 

to avoid creating negative experiences in beginner programmers. They would be 

ready to learn with Construct 2, but only if there were a different environment 

later on. 

Based on our observations and experiences with the groups during the workshops, 

we found that the participants handled the environment with ease, and only a few 

technical questions emerged at the time of the development of the project. While 

following the presentation and guidance of the lecturer, the participants enjoyed 

working with Construct 2 and easily understood its workflow. Therefore, 

suggestions and new ideas emerged about further expanding the project or trying 

out new functionalities. 

Conclusions 

In this paper we presented the Construct 2 event-action-based visual programming 

environment and the workshops we held to introduce it to four groups involved in 

computer science education. The data we gathered from the questionnaires, group 

interviews and from our observations indicate that this form of visual 

programming has the potential to be integrated into the field of computer science 

education. Based on the information we received, we see high-school computer 

science classes and introductory programming courses in tertiary education as 

ideal affiliations. We view our results as a starting point for the next steps required 

to achieve this aim. Further work includes developing the methodology for 

teaching the programming topic with this environment in alignment with the 

requirements present in the Hungarian curriculum [8]. Because only two students 



G. Csapó Placing Event-Action-based Visual Programming in the Process of Computer Science Education 

 – 52 – 

enrolled for our high-school workshop, we want to expand our data on how 

students at this level of education view and react to this environment. Therefore, 

testing our future methodology and this form of visual programming in classes is 

an important task. We also plan to conduct measurements on the effectiveness of 

this approach with control groups to obtain detailed results on its potential in 

comparison with the abilities of currently applied EPLs to develop computational 

thinking and algorithmic skills. 

References 

[1] J. M. Wing: Computational thinking, Communications of the ACM, 2006, 

49(3), pp. 33-35 

[2] D. Kahneman: “Thinking, Fast and Slow” Farrar, Straus and Giroux, New 

York, 2011 

[3] P. Baranyi and A. Gilanyi: Mathability: emulating and enhancing human 

mathematical capabilities, 4
th

 IEEE International Conference on Cognitive 

Infocommunications, 2013, pp. 555-558 

[4] P. Biró and M. Csernoch: The mathability of computer problem solving 

approaches, 6
th

 IEEE International Conference on Cognitive 

Infocommunications, 2015, pp. 111-114, 

DOI=http://doi.org/10.1109/CogInfoCom.2015.7390574 

[5] M. Csernoch, P. Biró, J. Máth and K. Abari: Testing Algorithmic Skills in 

Traditional and Non-Traditional Programming Environments, Informatics 

in Education, 2015, 14(2), pp. 175-197, 

DOI=http://doi.org/10.15388/infedu.2015.11 

[6] E. Soloway: Should we teach students to program?, Communications of the 

ACM, 1993, 36(10), pp. 21–24, 

DOI=http://doi.org/10.1145/163430.164061 

[7] M. Ben-Ari: Non-myths about programming, Communications of the 

ACM, 2011, 54(7), pp. 35, DOI=http://doi.org/10.1145/1965724.1965738 

[8] “Central curriculum framework for year 9-12 students”, In Hungarian 

“Kerettanterv a gimnáziumok 9-12. évfolyama számára” Oktatáskutató és 

Fejlesztő Intézet. [Online] Available: 

http://kerettanterv.ofi.hu/03_melleklet_9-12/index_4_gimn.html. 

[Accessed: 09-Nov-2016] 

[9] M. Csernoch: “Programming with Spreadsheet Functions: Sprego”, In 

Hungarian: “Programozás táblázatkezelő függvényekkel – Sprego”, 

Műszaki Könyvkiadó, Budapest, 2014 

[10] P. Biró and M. Csernoch: Unplugged tools for building algorithms with 

Sprego, END2017, International Conference on Education and New 

Development, Lisbon, Portugal, 2017, in press 

http://doi.org/10.1109/CogInfoCom.2015.7390574
http://doi.org/10.15388/infedu.2015.11
http://doi.org/10.1145/163430.164061
http://doi.org/10.1145/1965724.1965738
http://kerettanterv.ofi.hu/03_melleklet_9-12/index_4_gimn.html


Acta Polytechnica Hungarica Vol. 16, No. 2, 2019 

 – 53 – 

[11] P. Biró and M. Csernoch: Semi-unplugged tools for building algorithms 

with Sprego, International Conference on New Horizons in Education, 

Berlin, 2017 

[12] G. Csapó and K. Sebestyén: Educational software for the Sprego method, 

International Conference on New Horizons in Education, Berlin, 2017 

[13] M. Csernoch: Teaching word processing – the theory behind, Teaching 

Mathematics and Computer Science, 2009 (1), pp. 119-137 

[14] M. Csernoch and P. Biró: Error Recognition Model: End-user Text 

Management, World Conference on Computers in Education (WCCE), 

Dublin, 2017 

[15] M. Csernoch and E. Dani: Data-structure validator: an application of the 

HY-DE model, 8
th

 CogInfoCom, Debrecen, 2017, pp. 197-202, ISBN: 978-

1-5386-1264-4, IEEE 

[16] M. Csernoch, P. Biró, K. Abari and J. Máth: Programming oriented 

spreadsheet functions, In Hungarian: Programozásorientált táblázatkezelői 

függvények, XIV. ONK: Oktatás és nevelés – gyakorlat és tudomány, 

Debrecen, 2014, pp. 463, ISBN:978-963-473-742-1 

[17] R. Panko: The Cognitive Science of Spreadsheet Errors: Why Thinking is 

Bad, Proceedings of the 46
th

 Hawaii International Conference on System 

Sciences, Maui, 2013 

[18] “Create Games with Construct 2” Scirra. [Online] Available: 

https://www.scirra.com [Accessed: 21-Sep-2017] 

[19] “Make Your Own Games - Construct.net” Scirra. [Online] Available: 

https://www.construct.net [Accessed: 21-Sep-2017] 

[20] “Make 2D Games with GameMaker | YoYo Games” YoYo Games. 

[Online] Available: https://www.yoyogames.com [Accessed: 23-Sep-2017] 

[21] “GDevelop - Create games without programming - Open source HTML5 

and native game creator” F. Rival [Online] Available: 

http://compilgames.net. [Accessed: 22-Sep-2017] 

[22] “Clickteam - Clickteam Fusion 2.5” Clickteam. [Online] Available: 

http://www.clickteam.com/clickteam-fusion-2-5 [Accessed: 28-Sep-2017] 

[23] “Kodu | Home” Microsoft Research. [Online] Available: 

https://www.kodugamelab.com [Accessed: 04-Oct-2017] 

[24] “Home - LEGO.com” Lego. [Online] Available: https://www.lego.com/en-

gb/mindstorms?ignorereferer=true [Accessed: 03-Oct-2017] 

[25] “Stencyl: Make iPhone, iPad, Android & Flash Games without code” 

Stencyl. [Online] Available: http://www.stencyl.com [Accessed: 10-Oct-

2017] 

https://www.scirra.com/
https://www.construct.net/
https://www.yoyogames.com/
http://compilgames.net/
http://www.clickteam.com/clickteam-fusion-2-5
https://www.kodugamelab.com/
https://www.lego.com/en-gb/mindstorms?ignorereferer=true
https://www.lego.com/en-gb/mindstorms?ignorereferer=true
http://www.stencyl.com/


G. Csapó Placing Event-Action-based Visual Programming in the Process of Computer Science Education 

 – 54 – 

[26] “Scratch - Imagine, Program, Share” Lifelong Kindergarten Group. 

[Online] Available: https://scratch.mit.edu [Accessed: 12-Aug-2017] 

[27] “Alice - Tell Stories. Build Games. Learn to Program.” Carnegie Mellon 

University. [Online] Available: https://www.alice.org [Accessed: 08-Oct-

2017] 

[28] “Game Engine Technology by Unreal” Epic Games. [Online] Available: 

https://www.unrealengine.com/en-US/what-is-unreal-engine-4 [Accessed: 

10-Oct-2017] 

[29] “Godot Engine - Free and open source 2D and 3D game engine” J. 

Linietsky and A. Manzur. [Online] Available: https://godotengine.org 

[Accessed: 10-Oct-2017] 

[30] S. Fincher, S. Cooper, M. Kölling and J. Maloney: Comparing alice, 

greenfoot & scratch, Proceedings of the 41
st
 ACM technical symposium on 

Computer science education, 2010, pp. 192-193, ACM 

[31] E. R. Sykes: Determining the effectiveness of the 3D Alice programming 

environment at the computer science I level, Journal of Educational 

Computing Research, 2007, 36(2) pp. 223-244 

[32] F. Klassner and S. D. Anderson: Lego MindStorms: Not just for K-12 

anymore, IEEE Robotics & Automation Magazine, 2003, 10(2) pp. 12-18 

[33] D. C. Cliburn: Experiences with the LEGO Mindstorms throughout the 

undergraduate computer science curriculum, 36
th

 Annual Frontiers in 

Education Conference, 2006, pp. 1-6, IEEE 

[34] M. Resnick, J. Maloney, A. Monroy-Hernández, N. Rusk, E. Eastmond, K. 

Brennan, A. Millner, E. Rosenbaum, J. Silver, B. Silverman and Y. Kafai: 

Scratch: programming for all, Communications of the ACM, 2009, 52(11) 

pp. 60-67 

[35] “Theme Park God on Scratch” Borrego6165. [Online] Available: 

https://scratch.mit.edu/projects/93279933 [Accessed: 04-Nov-2017] 

[36] F. Kalelioglu and Y. Gülbahar: The effects of teaching programming via 

Scratch on problem solving skills: a discussion from learners' perspective, 

Informatics in Education, 2014, 13(1) p. 33 

[37] O. Meerbaum-Salant, M. Armoni and M. Ben-Ari: Habits of programming 

in scratch, Proceedings of the 16
th

 annual joint conference on Innovation 

and technology in computer science education, 2011, pp. 168-172, ACM 

[38] D. Franklin, C. Hill, H. A. Dwyer, A. K. Hansen, A. Iveland and D. B. 

Harlow: Initialization in scratch: Seeking knowledge transfer, Proceedings 

of the 47
th

 ACM Technical Symposium on Computing Science Education, 

2016, pp. 217-222, ACM 

https://scratch.mit.edu/
https://www.alice.org/
https://www.unrealengine.com/en-US/what-is-unreal-engine-4
https://godotengine.org/
https://scratch.mit.edu/projects/93279933


Acta Polytechnica Hungarica Vol. 16, No. 2, 2019 

 – 55 – 

[39] A. Fowler, T. Fristce and M. MacLauren: Kodu Game Lab: a programming 

environment, The Computer Games Journal, 2012, 1(1) pp. 17-28 

[40] K. T. Stolee and T. Fristoe: Expressing computer science concepts through 

Kodu game lab, Proceedings of the 42
nd

 ACM technical symposium on 

Computer science education, 2011, pp. 99-104, ACM 

[41] P. Gadanecz: The nature of positive emotions via online language learning, 

9
th

 IEEE International Conference on Cognitive Infocommunications, 2018, 

pp. 197-203, ISBN 978-1-5386-7094-1 

[42] A. I. Wang and B. Wu: Use of game development in computer science and 

software engineering education, Computer Games and Software 

Engineering, K. M. L. Cooper and W. Scacchi (Eds.), Chapman and 

Hall/CRC, 2015, pp. 31-58 

[43] S. Sheth, J. Bell and G. Kaiser: A Gameful Approach to Teaching Software 

Design and Software Testing, Computer Games and Software Engineering, 

K. M. L. Cooper and W. Scacchi (Eds.), Chapman and Hall/CRC, 2015, pp. 

98-119 

[44] T. Xie, N. Tillmann, J. de Halleux and J. Bishop: Educational Software 

Engineering, Computer Games and Software Engineering, K. M. L. Cooper 

and W. Scacchi (Eds.), Chapman and Hall/CRC, 2015, pp. 113-132 

[45] D. Sik and J. Horvath Cz.: Open micro-Content Development with Web 2.0 

and Smartphone Environment, 9
th

 IEEE International Conference on 

Cognitive Infocommunications, 2018, pp. 29-31, ISBN 978-1-5386-7094-1 

[46] K. M. L. Cooper and S. Longstreet: Model-Driven Engineering of Serious 

Educational Games, Computer Games and Software Engineering, K. M. L. 

Cooper and W. Scacchi (Eds.), Chapman and Hall/CRC, 2015, pp. 59-89 

[47] E. Hayes: Game content creation and it proficiency: An exploratory study, 

Computers & Education, 2008, 51(1), pp. 97-108 

[48] L. H. Wong and C. K. Looi: Vocabulary learning by mobile-assisted 

authentic content creation and social meaning-making: two case studies, 

Journal of Computer Assisted Learning, 2010, 26(5), pp. 421-433 

[49] E. Gogh and A. Kovari: Metacognition and Lifelong Learning, 9
th

 IEEE 

International Conference on Cognitive Infocommunications, 2018, pp. 271-

275, ISBN 978-1-5386-7094-1 

[50] K. Nagy, B. Szenkovits, Gy. Molnár, J. Horváth-Czinger and Z. Szűts: 

Gamification and microcontent orientated methodological solutions based 

on bring-your-own device logic in higher education, 9
th

 IEEE International 

Conference on Cognitive Infocommunications, 2018, pp. 385-388, ISBN 

978-1-5386-7094-1 

[51] “Imagine is here!” In Hungarian: “Itt az Imagine!” Sulinet. [Online] 

Available: http://logo.sulinet.hu [Accessed: 07-Nov-2017] 

http://logo.sulinet.hu/


G. Csapó Placing Event-Action-based Visual Programming in the Process of Computer Science Education 

 – 56 – 

[52] “Official Construct 2 Manual - Construct 2 Manual” Scirra. [Online] 

Available: https://www.scirra.com/manual/1/construct-2 [Accessed: 01-

Dec-2017] 

[53] “Top game making tutorials - Scirra.com” Scirra. [Online] Available: 

https://www.scirra.com/tutorials/top [Accessed: 01-Dec-2017] 

[54] “ScirraVideos - YouTube” ScirraVideos. [Online] Available: 

https://www.youtube.com/user/ScirraVideos [Accessed: 27-Nov-2017] 

[55] “Construct 2 - From Beginner to Advanced - Ultimate Course! | Udemy” J. 

Alexander. [Online] Available: https://www.udemy.com/construct-2-from-

beginner-to-advanced-build-10-games [Accessed: 27-Nov-2017] 

[56] “Index page - Scirra Forums” Scirra. [Online] Available: 

https://www.scirra.com/forum/ [Accessed: 03-Dec-2017] 

[57] “Construct 2 Javascript SDK documentation - Construct 2 Manual” Scirra. 

[Online] Available: https://www.scirra.com/manual/15/sdk [Accessed: 30-

Nov-2017] 

[58] “Best Addicting Games - Addicting Games” Scirra. [Online] Available: 

https://www.scirra.com/arcade/top-addicting-games [Accessed: 28-Nov-

2017] 

[59] P. Baranyi and A. Csapo: Definition and Synergies of Cognitive 

Infocommunications, Acta Polytechnica Hungarica, 2012, 9, pp. 67-83 

[60] P. Baranyi, A. Csapo and Gy. Sallai: "Cognitive Infocommunications 

(CogInfoCom)" Springer, 2015 

[61] P. Baranyi and A. B. Csapo: Revisiting the concept of generation CE-

Generation of Cognitive Entities, 6
th

 IEEE International Conference on 

Cognitive Infocommunications, 2015 

[62] A. Kovari: CogInfoCom Supported Education, 9
th

 IEEE International 

Conference on Cognitive Infocommunications, 2018, pp. 233-236, ISBN 

978-1-5386-7094-1 

[63] K. Chmielewska, A. Gilányi and A. Łukasiewicz: Mathability and 

Mathematical Cognition, 7
th

 IEEE International Conference on Cognitive 

Infocommunications, 2016, 

DOI=http://doi.org/10.1109/CogInfoCom.2016.7804556 

[64] J. Hromkovič: "Algorithmic Adventures", Springer, Berlin Heidelberg, 

2009 

[65] S. E. Kruck, J. J. Maher and R. Barkhi: Framework for Cognitive Skill 

Acquisition and Spreadsheet Training, Journal of End User Computing, 

2003, 15(1), pp. 20-37 

[66] K. M. L. Cooper and W. Scacchi: "Computer Games and Software 

Engineering", Chapman and Hall/CRC, 2015 

https://www.scirra.com/manual/1/construct-2
https://www.scirra.com/tutorials/top
https://www.youtube.com/user/ScirraVideos
https://www.udemy.com/construct-2-from-beginner-to-advanced-build-10-games
https://www.udemy.com/construct-2-from-beginner-to-advanced-build-10-games
https://www.scirra.com/forum/
https://www.scirra.com/manual/15/sdk
https://www.scirra.com/arcade/top-addicting-games
http://doi.org/10.1109/CogInfoCom.2016.7804556


Acta Polytechnica Hungarica Vol. 16, No. 2, 2019 

 – 57 – 

[67] G. Csapó: Sprego virtual collaboration space, 8
th

 IEEE International 

Conference on Cognitive Infocommunications, 2017 

[68] “MaxWhere Store - VR workspaces” MISTEMS Ltd. [Online] Available: 

http://www.maxwhere.com/ [Accessed: 24-Sept-2018] 

[69] B. Lampert, A. Pongracz, J. Sipos, A. Vehrer and I. Horvath: MaxWhere 

VR-Learning Improves Effectiveness over Clasiccal Tools of e-learning, 

Acta Polytechnica Hungarica, 2018, 15(3), pp. 125-147, Available: 

http://www.uni-

obuda.hu/journal/Lampert_Pongracz_Sipos_Vehrer_Horvath_82.pdf 

[Accessed: 12-Sept-2018] 

[70] I. Horváth: Evolution of teaching roles and tasks in VR / AR-based 

education, 9
th

 IEEE International Conference on Cognitive 

Infocommunications, 2018, pp. 355-360, ISBN 978-1-5386-7094-1 

[71] B. Berki: Desktop VR and the Use of Supplementary Visual Information, 

9
th

 IEEE International Conference on Cognitive Infocommunications, 2018, 

pp. 333-336, ISBN 978-1-5386-7094-1 

[72] Zs. T. Horváth: Another e-learning method in upper primary school: 3D 

spaces, 9
th

 IEEE International Conference on Cognitive 

Infocommunications, 2018, pp. 405-408, ISBN 978-1-5386-7094-1 

[73] B. Berki: 2D Advertising in 3D Virtual Spaces, Acta Polytechnica 

Hungarica, 2018, 15(3), pp. 175-190, Available: http://www.uni-

obuda.hu/journal/Berki_82.pdf [Accessed: 24-Sept-2018] 

[74] “Kenney • Assets” Kenney. [Online] Available: https://kenney.nl/assets 

[Accessed: 10-Sep-2017] 

[75] “LabVIEW - National Instruments” National Instruments. [Online] 

Available: http://www.ni.com/en-us/shop/labview.html [Accessed: 02-Dec-

2017] 

http://www.maxwhere.com/
http://www.uni-obuda.hu/journal/Lampert_Pongracz_Sipos_Vehrer_Horvath_82.pdf
http://www.uni-obuda.hu/journal/Lampert_Pongracz_Sipos_Vehrer_Horvath_82.pdf
http://www.uni-obuda.hu/journal/Berki_82.pdf
http://www.uni-obuda.hu/journal/Berki_82.pdf
https://kenney.nl/assets
http://www.ni.com/en-us/shop/labview.html

