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Abstract: A brain emotional cerebellar model articulation controller (BECMAC) is 

developed, which is a mathematical model that approximates the judgmental and emotional 

activity of a brain. A fuzzy inference system is incorporated into the BECMAC, to give the 

novel fuzzy brain emotional cerebellar model articulation controller (FBECMAC) that is 

also proposed in this paper. The developed FBECMAC has the benefit of fuzzy inference 

and judgment and emotional activity, and it is used to control multi-input multi-output 

nonlinear systems. A 3-dimensional (3D) chaotic system and a mass spring damper 

mechanical system are simulated, to illustrate the effectiveness of the proposed control 

method. A comparison between the proposed FBECMAC and other controller shows that 

the proposed controller exercises better control than the other controllers. 

Keywords: brain emotional cerebellar model articulation controller; fuzzy system; chaotic 

system; mass spring damper mechanical system 

1 Introduction 

In 1992, LeDoux found that, in the human brain, the association between a 

stimulus and its emotional consequence occurs in the amygdala [1]. The brain has 

an orbitofrontal cortex and an amygdala; the former is a sensory neural network 

and the latter is an emotional neural network [2]. Many works studied the form of 

the amygdala to determine the usefulness for a neural network control system. In 

recent years, brain emotional learning controllers (BELC) have been used for 

control systems by several studies [3-7]. A brain emotional learning controller has 

two systems: an emotional system and a neural network judgment system. 
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A cerebellar model articulation controller (CMAC) is a network model that uses 

an associated memory network [8]. It has better computation and adaptation 

ability than a neural network. CMAC approximation can be tuned for greater 

accuracy, even for complex nonlinear system. Therefore, CMAC has been the 

subject of more studies, because it is more generally applicable to various 

nonlinear systems and can learn rapidly. Chiang and Lin introduced a Gaussian-

based CMAC with faster convergence [9, 10]. This gives more option for the 

researcher to experiment with a Gaussian-based CMAC to control various 

nonlinear systems. The enhanced performance of a CMAC over a neural network 

has been demonstrated in some studies [11, 12]. By constructing a BELC using a 

CMAC, a new brain emotion network, called a brain emotion CMAC (BECMAC), 

is proposed. This improves the learning ability of a conventional BELC. 

A fuzzy inference system mimics the human reasoning process and is widely used 

successfully in various fields. Initially, the control system algorithms required a 

detailed system model. However, in recent years, fuzzy control systems have used 

fuzzy inference rules to control systems, without the need for detailed 

mathematical models [13, 14]. 

This paper incorporates a fuzzy inference system with a BECMAC, to produce a 

novel fuzzy brain emotional cerebellar model articulation controller (FBECMAC). 

This controller has the benefits of a fuzzy system, because there are fuzzy 

inference rules, and of BECMAC, because the controller learns more completely. 

This FBECMAC is then used to control multi-input multi-output nonlinear 

systems, to illustrate its effectiveness. 

2 Problem Formulation 

A class of n-th order multi-input multi-output nonlinear systems is described by 

the following equation: 

)()())(())(()()( tttttn
duxGxfx 

                                                                   
(1) 

where  )]( , ),(),([)(
21

mT

m
tututut  u and

 ])( , ,)(,)([)( 
21

mT

m
txtxtxt  x . The former is a control input and the latter 

represents the state vectors of the system. mT

m
tdtdtdt  ])( ,  ,)(,)([)(

21
d  

denotes the unknown bounded external disturbance and m is the number of system 

inputs and outputs.  
mnTTnTT tttt  ])(, ,)(,)([)( 1)-(

xxxx   and it is assumed 

that it is measureable. It is also true that  ))(( mt xf and 
mmt ))((xG  and 

that these are smooth nonlinear uncertain functions, which are assumed to be 

bounded, but not exactly known. 
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If modeling uncertainties and external disturbance are neglected, the nominal 

system for (1) is: 

)( ))(()(
00

)( tttn
uGxfx                                                                                    (2) 

where
mt  ))(( 

0
xf and   ) ,  , ,( 

002010

mm

m
gggdiag  G  are the nominal 

parts of  ))(( txf and ))(( txG , respectively. Without loss of generality, it is 

assumed that the constants 0 
0i
g  for .,,1 mi   It is also assumed that the 

nonlinear system (2) is controllable and that 
1

0


G  exists. If there are modeling 

uncertainties and external disturbances, the nonlinear system (1) can be 

reformulated as 

)),(()(  ))(()(
00

)( tttttn
xluGxfx 

 
                                                                  (3)

 

where ),)(( ttxl
 
is referred to as the lumped uncertainty, which includes the 

system uncertainties and the external disturbances. 

The control problem is the design of a proper control system, wherein the system 

output, )(tx , can track a desired trajectory vector, 

mT

mrrrr
txtxtxt  ])( , ,)(,)([)(

21
x . 

The tracking error is defined as 

m

d
ttt  )()(Δ)( xxe

 
                                                                                        (4)

 

and the system tracking error vector is defined as 

 )](,,)(,)([Δ)( )1( mnTTnTT tttt 
eeee                                                                (5)

 

If the nominal functions, ,))(( 
0

txf
0

 G
 
and the lumped uncertainty, ),)(( ttxl , are 

exactly known, an ideal controller can be designed as: 

]),()([  
0

)(1

0
eKxlxfxGu

Tn

d
t  

 
                                                                (6)

 

where 
mmnT

n

 ],,,[ 
12

KKKK   is the feedback gain matrix, which contains 

real numbers, and
 

 ),...,(
21

mm

imiii
kkkdiag K

 
is a nonzero positive constant 

diagonal matrix. 

Substituting the ideal controller (6) into (3) gives the error dynamic equation: 

0 eKe
Tn)(

                                                                                                       (7)
 

In (7), if K  is chosen to correspond to the coefficients of a Hurwitz polynomial, 

then 0 


e
t
lim . However, the lumped uncertainty, ),)(( ttxl , is generally 
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unknown for practical applications, so the ideal controller, 
*

u , in (6) is not 

possible. Therefore, a fuzzy BECMAC that mimics this ideal controller is 

proposed in the next section. 

3 A Fuzzy Brain Emotion Cerebellar Model 

Articulation Control System 

3.1 The Fuzzy Brain Emotional Cerebellar Model Articulation 

Controller 

A fuzzy BECMAC (FBECMAC) control system can be classified as a supervised 

network. A FBECMAC is not very complex in operation and has fast convergence, 

so it is applicable to many nonlinear control systems. The proposed FBECMAC is 

shown in Fig. 1, and it has two systems; the first system is a propinquity amygdala 

system, similar to that in a mammalian brain; and the second system is a 

propinquity cerebellar system, which is also similar to that in a mammalian brain. 

In this novel inference system, two fuzzy rule bases are proposed for the 

BECMAC. 

The fuzzy amygdala system is designed as: 

thenisandisandisIf
11 mmii

I,,II     

,p,,q,m,,,iza
iqq

 2121for                                                                        (8)
 

where iq
z  is the amygdala’s weight and q

a  is the amygdala’s output. 

The fuzzy cerebellar model articulation system is designed as: 

thenisandisandisIf
11 mjmijij

I,,II    

,p,,q,n,,,j,m,,,iwo
jqq

 212121for                                               (9)
 

where jq
w  is the prefrontal weight and q

o  is the prefrontal output. 
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Figure 1 

The emotional cerebellar model articulation controller 

Fuzzy amygdala systems have two layers. The first layer is a Gaussian function 

and the second layer is a weight layer: 

miIh
iii

,,2,1,                                                                                          
(10) 

where i
h  is the amygdala system’s input to the sensory cortex output, i

I
 
is the 

controller’s input and 
i


 
is the Gaussian function, which is denoted as: 

)
)(

exp(-
2

2

i

ii

i
σ

I 



                                                                                             (11)

 

where 
i

  is a mean and 
i

  is a variance. 

 


m

i
iqiq

zha
1

                                                                                                      (12)
 

where iq
z  is amygdala system weight. 

The fuzzy cerebellar model articulation system has three layers. The first layer is a 

Gaussian function: 

 
,n,,j,m,,,i

v

I

ij

iji

ij
 2121,-exp

2

2












 



                                                  (13)

 

where ij
  is the mean and ij

v  is the variance. The second layer is an association 

memory layer: 
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


m

i
iijj

Ib
1

)(                                                                                                         (14)
 

The third layer is a weight layer: 

 


n

j
jjqq

bwo
1

                                                                                                      (15)
 

where jq
w  is a weight. 

pqoau
qqFBECMAC q

2,1, 
                                                                             

(16) 

The amygdala’s system’s updated weights, iq
z , are given by 

])]0(max[[
qqiziq

a,dhz                                                                            (17)
 

where z
  is the learning rate. In (17), q

d  is a parameter adjustment, given by: 

)()(
1

qFBECMACq

m

i
iiqq

ucId  


                                                                          (18)

 

where iq
  and q

c  are the gains. 

The updating law for the amygdala’s system’s weight is given by 

iqiqiq
ztztz  )()1(                                                                                          (19) 

The fuzzy CMAC hypercube weight, jq
w , and the mean, ij

m , and variance, ij
v , of 

the Gaussian function are updated using the following equation: 

jqjqjq
wtwtw  )()1(                                                                                      (20) 

ijijij
tt   )()1(                                                                                          (21) 

ijijij
vtvtv  )()1(                                                                                          (22) 

An integrated error function is defined as 


t

n

nn dττt
 

0 

2)-(

1

1)-( )(... ),( eKeKees                                                             (23) 

where 
mT

m
tststst  )](,),(),([),(

21
es . 

Substituting (3) into (23) yields 

eKeeKxluGxfxes
TnTn

d
tttt  )(

00

)( ),)(()( )(),(                           (24) 

If ),(),()2/1( ttT
eses  is chosen as a cost function, then its derivative is 

),(),( ttT
eses  . 
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3.2 The Robust Feedback Control System 

Since the FBECMAC cannot completely mimic an ideal controller, the 

approximation error induces a tracking error in the control system, so a robust 

controller is required, in order to make the control system stable. Thus, the control 

system is composed of a FBECMAC controller and a robust controller. 

The proposed a FBECAMC control system for a nonlinear system is shown in Fig. 

2. 

CONTROL SYSTEM

ΣΣ

e

rxx
 ΣΣ

FBECMAC

Robust Controller





    Uncertain Nonlinear System     

)()())(())(()()( tttttn
duxGxfx 

Ru

u

FBECMACu

Sliding 
Surface

s

s

 
Figure 2 

An intelligent control system for nonlinear systems 

The control system is defined as: 

RFBECMAC
uuu                                                                                                     (25) 

Substituting (25) into (24) and multiplying both sides by ),( tT
es yields 

))),(()(,(

)]([),())((),(),(),(
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00

eKxlxes

uuGesxfeseses

Tn

d

T

RFBECMAC

TTT
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



                          
(26) 

The fuzzy CMAC training algorithms in (20), (21) and (22) perform error back 

propagation, using the following chain-rule algorithm: 
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An approximation error between the FBECMAC and the ideal controller is 

navoidable, so an ideal controller is formulated as the summation of the 

FBECMAC and the approximation error: 

)( )( * tt
FBECMAC

εuu 
                                                                                         

(30) 

where 
mT

m
tεtεtεt  )]( ,....),(  ),([)(

21
ε  denotes the approximation error. It is 

assumed that Eε , where E  is an unknown bound and   is an induced norm. 

Ê  is defined as an estimate of E , and EEE ˆ~
 . 

From (6) and (24) and after some straightforward manipulations, it is seen that 

),(][)]([
0

*

0

)( tt
RRFBECMAC

Tn
esuεGuuuGeKe 

                              
 (31) 

Then the following theorem guarantees the stability of the feedback control 

system. 

Theorem 1: For the nth-order nonlinear systems represented by (3), the 

FBECMAC control system is designed as in (25), where FBECMAC
u  is given in (16). 

The on-line parameter adaptation algorithms are given as (19)-(22) and the 

updating laws are given as (17) and (27)-(29), and the robust controller is 

designed as follows:  

)
)(

tanh(ˆ


t
E

R

s
u                                                                                                  (32) 

where tanh(.) is a hyperbolic tangent function, Ê  is the estimated value of the 

approximation error bound and   is a positive parameter, such that:

 

)]ˆ()
)(

tanh(),([ˆ
00

EE
t

teE T  





s
Gs


                                                           (33)

 

The feedback control system is then robustly stable. 

Proof:  The Lyapunov function is defined as: 




2~

2

1
),(),(

2

1
)),((

E
tttV T  eseses

                                                                     

(34) 

The derivative of the Lyapunov function and (30) and (31) yield: 



Acta Polytechnica Hungarica Vol. 12, No. 4, 2015 

 – 47 – 









EE
tte

EE
teteteV

R

T

T






ˆ~

])([),(

ˆ~

),(),()),((

0




uεGs

sss

                                                               

(35) 

The robust controller is designed as (32) and (33), so (35) can be rewritten as: 
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It is seen that the following inequality exists for any 0 : 


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 )
),(

tanh(),(| || || |),(| |0
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t
tt TT es

GesGes                                               (37) 

where   is a constant that satisfies ))1(exp(   . Using inequality (37), (36) 

can be rewritten as: 
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                                (38) 

Using the Lyapunov function (34), (38) can be rewritten as:

 
  VV                                                                                                       (39)

 
where   and   are positive constants given by 


                                                                                                                 (40)
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Since 0



 and the solution of the differential inequality satisfies 

teVtV 
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  ])0([)(0                                                                              (42)

 

where )0(V  is the initial value of V , then s  and E  are uniformly ultimately 

bounded, according to the extensions of the Lyapunov theory [15]. From (42), it is 

true that: 

tt eVeVs 
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
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   )0(])0([
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so 

])0([22 teVs 



                                                                                             (44) 

which implies that, given  /2 , there exists a finite time, T , such that for 

all Tt  , the tracking index satisfies: 

|),(| tes                                                                                                            (45)

 
where   is the size of a small residual set that depends on the control system 

approximation error and the controller parameters and   is a positive constant. 

 is chosen to be small and the finite time is long, so that there is precise tracking 

of the error. 

4 Simulation Results 

Two uncertain nonlinear systems, a chaotic system and Mass-spring-damper 

mechanical system, are studied, in order to illustrate the effectiveness of proposed 

design. 

4.1 A Chaotic System 

For a general master-slave unified chaotic system, the master system is given as 

[16]: 

))()()(1025()(
121

txtxtx                                                                              
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where i
x 3,2,1i  are the system state variables of the master system and 

]1~0[ , where )8.0~0[ , the system is known to be a generalized Lorenz 

system. When 8.0 , the system is called a Lu system, and when ]8.0~0( , 

the system is called a Chen system. Figure 3 shows the state trajectories for 0 , 

with the initial condition: 3)0(
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Figure 3 

The unified chaotic system 

It is assumed that )1025(
1

  , )3528(
2

  , )129(
3

   and )
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8
(

4





 , 

so (46) can be rewritten as: 
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That is, the master system can be expressed as: 
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where 

T],,[
321

π  
Ttxtxtxt )](),(),([)(

321
x .  

The slave system is given as:  

)()())()(()(
111211

tuttytyty  
 

)()()()()()()(
222331122

tuttytytytyty  
 
                                             (49)
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)()()()()()(
3334213

tuttytytyty  
 

where i
y , 3,2,1i  are the system state variables of the slave system, i

x , 3,2,1i  

are the external disturbances and i
u , 3,2,1i  are the control inputs.  

This slave system can be also expressed as: 

)()())(()( tttyt uζπy                                                                                   (50) 

where
Ttytytyt )](),(),([)(

321
y , 

Ttxtxtxt )](),(),([)(
321

x  and 

Ttututut )](),(),([)(
321

u . 

If the error states between the master system and the slave system are defined as:  

)()()(
111

txtyte 
      

)()()(
222

txtyte                                                                                              (51)  
 

)()()(
333

txtyte 
 

From (47) and (49) gives the error dynamics as: 

)()())()(()(
111211

tutxtetete 

)()()()()()()()()(
22313123122

tutxtytytxtxtetete                                 (52)
 

)()()()()()()()(
333421213

tutxtetxtxtytyte  
 

This can be also rewritten as:  

)()()()()( ttttt uxfAee                                                                            (53) 

where 
Ttetetet )](),(),([)(

321
e  is the state error vector, 























4

32

11

00

0

0







A , 

and 





















)()()()(

)()()()(

0

)(

2121

3131

tytytxtx

tytytxtxtf . 

In order to illustrate the effectiveness of the proposed FBECMAC control system, 

it is compared with the fuzzy neural network based controller in [16], The control 

parameters are selected as 



















2.000

01.00

001.0

1
k , 3,2,1,8.0  qc

q , 4105 
z

 , 

4
w

 , 7.0
m

 , 3105 
v

 , 1  and 2  and the other parameters are 
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random values. The fuzzy neural network (FNN) control chaotic system is shown 

in Fig. 4. The tracking error for the FNN control system is shown in Fig. 5. The 

FBECMAC control chaotic system is shown in Fig. 6 and the tracking error for 

the FBECMAC control system is shown in Fig. 7. A comparison of the simulation 

results shows that the proposed FBECMAC control system achieves better control 

than a FNN control system. 

4.2 A Mass-Spring-Damper Mechanical System 

A mass-spring-damper mechanical system is shown in Fig. 8. The dynamic 

equations for this mechanical system are expressed as [16, 17]: 

)()()()()()()()(
1121221111

ttutuxfxfxfxftx
BKBK

 
  

)()()()(
22122222

tuuxfxftx
BK

                                                        (54) 

where 
1
  and 

2
  are the masses in the system and 

Ttxtxtxtxt )](),(),(),([)(
2121
x  

are the positions and the velocities of the mechanical system. The spring forces 

are
3

12212202
)()()( xxkxxkxf

K
  and 

3

12212202
)()()( xxkxxkxf

K
  

a n d  t h e  f r i c t i o n a l  f o r c e s  a r e  
2

111101
)( xbxbxf

B
   a n d 

2

12212202
)()()( xxbxxbxf

B
  . The parameters for the system are given as 

1
1
 , 8.0

2
 ,  3

10
k , 4

20
k ,  2

10
b , 2.2

20
b , 

5.0
1
k , 5.0

2
k , 5.0

1
b , 5.0

2
b ,  

212
2.0 uu  ,

121
25.0 uu  , 

0 2 4 6 8 10 12 14 16 18 20
-20

0

20

X1 and Y1

0 2 4 6 8 10 12 14 16 18 20
-50

0

50

X2 and Y2

0 2 4 6 8 10 12 14 16 18 20
0

50

X3 and Y3  

Figure 4 

The FNN control for the chaotic system: (A) 1x  and 1y  (B) 2x  and 2y  (C) 3x  and 3y  
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Figure 5 

The tracking error for the FNN control system 
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Figure 6 

The FBECMAC control for the chaotic system: (A) 1x  and 1y  (B) 2x  and 2y  (C) 
3x  and 3y  
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Figure 7 

The tracking error for the FBECMAC control system 

 

Figure 8 

A mass-spring-damper mechanical system 

)2.0exp(2)(
1

ttd   and )1.0exp(2)(
2

ttd 
.
 

Consequently, the dynamic equation for the mass-spring-damper mechanical 

system can be rewritten as: 

)((t))()()( txxt duGfx                                                                               (55) 

where 


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

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
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22

11

125.0

2.01
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
xG  and 

Ttutut )](),([Δ)(
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u  denotes the control input and 

T

tdtd
t 









2

2

1

1
)(

,
)(

Δ)(


d  denotes the external disturbance. The desired trajectories 

come from the reference model outputs. The reference model is chosen as 

idididi
rtxtxtx 12)(4)(16)(   , 2,1i . The initial conditions for the mechanical 

system and the reference model are given as 1)0(
1

x , 0)0(
1

x , 1)0(
2

x , 

0)0(
2

x , 0)0(
1


d

x , 0)0(
2


d

x , 0)0(
1


d

x  and 0)0(
2


d

x . The control 

parameters are selected as 









01.00

001.0
1

k , 3,2,1,8.0  qc
q

, 3.0
z

 , 

01.0
w

 , 2.0
m

 , 2.0
v

 , 1.1  and 5.1  and the other parameters are 

random values. The reference inputs are ))2sin(1.0)
2

sin(9.0(
3

1
t

t
r 


 and 

))3sin(1.0)sin(4.0(
2

ttr  . 

The FNN control for the mass-spring-damper mechanical system is shown in Fig. 

9 and the tracking error is shown in Fig 10. The FBECMAC control for the mass-

spring-damper mechanical system is shown in Fig. 11 and the tracking error is 

shown in Fig. 12. These simulations also demonstrate the better control of the 

FBECMAC control system. 

0 2 4 6 8 10 12 14 16 18 20
-2

-1

0

1

2

(A) x1 and xd1

0 2 4 6 8 10 12 14 16 18 20
-2

-1

0

1

2

(B) x2 and xd2  

Figure 9 

The FNN control for the mass-spring-damper mechanical system 
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Figure 10 

The tracking error for the FNN control system 
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Figure 11 

The FBECMAC control for the mass-spring-damper mechanical system 
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Figure 12 

The tracking error for the FBECMAC control system 

Conclusion 

This study successfully proposes an efficient FBECMAC control system, which 

has the benefits of a fuzzy inference system and a brain emotional CMAC. The 

controller is then used to control nonlinear systems. The stability analysis is also 

presented in the feedback control system. The proposed FBECMAC reduces the 

tracking error, even if the systems are subjected to external disturbances. The 

results of the comparison also show that the tracking error converges faster in the 

FBECMAC than that in a fuzzy neural network control system. 
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