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Abstract: The paper presents the results of implementation of differential evolution 

algorithm on FPGA using floating point representation with double precision useful in real 

numeric problems. Verilog Hardware Description Language (HDL) was used for Altera 

hardware design. Schematics of the modules of differential evolution algorithm are 

presented. The performance of the design is evaluated through six different functions 

problems implemented in hardware. 
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1 Introduction 

Metaheuristic optimization algorithms such as Genetic Algorithms, Estimation of 

Distribution Algorithms, Differential Evolution Algorithms, Particle Swarm 

Optimization, Ant Colony Optimization etc. have been widely accepted in 

engineering, economics and biotechnology optimization problems because they 

are derivative free optimization methods that can be used for optimization of 

complex functions [1, 2]. 

Implementation of the Differential Evolution Algorithm (DEA) on software has 

been used in applications such as [3-10], where an optimization of parametric 

model is carried out in conventional computer equipment. However the 

applications where optimization is necessary in runtime, for example in online 

learning [11-13] and remote access [14, 15], require that DEA to be implemented 
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in embedded systems such as FPGA device using evolvable hardware approach 

[16-18]. 

Several proposals for hardware implementation of evolutionary algorithms have 

been realized, such as Micro Algorithm [19-23] and Compact Genetic Algorithm 

(cGA) [24-28] with the aim of low resource consumption and minimal response 

time implementation. These algorithms lose the generality of solving problems of 

any kind, however such deployments have had success in combinatorial problems. 

However as it is shown in [29], cGA not always show good performance in 

solving nonlinear problems, and also complex linear problems. Furthermore if one 

considers the implementation of cGA presented in [30], where the probability 

vector is implemented using 8-bit integers, it is also clear that this implementation 

is limited by solution of only trivial problems. 

It was shown in the seminal paper on Differential Evolution Algorithm [31] that 

this algorithm is very simple using only three evolutionary parameters and basic 

operations such as addition, subtraction, comparison, and its performance is 

comparable or even surpasses other evolutionary or heuristic algorithms. 

However, due to DEA used real value representation of variables and its 

operations are performed in floating point its hardware (FPGA) implementation in 

the time when this algorithm was published was not possible because FPGA in 

that time did not have the necessary resources for such implementations. 

Nowadays FPGA families have amazing abilities that make the implementation of 

such algorithms not only feasible, but also an excellent choice for designing 

evolutionary algorithms. 

There are several design proposals for implementing evolutionary algorithms 

ranging from a dedicated system on only one chip until a cluster of FPGAs [32, 

33] to perform concurrent computation, that can be useful for different 

applications. 

The paper presents the design on EP4CE115F29C7 Altera FPGA device [34] for a 

Differential Evolution Algorithm with a number of function variables from 4 until 

32 and population size from 16 to 128 using double-precision floating point 

representation. This work is divided into six sections. The next section gives 

theoretical bases of Differential Evolution Algorithms. A brief introduction to the 

Altera FPGA logic design is presented in Section 3. Section 4 presents the 

proposed design of the DEA showing schematics of each block that makes up the 

system. The results of resource consumption and latency time of the 

implementation are given in Section 5. Section 6 presents the conclusions and 

directions of future work. 
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2 Differential Evolution Algorithm 

Differential Evolution Algorithm (DEA) belongs to the family of evolutionary 

algorithms, which has as aim to find the global optimum of a function over 

continuous space. In particular, and without loss of generality, this problem can be 

reduced to finding the minimum of a function: 

 

                            (1) 

Where x is a n-dimensional vector and f is a real function of real valued 

arguments. DEA, proposed in [31], is an evolutionary algorithm that requires only 

three parameters CR (defining crossover and mutation operations that are 

mutually exclusive), F (scaling factor of the difference of two individuals) and NP 

(population size) to generate the evolutionary process for n-dimensional problem. 

Differential Evolution Algorithm can be represented by a four-step process as 

shown in Fig. 1. Only the first step is performed once, the other steps are 

performed while an iterative process does not terminated by stop criteria. 

 

 

Figure 1 

Bock diagram of Differential Evolution Algorithm 

Complete pseudo-code is presented in Fig. 2, where the first 12 lines perform the 

block of generation and fitness evaluation of the initial population shown in Fig. 1, 

for dimensionality D and population size NP.  

The algorithm contains three nested loops, where the outer loop is used to specify 

the stop condition, in this particular case it is determined by the parameter 

Gmax(number of generations) but one can set other stop conditions such as 

minimum error or difference between sequential errors, etc. 

Generation and fitness evaluation 
of the initial population 

 

Test Vector Generation 

 

Crossover/Mutation Operator 

 

Selection Operator 
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The inner cycle indicates that for each individual in a generation with the 

probability defined by the parameter CR it is generated a new individual from 

three individuals chosen randomly, with indexes r1, r2 and r3, using scale factor F, 

as described in line 21 of the algorithm. This cycle can be considered as a 

combination of crossover and mutation operations [31]. 
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Figure 2 

Pseudocode of Differential Evolution Algorithm 
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3 FPGA Device 

The FPGA (Field-Programable Gate Array) is a device that is used to design a 

dedicated digital system or embedded platforms that perform specific tasks in a 

system. Its main characteristic is that it can be programmed several times, even 

after the system has been installed or finished to update its functionality. For this 

reason this device is very useful in evolved applications with dynamic 

environments. 

Currently, FPGA has been used widely in several real applications of evolvable 

hardware, an emerging research area where intelligent computation techniques are 

implemented in digital system design that can be adaptive to environment 

changes, manage big data and process the information using intelligent 

techniques. 

Altera FPGA [35] is a device consisted of programmable logic blocks (Logic 

Elements), and memory elements (Dedicated Logic Registers), which are 

interconnected to perform complex combinational and sequential functions. In 

addition it can contain specific resources such as embedded multipliers, SRAM, 

transceiver, or even hard intellectual propriety (IP) block and embedded 

processors for implementing SoC design. FPGA based system is implemented 

through modules describing basic digital logic circuits such as multiplexers, 

comparators, adders, registers, memory, and finite state machines use hardware 

description languages to perform specific and complex system tasks. 

Altera provides a free library of parameterized intellectual property (IP) blocks 

called Megafunctions [36, 37]. The floating point Megafuctions implement 

hardware modules for performing customized floating point operations. Table 1 

shows the resources used to perform the floating point arithmetic operations in 

Differential Evolution Algorithm implementation on EP4CE115F29C7 device for 

double precision floating point representation. 

Table 1 

Characteristics of tree floating point Altera Megafunction 

MegafunctionN

ame 

Output  

Latency 

Logic 

Elements 

Logic  

Registers 

Embedded 

multiplier 
FMAX 

(MHz) 

      FPMULT 5 552 530 18 102 

FPCOMP 1 176 2 - - 

FPAddSub 7 1534 584 - 105 

Differential evolution algorithm performs floating point operations only for 

generating the offspring individuals in mutation and crossover process; hence it 

needs only one module for floating point. Moreover, it is important to see that 

FPCOMP is a combinatorial module; because of the floating point comparator is 

the same that integer comparator. The complete hardware implementation of DEA 

is described in the next section. 
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4 Hardware Implementation of Differential 

Evolution Algorithm 

The schematic hardware implementation of DEA consists of the following 

modules: i) PMem module to store individuals, ii) FXMem to store fitness 

function values, iii) fitness function module, iv) CrossOvermodule, v) four 

Random Number Generators and vi) Finite State Machine module to control the 

execution sequence of DEA. Fig. 3 presents all modules except of Finite State 

Machine module that controls all modules of the system. Fig. 3 depicts also the 

following registers: i,j,for addressing PMem and FXMem, three registers for 

storing indexes, three 64-bits registers for storing the values of Xr1, Xr2 and 

Xr3attributes and a file register with D64-bits register for storing each attribute of 

offspring individual. Also some multiplexors and comparators are used that are 

not presented due to simplicity of the scheme. In the following the more detailed 

description of the modules will be given. 

 

Figure 3 

Complete hardware implementation of Differential Evolution Algorithm 

4.1 Memories Modules 

4.1.1 PMem Module 

This module is implemented by using a RAM circuit for storing the population of 

current generation. Memory size is determined by population size parameter NP, 

and dimensionality D, the RAM size can be expressed as follows: 

    [   ]              (2) 

If each word is specified by 8 bytes (64 bits), then the PMem size expressed in 

bytes is specified as follows: 

    [   ]                  (3) 
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4.1.2 FXMem Module 

This module is implemented similarly to PMem with the difference that FXMem 

size is determined only by NP parameter, due to only one value is stored by 

individual. The expressions for FXMem[TAM] are: 

     [   ]            (4) 

     [   ]                (5) 

Fig. 4a shows the block diagram of RAM specifying all control pin. 

 

 
a)  Memory b) Random Number generator 

Figure 4 

Schemes of general memory modules and Random Number Generator of 4 cells 

4.2 Random Number Generator (RNG) 

Cellular Automata(CA) circuits have been used to create random numbers. The 

corresponding module works with two rules[38] where the first one is defined 

by:                         and the second one is defined by:         
                     , where        represents the next state of the i-cell, 

        represents the current state of the (i-1)-cell (left neighbor),       
represents the current state of the i-cell, and         is the current state of the 

(i+1)-cell (right neighbor). An n-CA can generate 2
m
-1 different pseudo random 

numbers where m is a number of the cells. The scheme for m = 4 is presented in 

Fig. 4b. 

Implementation of DEA contains 3 different modules for generating integer values 

in intervals [0-NP], [0-D], [0-127] and one module for generating floating point 

values. 

For design of a comparator with parameter CR taking values in interval [0,1] 

instead of floating point representation of parameter values it is used a digital 

representation in interval [0-127] by means of 7 cells of CA. 

For floating point number generator used for generation of values of individuals. 
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4.3 Crossover Module 

To implement the pseudo code shown in Fig. 2, line 21: 
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where      
   

        
   

         
   

      are floating point values,the following three binary 

floating point operations have been used: 
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This sequence of operations is implemented using FPMult and FPAddSub 

Megafuntions shown in Table 1. Therefore for a complete crossover operation be 

performed, it should run 22 clock cycles. Fig. 5 shows scheme of Crossover 

module. 

 

 

 

 

 

 

 

 

 

a) Crossover module. Stage 1 b) Crossover module. Stage 2 

Figure 5 

CrossOver module implementations 

4.4 Fitness Module 

Fitness evaluation modules are dependent from specific applications therefore this 

modules are the only components that change from one application to another. In 

this paper we implement a set of six different benchmark mathematical functions 

traditionally used for evaluation of performance of metaheuristic algorithms 

(Table 2). The block diagram implementations of these functions are shown in 

Fig. 6. 
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Table 2 

Benchmark mathematical functions 

 Function Ecuation 

1
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Figure 6.1 

Fitness Functions Implementations 
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e) 

 

f) 

Figure 6.2 

Fitness Functions Implementations 

4.5 Control Module 

Each one of the considered modules contains a control inputs for deciding when to 

write or to read values on the register and which elements should be selected for a 

specific input. Control signals are managed by a control unit that performs the 

correct functionality of algorithm. 

5 Results 

Results presented in Table 3 show the resources consumed in the implementation 

of DEA with spherical objective function (f1) with NP=128 and W= 32 parameter 

values on EP4CE115F29C7 device of Cyclone IV E Altera Family. The Results 

column presents both the resources used in the implementation vs. the total 

available resources used by the device for different categories of resources. The 

column f1 of Table 4 shows what part of resources of Table 3 consumed by 

function f1. Total resources consumed in implementation of other benchmark 

functions used for evaluation of DEA performance also can be found in Table 4. 
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For evaluating the time performance of DEA implementation two tests over 

benchmark mathematical functions f1-f6 have been applied for two different NP 

and W parameter values. Table 5a shows results for parameter values NP= 128 

and W= 32; Table 5b shows the results for NP= 16 and W= 4. The parameter 

values for CR and F used in simulations are taken from analysis presented in [39] 

where it was argued that these values are the best values for obtaining optimum 

with small number of generations. The parameter values presented for average 

number of generations (AveGen), average time (AveTime) and Error were 

obtained after the 20 running of the algorithm using an error 1e
-12 

or 20,000 

generations as stop conditions. 

Table 3 

Resources consumed in DEA implementation 

Category Results 

Total Combinational Functions (TCF) 10,330/114,480 (9%) 

Dedicated Logic Registers (DLR) 5,366 /114,480 (5%) 

Total Memory bits (TMb) 8480/3,981,312 (<1%) 

Embedded Multiplier 9-bit elements (EM9) 72/512 (14%) 

Fmax (MHz) 95 MHz 

Table 4 

Resources usedin implementation of objective functions 

Category f1 f2 f3 f4 f5 f6 

TCF 2405 2915 4397 213 8501 4281 

DLR 1182 1494 1929 74 4551 1880 

TMb 71 54 140 0 293 113 

EM9 18 18 18 0 72 18 

Fmax(MHz) 95 95 70 122 71 80 

Latency 8clk*W 11clk* 

W+10clk 

12clk*

W 

3clk*

W 

17clk*

W 

12clk*

W 

Table 5 

Consuming time for different objective functions 

a) NP=128,W=32 

f(x) CR F AveGen AveTime(s) Error 

f1(x) 0.9 0.7 11571 26.67 1.00E-12 

f2(x) 0.2 0.7 2802 7.7484 1.00E-12 

f3(x) 0.9 0.7 20000 442.0546 0.0911 

f4(x) 0.8 0.7 20000 91.8609 0.089 

f5(x) 0.9 0.7 20000 119.9898 1.45E-06 

f6(x) 0 0.7 1521 7.4476 2.57E-13 
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b) NP=16, W=4 

f(x) CR F AveGen AveTime Error 

f1(x) 0.9 0.7 121 6 ms 1.00E-12 

f2(x) 0.2 0.7 250 16 ms 1.00E-12 

f3(x) 0.9 0.7 144 75 ms 1.00E-12 

f4(x) 0.8 0.7 501 53 ms 1.00E-12 

f5(x) 0.9 0.7 1683 .24 s 1.00E-12 

f6(x) 0 0.7 101 12 ms 1.00E-12 

Conclusions 

The paper presented the design of Differential Evolution Algorithm on Altera 

FPGA following a sequential flow and using three parameter values defining 

crossover and mutation operations, scaling factor and population size. 

The design does not exploit parallelism approach because we think that this 

technique depends of specific application. However we can mention that 

parallelism is more adequate in fitness functions module because it is a temporal 

bottleneck of many applications and its implementation is straightforward. 

The paper describes an implementation of the basic version of EDA considered in 

[31].There exist several modifications of Differential Evolution Algorithm, with 

the following principal variations: a) the change of the number of individuals that 

participate in the crossover process, which are incrementing in even numbers for 

better exploring of the space; b) the use of the best individual of the population as 

a principal ancestor for better exploiting his local neighborhood into search space; 

c) the way in which the crossover-mutation operator is implemented. For more 

details about modified DEA see [39, 40]. The FPGA implementation of these 

variations of DEA are straightforward. 

The paper contains the original results of research that were not submitted to other 

journals or conferences. 

References 

[1] H. Nejat Pishkenari, S. H. Mahboobib, A. Alasty, "Optimum Synthesis of 

Fuzzy Logic Controller for Trajectory Tracking by Differential Evolution", 

Scientia Iranica, Iran, pp. 261-267, April, 2011 

[2] Shing-Tai Pan, "Evolutionary Computation on Programmable Robust IIR 

Filter Pole-Placement Design", Instrumentation and Measurement, Vol. 60 , 

pp. 1469-1479, April 2011 

[3] A. Chandra, S. Chattopadhyay, "Novel Approach of Designing Multiplier-

less Finite Impulse Response Filter using Differential Evolution 

Algorithm", Intelligent Systems and Applications, Vol. 4, pp. 54-62, June 

2012 



Acta Polytechnica Hungarica Vol. 11, No. 4, 2014 

 – 151 – 

[4] A. Chandra, S. Chattopadhyay, "Role of Mutation Strategies of Differential 

Evolution Algorithm in Designing Hardware Efficient Multiplier-less Low-

pass FIR Filter", Journal of Multimedia, Vol. 7, No. 5, pp. 353-363, 

October 2012 

[5] A. Hiendro, "Multiple Switching Patterns for SHEPWM Inverters Using 

Differential Evolution Algorithms", International Journal of Power 

Electronics and Drive System, Vol. 1, pp. 94-103, December 2011 

[6] C. Cheng-Hung, L. Cheng-Jian, Member, L. Chin-Teng, "Nonlinear System 

Control Using Adaptive Neural Fuzzy Networks Based on a Modified 

Differential Evolution", Systems, Man, and Cybernetics, IEEE, Vol. 39, pp. 

459-473 , July, 2009 

[7] C. J. François, et al, "FPGA Implementation of Genetic Algorithm for UAV 

Real-Time Path Planning", Intelligent and Robotic Systems, Vol.  54, pp. 

495-510, March 2009 

[8] D. Zaharie, D. Petcu, "Parallel Implementation of Multi-Population 

Differential Evolution", Concurrent Information Processing and 

Computing, IOS, Press, pp. 223-232, 2005 

[9] V. Tirronen, et al., "An Enhanced Memetic Differential Evolution in Filter 

Design for Defect Detection in Paper Production", Evolutionary 

Computation, Vol. 16, No. 4, pp. 529-555, 2008 

[10] W. Kwedlo, K. Bandurski, "A Parallel Differential Evolution Algorithm for 

Neural Network Training", Parallel Computing in Electrical Engineering, 

pp. 319-324, Sept. 2006 

[11] H. Shayani, P. J. Bentley, A. M. Tyrrell, "Hardware Implementation of a 

Bio-plausible Neuron Model for Evolution and Growth of Spiking Neural 

Networks on FPGA", Adaptive Hardware and Systems, NASA/ESA, 

pp.  236-243, 2008 

[12] J. M. Sánchez-Pérez, et, "Genetic Algorithms Using Parallelism and 

FPGAs: The TSP as Case Study", Parallel Processing, Portland, Oregon, 

USA, pp. 573-579, June, 2005 

[13] R. Lovassy, L. T. Kóczy, L. G, "Function Approximation Performance of 

Fuzzy Neural Networks", Acta Polytechnica Hungarica, Vol. 7, No. 4, pp. 

25-38, 2010 

[14] E. Magdaleno, M. Rodríguez, F. Pérez, D. Hernández and E. García, "A 

FPGA Embedded Web Server for Remote Monitoring and Control of Smart 

Sensors Networks", sensors, Vol. 14, pp. 416-430, 2014 

[15] R. Patel, A. Rajawat, R. N. Yadav, "Remote Access of Peripherals using 

Web Server on FPGA Platform", International Conference on Recent 

Trends in Information, Telecommunication and Computing, India, pp. 274-

276, 2010 



P. Cortés-Antonio et al. Design and Implementation of Differential Evolution Algorithm on FPGA  
 for Double-Precision Floating-Point Representation 

 – 152 – 

[16] E. Sanchez, M. Tomassini, "Towards Evolvable Hardware", Lecture Notes 

in Computer Science, Springer, Vol. 1062, 1995 

[17] K. Hwang, S. Cho, "Improving Evolvable Hardware by Applying the 

Speciation Technique", Applied Soft Computing, Vol. 9, pp. 254-263, 2009 

[18] Y. Thoma and E. Sanchez, "A Reconfigurable Chip for Evolvable 

Hardware", GECCO, Springer-Verlag Berlin Heidelberg, Vol. 3102, pp. 

816-827, 2004 

[19] K. Krishnakumar, "Micro-Genetic Algorithms for Stationary and non-

Stationary Function Optimization", Intelligent Control and Adaptive 

Systems, Vol. 1196, pp. 289-296, 1989 

[20] F. Viveros-Jiménez, E. Mezura-Montes, A. Gelbukh, "Elitistic Evolution: a 

Novel Micro-Population Approach for global optimization problems", 

Eighth Mexican International Conference on Artificial Intelligence, IEEE, 

México, pp. 15-20, 2009 

[21] C. A. Coello-Coello, G. Tosano-Pulido, "A Miro-Geneti Algorithm for 

Multiobjetive Optimization", Evolutionary Multi-Criterion Optimization, 

Switzerland, pp. 126-140, 2001 

[22] Wu, D., Gan, D. and Jiang, J. N, "An Improved Micro-Particle Swarm 

Optimization Algorithm and Its Application in Transient Stability 

Constrained Optimal Power Flow", International Transactions on Electrical 

Energy Systems, Vol. 24, pp. 395-411, 2012 

[23] Huang T, Mohan AS, "Micro-Particle Swarm Optimizer for Solving High 

Dimensional Optimization Problems", Applied Mathematics and 

Computation, Vol. 181, pp. 1148-1154, 2006 

[24] C. Ying-ping, C. Chao-Hong, "Enabling the Extended Compact Genetic 

Algorithm for Real-Parameter Optimization by Using Adaptive 

Discretization", Evolutionary Computation, Vol. 18, No. 2, pp. 199-228, 

2010 

[25] E. Mininno at al, "Compact Differential Evolution", IEEE Transactions on 

Evolutionary Computation, Vol. 15, pp. 32-54, February 2011 

[26] J. I. Hidalgo, et al., "A Parallel Compact Genetic Algorithm for Multi-

FPGA Partitioning", Parallel and Distributed Processing, Mantova, Italy, 

pp. 113-120, February, 2001 

[27] K. H. Tsoi, K. H. Leung, P. H. W. Leong, "Compact FPGA-based True and 

Pseudo Random Number Generators", 11
th

 Field-Programmable Custom 

Computing Machines, Napa, California, USA, pp. 51-61 , April, 2003 

[28] Y. Jewajinda, P. Chongstitvatana, "FPGA Implementation of a Cellular 

Compact Genetic Algorithm", Adaptive Hardware and Systems, 

NASA/ESA, pp. 385-390, 2008 



Acta Polytechnica Hungarica Vol. 11, No. 4, 2014 

 – 153 – 

[29] R. Rastegar, A. Hariri, "A Step Forward in Studying the Compact Genetic 

Algorithm", Evolutionary Computation, Vol. 14, No. 3, pp. 277-289, 

August, 2006 

[30] C. Aporntewan, P. Chongstitvatana, "A Hardware Implementation of the 

Compact Genetic Algorithm", Evolutionary Computation, Seoul, Korea, 

Vol. 1, pp. 624-629, May, 2001 

[31] R. Storn and K. Price, "Differential Evolution - A Simple and Efficient 

Adaptive Scheme for Global Optimization over Continuous Spaces", 

Journal of Global Optimization, Vol. 11, pp. 341-359, March, 1995 

[32] A. León-Javier, M. A. Moreno-Armendáriz, N. Cruz-Cortés, "Designing a 

Compact Genetic Algorithm with Minimal FPGA Resources", Advances in 

Computational Intelligence, Springer, Vol. 116, pp. 349-357, 2009 

[33] A. Swarnalatha, A. P. Shanthi, "Optimization of Single Variable Functions 

Using Complete Hardware Evolution", Applied Soft Computing, Vol. 12, 

pp. 1322-1329, 2012 

[34] Altera Inc, ftp://ftp.altera.com/up/pub/Altera_Material/12.1/Boards/DE2-

115/DE2_115_User_Manual.pdf 

[35] Altera Inc, "http://www.altera.com/literature/hb/cyclone-iv/cyclone4-

handbook.pdf" 

[36] Altera Inc, "http://www.altera.com/literature/ug/ug_intro_to_megafunctions 

.pdf" 

[37] Altera Inc, "http://www.altera.com/literature/ug/ug_altfp_mfug.pdf". 

[38] P. D. Hortensius, R. D. McLeod and H. C. Card, "Parallel Random Number 

Generation for VLSI Systems Using Cellular Automata," IEEE 

Transactions on Computers, Vol. 38, No. 10, pp. 1466-1473, 1989 

[39] E. Mezura, J. Velázquez y C. A. Coello, "A Comparative Study of 

Differential Evolution Variants for Global Optimization", 8
th

 annual 

conference on GECCO, USA, pp. 485-492, 2006 

[40] A. K. Qin, V. L. Huang, and P. N. Suganthan, "Differential Evolution 

Algorithm with Strategy Adaptation for Global Numerical Optimization", 

IEEE Transactions on Evolutionary Computation, Vol. 12, No. 2, pp. 398-

417, April, 2009 

 


