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Abstract: This paper develops an intelligent robust control algorithm for a class of
uncertain nonlinear multivariable systems by using a recurrent-cerebellar-model-
articulation-controller (RCMAC) and sliding mode technology. The proposed control
algorithm consists of an adaptive RCMAC and a robust controller. The adaptive RCMAC is
a main tracking controller utilized to mimic an ideal sliding mode controller, and the
parameters of the adaptive RCMAC are on-line tuned by the derived adaptive laws from
the Lyapunov function. Based on the H” control approach, the robust controller is
employed to efficiently suppress the influence of residual approximation error between the
ideal sliding mode controller and the adaptive RCMAC, so that the robust tracking
performance of the system can be guaranteed. Finally, computer simulation results on a
Chua’s chaotic circuit and a three-link robot manipulator are performed to verify the
effectiveness and feasibility of the proposed control algorithm. The simulation results
confirm that the developed control algorithm not only can guarantee the system stability
but also achieve an excellent robust tracking performance.
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1 Introduction

In recent year, controls of uncertain nonlinear systems have been one of active
research topics for many control engineering. Various control efforts have been
utilized to design and analyze the uncertain nonlinear systems. Sliding mode
control (SMC) has been confirmed as a powerful robust scheme for controlling the
nonlinear systems with uncertainties [1], [2]. The most outstanding features of
SMC are insensitive to system parameter variations, fast dynamic response and
external disturbance rejection [1]. However, in practical applications, SMC suffers
two main disadvantages. One is that it requires the system models that may be
difficult to obtain in some cases. The other is that because the magnitude of
uncertainty bound is unknown, the large uncertainty bound is often required to
achieve robust characteristics; however, this will lead the control input chattering.

Neural networks (NNs) possess several advantages such as parallelism, fault
tolerance, generalization and powerful approximation capabilities, so that NNs
have been applied for system identifications and controls [3]-[6]. Some significant
results indicate that the main property of NNs is adaptive learning so that it can
uniformly approximate arbitrary input-output linear or nonlinear mappings on
closed subsets. Based on this property, a number of researchers have proposed the
NN-based adaptive sliding mode controllers which combine the advantages of the
sliding mode control with robust characteristics and the NNs with on-line adaptive
learning ability; so that the stability, convergence and robustness of the system can
be improved [7]-[9]. For example, Lin and Hsu presented an NN-based hybrid
adaptive sliding mode control system [7]; in this approach, NN is used as a
compensation controller. In [8], Tsai etc. presented a neuro-sliding mode control
that utilized two parallel neural networks to realize equivalent control and
corrective control; thus the system performance can be improved and the
chattering can be eliminated. In [9], Da introduced an identification-based sliding
mode control and the bound of uncertainties is also not required. However, the
above approaches suffer the computational complexity.

On the neural network structure aspect, NNs can be classified as feedforward
neural network (FNN [3], [5], [8], [9]) and recurrent neural network (RNN [4], [6],
[7]). As known, FNN is a static mapping. Moreover, the weight updates of FNNs
do not utilize the internal network information so that the function approximation
is sensitive to the training data. For RNNSs, of particular interest is their ability to
deal with time varying input or output through their own natural temporal
operation [7]. Thus, RNN is a dynamic mapping and demonstrates good control
performance in the presence of unmodelled dynamics. However, no matter for
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FNNs or RNNSs, the learning is slow since all the weights are updated during each
learning cycle. Therefore, the effectiveness of NN is limited in problems requiring
on-line learning.

Cerebellar-model-articulation-controller (CMAC) is classified as a non-fully
connected perceptron-like associative memory network with overlapping
receptive-fields [10]; and it intends to resolve the fast size-growing problem and
the learning difficult in currently available types of neural networks (NNS).
Comparing to neural networks, CMACs possess good generalization capability,
fast learning ability and simple computation [10], [11]. This network has already
been shown to be able to approximate a nonlinear function over a domain of
interest to any desired accuracy [11]-[13]. For the reasons, CMACs have adopted
widely for the closed-loop control of complex dynamical systems in recent
literatures [14]-[17]. However, the major drawback of existing CMACs is that
their application domain is limited to static problem due to their inherent network
structure.

In order to resolve the static CMAC problem and preserve the main advantage of
SMC with robust characteristics, this paper develops an intelligent robust control
algorithm for a class of uncertain nonlinear multivariable systems via sliding
mode technology. The proposed control system is comprised of an adaptive
recurrent CMAC (RCMAC) and a robust controller. The adaptive RCMAC is a
main tracking controller utilized to mimic an ideal sliding mode controller, and the
parameters of the adaptive RCMAC are on-line tuned by the derived adaptive
laws. Moreover, based on the H> control approach, the robust controller is
employed to efficiently suppress the influence of residual approximation error
between the ideal sliding mode controller and the adaptive RCMAC, so that the
robust tracking performance of the system can be guaranteed. Finally, two
examples are presented to support the validity of the proposed control algorithm.

2 System Description

Consider the nth-order multivariable nonlinear systems expressed in the following
form:

X (1) = f(x(1)) + G(x(®) u(t) +d(t),

y(t) = x(t) @
where

o u(t) =[u,(t),u,(t), -, u_ ()] eR"™ is the control input vector of the system,

o y(t) = X(t) =[x, (1), X, (1), ---, X, ()]" € R™is the system output vector,

o X(t)=[X"(t), X" (t), ---, X" (t)]" € R™ is the state vector of the system,
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o f(x(t)) eR™ isan unknown but bounded smooth nonlinear function,
* G(x(t)) e R™" is an unknown but bounded control input gain matrix,
o d(t) =[d,(t),d,(t), ---,d_(t)]" €R" is an external bounded disturbance.

Assume that the nominal model of the multivariable nonlinear systems (1) can be
represented as

x(t) = £ (x(t)) +G, u(t), )

where f (x(t)) is the nominal function of f(x(t)) and G, is the nominal
constant gain of G(x(t)). By appropriately choosing the control parameters and
suitably arranging the control inputs and their directions, G, can be chosen to be
positive definite and invertible. If the external disturbance and uncertainties are
included, the multivariable nonlinear systems (1) can be described as

X (1) = £,(x(1)) + Af (x(1)) +[G, + AG(x ()] u(t) +d(t)

= f,(x(1) + G, u(t) + 1(x(1).1) , @)
where Af(x(t)) and AG(x(t)) denote the system uncertainties, 1(x(t),t) is
referred to as the lumped uncertainty, defined as

I(x(t),t) = Af (x(t)) + AG(x(t))u(t) + d(t). Then (1) can be expressed as state
and output equations as follows:

X(0) = A, x(t) + B, [f,(x(1)) + G, u(t) + 1(x(t). )],

y(t) =Cr x(1), )
ol o -0 0 |
o0 1 -0 0 0
where A =t t t . ], B =|!|,C =|!|
00 0 -1 0 0
0 | 0

The objective of a control system is to design a suitable controller such that the
system  state  vector x(tf) can track a  desired trajectory

X, (1) =[x} (1), X] (t), -+, X" ()" e R™. To begin with, define the tracking
error e(t) =x,(t) — x(t) e R™, and the tracking error vector of the system is
defined as e(t)=[e" (t), €' (t),---,e™ VT ()] e R™. The reference trajectory
dynamic equation can be expressed as

Xg(t) = A, X, (1) + B x{" (1) (5)

-10-
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Subtracting (4) from (5), gives
&(t) = Ae(t) + B, X" (1) — f,(x(1) — G, u(t) — 1(x(t), V)] (6)

3 Sliding Mode Control System

Sliding mode control (SMC) is one of the effective nonlinear robust control
schemes since it provides system dynamics with an invariance property to
uncertainties once the system dynamics are controlled in the sliding mode [1], [2].
In general, SMC design can be derived into two phases, that is the reaching phase
and the sliding phase. The system state trajectory in the period of time before
reaching the sliding surface is called the reaching phase. Once the system
trajectory reaching the sliding surface, it stays on it and slides along the sliding
surface to the origin is the sliding phase. When the states of the controlled system
enter the sliding mode, the dynamics of the system are determined by the pre-
specified sliding surface and are independent of uncertainties. In order to
implement SMC, the first step is to select a sliding surface that models the desired
closed-loop performance in state variable space. Then, design the control law such
that the system state trajectories are forced toward the sliding surface and stay on
it. Thus, the sliding hyperplane can be defined as:

n-1
s(e (1) =(%+A} e =K'e(t), ™
where K =[A""1,(n=DA"2l,---, I e R™" satisfies that all roots of the
equation:
"M+ (=-DAg" 1 +---+(n=DA" gl + A" 1 =0 (8)

are in the open left half-plane, in which q is the Laplace operator. The process of
SMC can be divided into two phases, that is the reaching phase with s(e(t)) =0
and the sliding phase with s(e(t)) =0. If the sliding mode exists on the sliding
surface, then the motion of the system is governed by the linear differential
equation presented in (7) whose behavior is dictated by the sliding surface design
[1], [2]. Thus, the tracking error vector decays exponentially to zero, so that
perfect tracking can be asymptotically achieved. Thus the control objective
becomes the design of a control law to force s(e(t)) =0. A sufficient condition for
the existence and reachable of the sliding hyperplane in the system state space is
to choose the control law such that the following reaching condition is satisfied:

1d

> (8 E)se() = 5" e()s(e(t) = ZS ()5 (t) < —gailsi ®), ©)

-11-
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where o; is a small positive constant. Taking the time derivative of both sides of
(7) and using (6), yields

S(e(D) =K e(M) = KA, e(®) + X" (1) - f,(x(1)) = G, u(®) ~ I(x(1).1). (10)

Therefore, an ideal sliding mode controller u
condition must satisfy the following condition:

ST (e()S(e(D) = s" R (HIKT A, e(®) + X (1) — F,(x(1) — G, u(®) — I(x(t),1)]
< __Zm:gi|si ). (12)

which guarantees the reaching

ISMC

If the system dynamics and the lumped uncertainty are exactly known, an ideal
sliding mode controller can be designed as follows to satisfy inequality (11)

Usue =Gy [, (x(0) —1(x(1),)) + x" () + KT A e(t) +osgn (se(t) 1, (12)

where sgn() is a sign function and ¢ =diag(o,,....0,....0,) . However, in

practical applications, the dynamical functions are not precisely known, and the
lumped uncertainty is always unknown. Therefore, the ideal sliding mode
controller in (12) is unobtainable. Thus, an intelligent robust control algorithm
based on RCMAC and sliding mode technology is proposed in the following
section to achieve robust tracking performance.

4 Intelligent Robust Control Algorithm

The configuration of the intelligent robust control algorithm, which consists of an
adaptive RCMAC and a robust controller, is depicted in Fig. 1.

The control system is assumed to take the following form:
U= Uprcmac T Urc (13)

where U, isan adaptive RCMAC and u,. is a robust controller. The adaptive
RCMAC U, is @ main tracking controller utilized to mimic the ideal sliding

mode controller, and the parameters of the adaptive RCMAC are on-line tuned by
the derived adaptive laws from the Lyapunov function. The robust controller u,.
is employed to efficiently suppress the influence of residual approximation error
between the ideal sliding mode controller and adaptive RCMAC, so that the robust
tracking performance of the system can be guaranteed.

-12-
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Intelligent Robust Control System

'
1
1y
1y

ety Adaptive Lawy  ------- ’
— . '

W et - iy | Uncertain Noolisear |
_— e T

7 Multivariable Systemn

g L)

RCMAC Network Architecture

QR (R <0
Robust Controller

Figure 1
The configuration of the intelligent robust control system

4.1 Description of RCMAC

An RCMAC is proposed and shown in Fig. 2, in which T denotes a time delay.
This RCMAC is composed of input space, association memory space with
recurrent weights, receptive-field space, weight memory space and output space.

Weight Memory
Space W.

Input Space |
Output Space O

Receptive -Field =
Space R

Association Memory
Space A

Figure 2
Architecture of an RCMAC

-13-
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The signal propagation and the basic function in each space are described as
follows.

1) Input space | : For a given p=[p,, p,, " pna]T eR™, where n_ is the
number of input state variables, each input state variable p, must be quantized

into discrete regions (called elements) according to given control space. The
number of elements, n_, is termed as a resolution.

2) Association memory space A : Several elements can be accumulated as a block,
the number of blocks, n, , is usually greater than or equal to two. A denotes an
association memory space with n_ (n,=n, xn,) components. In this space, each

block performs a receptive-field basis function, the Gaussian function is adopted
here as the receptive-field basis function, which can be represented as

_ _ 2
s :exp{M] for k=12,---n,, (14)
Vik
where g, represents the output of the k-th receptive-field basis function for the i-
th input with the mean c, and variance v, . In addition, the input of this block

can be represented as
Pri (t) =P (t) + 6 4 (t _T) ) (15)

where r, is the recurrent weight, and g, (t—T) denotes the value of z, through

delay time T . It is clear that the input of this block contains the memory
term g (t—T), which stores the past information of the network and presents a

dynamic mapping. Figure 3 depicts the schematic diagram of a two-dimensional
RCMAC with n,=5 and n, =4 (n, is the number of elements in a complete

block); in which p, is divided into blocks B,, and B, , and p, is divided into
blocks B,, and B,, . By shifting each variable an element, different blocks will be
obtained. For instance, blocks B, and B,, for p,, and blocks B, and B,, for
p, are possible shifted elements for the second layer; and B, and B;, for p,,
and By,and By, for p, for the third layer; and By, and B, for p,, and B,,and
B,, for p, for the fourth layer. The receptive-field basis function g, of each
block in this space has three adjustable parameters c, , v, and r, .

ik 7

—14-
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Figure 3
A two-dimensional RCMAC with n; =4 and n, =5

3) Receptive-field space R : Areas formed by blocks, referred to as B,B,, and
B,,B,, are called receptive-fields. The number of receptive-fields, n,, is equal to
n, in this study. The k-th multi-dimensional receptive-field function is defined as

L & —(p., —C, )?
¢k(p’ck’vk’rk)=| |ﬂik=exp{zw:| for k=1,2,---nd, (16)
i i=1 ik

where ¢ =[c,,C,, " C., ] eR™ , V. =[V, V-V, ] €eR™  and
r.=[r,, ., r,] €R™. The multi-dimensional receptive-field functions can
be expressed in a vector form as

¢(p,C,V,r)=[¢l,"',@,"‘,¢nd]T, (17)

where c=[c],---, ¢/, T eR™  v=[v], v, v 1T eR™ and

11

I'=[I'1T,---, I’kT,-~-, rﬂ:]T e R

4) Weight memory space W : Each location of R to a particular adjustable value
in the weight memory space can be expressed as

W11 e Wlp e Wlno
W:[Wl’.“’wp’“.’wna]: Wy o Wy e W e R | (18)
_Wnﬂl Wnup Wnﬂno i

-15-
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where W, =[w,, - W, -‘-Wndp]T eR™, and w,, denotes the connecting weight

value of the p-th output associated with the k-th receptive-field.
5) Output space O : The output of RCMAC is the algebraic sum of the activated
weights in the weight memory, and is expressed as

0, :w;d>:2wkp¢k , for p=1,2,--:n,. (19)
k=1

The outputs of RCMAC can be expressed in a vector notation as
o=[o,---0,,---0, ' =W'@®. (20)

In the two-dimensional case shown in Fig. 3, the output of RCMAC is the sum of
the value in receptive-fields B,B,,, B,,B,,, B,,B,, and B B ,, where the input

f1=f2 91— g2?

state is (0.8,0.8). The architecture of RCMAC is designed to have the advantages
of simple structure with dynamic characteristics. The role of the recurrent loops is
to consider the past value of the receptive-field basis function in the association
memory space. Thus, this RCMAC has dynamic characteristics.

b2 ?

4.2 Robust Controller Design

Subtracting (12) from (10), yields

S(e(1) =G, [Ugyc —u]l-a sgn[s(e(t))] - (21)
Assume there exists an optimal RCMAC u,.,,. to estimate the ideal sliding
mode controller u,,. such that

Ugye = Uneaue (BW 7,7V, I ) +6=W" @ +¢, (22)

where e=[g,.... &,....&,]' IS a minimum reconstructed error vector; W™ ,

@, ¢,V and r" are the optimal parameter matrix and vectors of
W, &, ¢, vand r, respectively. However, the optimal RCMAC cannot be

obtained; thus, an estimating RCMAC is used to estimate the optimal RCMAC.
From (20), the control law (13) can be rewritten as follows:

U(t) = Upoe (PW, 6,9, F)+ U, =W d+u,, (23)
where W, @&, ¢ Vand i are the estimated matrix and vectors of

W™, @, ¢’, v and r’, respectively. Thus, the dynamic equation (21) can be
expressed via (22) and (23) as

$(e(1)) =G, [ Uprcmac + & — Unrcwac — Urc] — o sgn [s(e(1))]

-16 -
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=G, [W" @ ~W b +2— U ]- o sgn[s(e ()]

=G, W& +W'®+2— g ] - sgn[s(e ()], (24)

where W =W’ -W and &= —d . Moreover, the linearization technique is
employed to transform the multi-dimensional receptive-field basis functions into a
partially linear form. The expansion of @ in Taylor series can be obtained as

(2] ] (2] ] (2] ]
g |\ ov or

() L o] (28T |- (22 |1 o
(6(?] L. C)*(ayj o (v VH(arj BGELRY.

a¢'nd i % i
ov | 7

Sa
I
=
I

(25)

a T
where = o¢, o9, i L, e RV
oc oc oc

8 T
foa oa T e,
ov ov ov

a ' -~ * ~ * ~ * A
¢r: %’...,%,...’ﬁ |r:feg{"axnan¢’ c=c —é; V=V —V; F=r —F and
or or or

P R™ is a vector of higher-order terms. Moreover, 6;* , aaﬂ and %9, are
c v r
defined as
94, =[0,---,0, o, %OO] , (26)
| oc | —— oc, oc,,
(k=1)xn, al (ng—k)xn,
¢, =[0,---,0, g, o, ,0,---,0], (27)
- v = (k-L)xn, avlk avnak (ny—k)xn,
% |_10,.-0%% ... 2 . 0. 28)
L or - (k-1)xn, arlk 8rﬂak (ny—k)xn,
Rewriting (25), it can be obtained that
(29)

D =D+ D+ DV +DT+f.

-17 -
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Substituting (25) and (29) into (24), yields

§e(1) =G, W' @+ + D7 +&T +B)+W' (D + D7 +&,T + )+ U] o sgn[s(e ()]
=G, W'+ W (D5 +®,7 +B,T)+ W (B +®,7 +B,T)+ W B+ —Up]- o sgn[s(e(t))]
=G, W d+W(DC + BV +&,T)+m— Uy ] -0 sgn[s(e(t)], (30)
where the approximation error @ =W +W’' (PC+DV+DT) +e.

In case of the existence of w, consider a specified H_ tracking performance [18]
ZJ';? (t)dt <s™(0)G,'s(0)+tr W (0)Z, W (0)]+C" (0)Z.C(0)

+VT(0)E,V(0) + 7" (0) =, 7 (0) + Zﬂi Jo@t®dt, 31

|

where =,, = . and = are diagonal positive constant learning-rate matrices,

and 4 is a prescrlbed attenuation constant. If the system starts with initial
conditions s(0) =0, W(0) =0, €(0)=0, V¥(0) =0, F(0) =0, then the H_ tracking
performance in (31) can be rewritten as

sup 31l <z, @

w; €L, [0,T]i=1 ||C()|||

where s, [ :J'Tsf (t)dt and | :J'Ta)f (t) dt. This shows that 4, is an attenuation
0 0

level between the approximation error @ (t) and system output function s, (t).

If 4 =0, this is the case of minimum error tracking control without
approximation attenuation [18]. Therefore, the following theorem can be stated
and proved.

Theorem 1: Consider the nth-order multivariable nonlinear systems represented
by (1). The intelligent robust control system is defined as in (13), in which the
adaptive laws of RCMAC are designed as in (33)-(36) and the robust controller is
designed as in (37). Then, the robust tracking performance in (31) can be achieved

for the prescribed attenuation level 4, i=1,2,...m , where R=diag[ 4, , 4, ,...,
A, 1€ R™™ is a diagonal matrix.

A

W=5,ds (e(t)), (33)
=EZ @] Ws(e(t), (34)
==, @] Ws(e(t)), (3%)

-18 -
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F=5 & Ws(e(t), (36)

=@R*)(R* +1)s(e(t)) . (37)
Proof: The Lyapunov function candidate is given by
V(s(e(),W,E,7,F) = [s (e(0)G;s(e(t) +tr W™ E;' W)+ 8T 55 +V 5, +7 577 |
(38)
Taking the derivative of the Lyapunov function and using (30), yields
V (s(e(t),W,E,V,F) =" (e(1))G; *s(e(t)) +tr (W' "1W)+c RV EN+TEN
=s"(e()) W' @ +W' (B8 + BT +BT) +®—Up] - (E(t))G§16 sgn [s(e(t))]
U WTEIW)—ETEE VT EN—FTEN (39)
It can be noted that s (e(th)W'd=tr(W ds (e(t)))  and
s"(e(t))G, " & sgn[s(e(t))] >0, so (39) can be rewritten as

V(S((e(0).W.6.7.7) <t W' [ " (e(t) 2, W1 )+ 8" @]V s((e(t) - %)

T (@0 s((e(®) - 240 1+ FT (@)W s((e() - £, F )+ [sT (e — S (&) Unc] -
(40)
From (33)-(36) and using (37), (40) can be rewritten as

ﬂ,+1

Vi (s(t),W,&,7,F) < ﬁ[s DO -s'07 ]

o S0 _s0
=2l 000757

m g 2 P
< Z[_s,_(t) " M] . (41)
i=1 2 2

Assuming @ €L[0,T], VT €[0,), integrating the above equation

fromt=0to t=T, yields

VM VO £ S-S0 S el dt]. )

-19-
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Since V(T) >0, the above inequality implies the following inequality

SIS OaVO I e d (43)
i=1 i=1

Using (38), the above inequality is equivalent to the following

Zm:jéf (t)dt <s(0)G,'s(0)+tr W (0)Z, W (0)]+C" (0)Z.C(0)

+TT(0E,5(0)+FT (05 F(0) + L[] ()t . (44)

Thus the proof is completed.

5 Simulation Results

To illustrate the effectiveness of the proposed control system, it is applied to control
a Chua’s chaotic circuit and a three-links robot manipulator. Moreover, an adaptive
fuzzy neural network controller (AFNNC) [19] and the proposed RCMAC are
applied to these two systems for comparison.

Example 1: Chua’s chaotic circuit

A typical Chua’s chaotic circuit consists of one linear resistor (R ), two capacitors
(C,,C,), one inductor (L ) and one nonlinear resistor ( g(v, )) as shown in Fig. 4.

- VA
»-
L - +
Cm Ve Cs Ve 9
U, U, U,
Figure 4

Chua’s chaotic circuit

The dynamic equations of the Chua’s circuit are written as [20]

L VR
Ve, = c ( m (Ve ~Ve) g(Vc,)JrUl(t)]erl(t)’ (45)
N i
V. = e, (R (Ve —Ve ) +i, + Uz(t)j-i-dz(t) : (46)

-20-
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i, = %(—vcz +U,(t)) +d, (1), (47)

where u(t) = [u,(t), u,(t), u @71 denotes the control input
and  d(t) =[d,(t), d,(t), dy(t)]" denotes the external disturbance. The
voltages v (t), v, (t) and the current i (t) are the state variables. Thus, the state
vector of chaotic system is defined as
X(t) = [Ve, (1), Ve, (©), i (D] =[x, (1), X, (1), X;(t)]". The dynamic equation (45)-
(47) can be rewritten as

X(t) = £(x) +G(x)u(t) +d(t), (48)
f1(1 ] - .
a(ﬁ(vcz _Vcl) - g(vcl)j Ci 0 0
where f(x)= 1 [l(v -V, )+ij and G(x) =dial O1 1 0
AV Cz R C, C, L 2) g Cz
1 1
I I(_ch) ] L 0 0 L ]

d,(t) sin(2t) exp (-0.2t) + 0.3
The external disturbance is given as d(t) =| d,(t) |=| cos(2t)exp(-0.2t) - 0.5 |.
d,(t) sin(3t)exp (-0.2t) + 0.2
The physical parameters of chaotic circuit are assumed as
R=R,+AR, g(ve) =0,(v;)+Ag(v,), L=L +AL, C,=C,+AC,
C,=C,+AC,, where R, g,(v;), L,, C,, and C,, are the nominal values and
AR, Ag(v.), AL, AC, and AC, denote the unknown nonlinear time-varying

perturbations [19]. The nominal values are given as
R, =5, 9,(v.)=-v, +0.02v;, L, =1, C; =1, C,,=0.5. The time-varying
perturbations are AR =sin(t/2), Ag(v,)=0.2sin(t)v.,

AL=0.15, AC, =0.1+0.1cos(/2), AC,=0.1. The desired trajectories come
from the reference model outputs that are chosen as X, (t) =—4x,(t)+4y, ,
where y, is the input signal to the reference model. The initial conditions of the
Chua’s chaotic circuit and the reference models are given as
x(0)=-1, x,(0)=0 and x,(0)=0, x,,(0)=0, x,,(0)=-1, and x,,(0)=1. The
reference inputs are unit periodic rectangular signals. For the proposed control
scheme, the sliding hyperplane is design as s(e(t)) =e(t). The proposed RCMAC
is characterized as:
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* number of input state variables: n_ =3,
* number of elements for each state variable: n, =5 (elements),
* generalization: n, =4 (elements/ block),

* number of blocks for each state variable: n, =2 (blocks/layer) x4 (layer)
=8 (blocks),

e number of receptive-fields: n, =2 (receptive-fields/layer) x4 (layer)
= 8 (receptive-fields),

* receptive-field basis functions: z, =exp[-(p, —¢c,)*/v:] for i=1,2,3 and
k=12---8.

The inputs of RCMAC are s (t),s,(t) and s,(t); while the input spaces of input
signals are normalized within {[-2, 2][-2, 2][-2, 2]} . The initial means of the
Gaussian  functions are  divided equally and are set as
[c,.c,, C4, C,, Cisi Cs €y, Cg ] =[-2.8,-2,-1.2,-0.4,0.4,1.2,2,2.8] and the
initial variances are set as v, =1.6 for i=1,2,3 and k=1, 2,---,8. The learning-
rate matrices of RCMAC are selected as =, =301,,, = =%, =5, =0.5I

v

and the specified attenuation constant diagonal matrix is R=0.21 .

i3?
24x24

The simulation results of AFNNC for the Chua’s chaotic circuit are shown in Fig.
5. The trajectories of the system states are plotted in Figs. 5(a)-(c) for v (t),

V. (t) and i (t) , respectively. The associated control efforts u,(t), u,(t), u,(t) are
depicted in Figs. 5(d)-(f). Moreover, the sliding hyperplanes s (t),s,(t) and s,(t)
are shown in Figs. 5(g)-(i). The simulation results of RCMAC for the Chua’s
chaotic circuit are shown in Fig. 6. The trajectories of the system states are plotted
in Figs. 5(a)-(c) for v, (t), v, (t) and i (t), respectively. The associated control
efforts u,(t), u,(t), u,(t) are depicted in Figs. 6(d)-(f). Moreover, the sliding
hyperplanes s, (t) , s,(t) and s,(t) are shown in Figs. 6(g)-(i). From the

simulation results, it can be seen that the proposed RCMAC can provide better
control performance with smaller tracking error than the AFNNC.
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The numerical simulations of AFNNC for the Chua’s chaotic circuit, (a)-(c) The trajectories of the
system states, (d)-(f) The associated control efforts, (g)-(i) The sliding hyperplane
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The numerical simulations of RCMAC for the Chua’s chaotic circuit, (a)-(c) The trajectories of the
system states, (d)-(f) The associated control efforts, (g)-(i) The sliding hyperplane
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Example 2: A three-links robot manipulator

(1)

7(t)

Figure 7
A three-links robot manipulator

A three-links robot manipulator is depicted as Fig. 7. The dynamic equation is
given as follows [21]:

M(@)d+C(a.9)d+g(a) +7, =7, (49)
where
Zgl +g492 +g5923 2gz +g492 +g693 2g3 +g5923+g693 100
M(q) = 9492 + d_sgza 292 +g693 293 +g693 110}
gsgzs gsgs ng 111
_ng4§2_qzd_5§23 _q2§4§2_(?12d_5§23 _(:]2Q5§23_.(J3g5§23
{_q3g5§23_q3g6§3} _(']3_6§3_c.'13d_5§23 _q3g6§3_91d_5§23
_q1g4§z _q1g5§23 _q1g6§3 _qzd_e§3
g(q:q) = _Q3gs§3+Q1g4§z +q1g5§za _q3g6§3 _d_e§3(q1+qz +q3)
q1g5§23+Q1gs§3+qzd_e§3 ge§3(q1+qz) 0

1 1 1 1
52191 a,C + Egzgu a,C, +a,C,+ §§39123 m.g
1 1 =
g((]) = 0 Eézgu a,C,+ 52239123 ng and
m
0 0 %239123 _39
0.2sin(2t)
7, =| 0.1cos(2t) |.
0.1sin(t)
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In (39), q=[q,(t),q,(t), g,(t)]" eR® is the angular position vector, g, ¢e R’ are
the joint velocity and acceleration vector, respectively, M(q) € R*?is the inertia
matrix, = € R’is the input torque vector, C(q,q) e ®*is the Coriolis/Centripetal
matrix, g(q) e R’ is the gravity vector, and z, € R® is the external disturbance.
The acceleration of gravity is g =9.8m/s?. m, is the link mass; a, is the link
length; the short hand notations are defined as s; = sin(gi +gj) ) G = cos(gi +9j) ;
and d, is defined as in Table 1. In Table 1, i, denotes the moment of inertia
(kg m?). The detail data of system parameters are given in Table 1.

Table 1
The system parameters of robot manipulator

2 .
d; =0.5[(0.25m, +m, +my)a; +i,]

94 = [0'5m2 + m3]§1§2

2 .
d, =0.5[(0.25m, + m;)a; +i,]

d,=05m,a a

2 .
d,=05[(0.25m,)a; +i,]

dg=05m.a,a,

32193
a a, =05m a,=04m a,=03m
m, m, =1.2kg m, =1.5kg m, =3.0kg

i, =4333x10°° kgm®

i, =25.08x107% kgm?

i,=3267x10"° kgm?

The dynamic equation (52) can be expressed as
X(t) = F(x(1) +G(x(®) u(t) +d(t),

X(DA[G, (1), 0, (1), ()] =[x, (1), X, (1), x0T,
f(x() =-M " (@)[C(a,a)d + g(a)] G(x(®)=M"(a), dt)=-M"(a)z,

and u(t) = [z, (t), 7, (t), z5(t)]" € R®. The reference trajectories are described as a
reference model output and a sinusoid function at different time. When t<11.2
sec, the reference models are described as
X, (t) =—-21.13x,(t) —111.63x,,(t) +111.63 ,, for i =1,2,3. The initial conditions
of the robot manipulator are given
as x(0)=0.3 x,(0)=0.1, x,(0)=0.2, x,(0)=0, %,(0)=0 and %,(0)=0. The
initial  conditions of the  reference models are given as
%,(0) =0, %,,(0)=0, X,,(0)=0, %,(0)=0, %,,(0)=0 and X,,(0)=0.  The
reference inputs are unit periodic rectangular signals. When t>11.2 sec, a
sinusoid function command is used. For the proposed control scheme, the sliding
hyperplane is designed as s(e(t)) =€(t)+10e(t). The proposed RCMAC is
characterized as:

(50)

where

* number of input state variables: n, =3,

* number of elements for each state variable: n, =5 (elements),
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* generalization: n, =4 (elements/ block),

e number of blocks for each state variable:
n, = 2 (blocks/layer) x4 (layer) = 8 (blocks),

e number of receptive-fields: n, =2 (receptive-fields/layer) x4 (layer)
= 8 (receptive-fields),

* receptive-field basis functions: gz, =exp[-(p,, —¢,)?/v:] for i=1,2,3 and
k=12---8.

The inputs of RCMAC are s,(t),s,(t) and s,(t); while the input spaces of input
signals are normalized within {[-1.5,1.5][-1.5,1.5][-1.5,1.5]} . The initial means
of the Gaussian functions are divided equally and are set as
[c,,Cy,s Csi Cyi Cisy Cgs Gy G ] =[-2.1,—1.5,-0.9,-0.3,0.3,0.9,1.5,2.1] and the
initial variances are setas v, =1.2 for i=1,2,3 and k=1, 2,---,8. The learning-
rate matrices of RCMAC are chosen as =, =501,,, = ==, =5, =0.05l
and the specified attenuation constant diagonal matrix R =0.35l,,. The

simulation results of AFNNC for the three-links robot manipulator are shown in
Fig. 8. The trajectories of the system states are plotted in Figs. 8(a)-(f) for
g,(t), a,(t), g,(t), g,(t), q,(t) and g,(t), respectively. The associated control

efforts u,(t), u,(t), u,(t) are depicted in Figs. 8(g)-(i). Moreover, the sliding
hyperplanes s, (t) , s,(t) and s,(t) are shown in Figs. 8(j)-(I).

[x

2424
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Figure 8
The numerical simulations of AFNNC for the three-links robot manipulator, (a)-(f) The trajectories of
the system states, (g)-(i) The associated control efforts, (j)-(I) The sliding hyperplane

The simulation results of RCMAC for the three-links robot manipulator are shown
in Fig. 9. The trajectories of the system states are plotted in Figs. 9(a)-(f) for
g,(t), a,(t), g,(t), g,(t), q,(t) and g,(t), respectively. The associated control
efforts  u,(t), u,(t), u,(t) are depicted in Figs. 9(g9)-(i). The sliding
hyperplanes s, (t) , s,(t) and s,(t) are shown in Figs. 9(j)-(I). From the simulation
results comparison, the proposed RCMAC can also achieve better control

performance with smaller tracking error than the AFNNC. Moreover, the
chattering phenomenon in AFNNC has been much reduced by applying RCMAC.
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Figure 9

The numerical simulations of RCMAC for the three-links robot manipulator, (a)-(f) The trajectories of
the system states, (g)-(i) The associated control efforts, (j)-(I) The sliding hyperplane

Conclusions

This paper proposes an intelligent robust control system for a class of uncertain
nonlinear multivariable systems via sliding mode technology. The proposed
control system consists of an adaptive RCMAC and a robust controller. The
adaptive RCMAC is a main tracking controller utilized to mimic the ideal sliding
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mode controller, and the parameters of the adaptive RCMAC are on-line tuned by
the derived adaptive law from a Lyapunov function. Based on the H” control
approach, the robust controller is employed to efficiently suppress the influence of
residual approximation error between the ideal sliding mode controller and
adaptive RCMAC, so that the robust tracking performance of the system can be
guaranteed. Finally, the simulation results of two multivariable nonlinear systems
have demonstrated the effectiveness of the proposed control scheme.
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