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Abstract: This paper develops an intelligent robust control algorithm for a class of 

uncertain nonlinear multivariable systems by using a recurrent-cerebellar-model-

articulation-controller (RCMAC) and sliding mode technology. The proposed control 

algorithm consists of an adaptive RCMAC and a robust controller. The adaptive RCMAC is 

a main tracking controller utilized to mimic an ideal sliding mode controller, and the 

parameters of the adaptive RCMAC are on-line tuned by the derived adaptive laws from 

the Lyapunov function. Based on the   H control approach, the robust controller is 

employed to efficiently suppress the influence of residual approximation error between the 

ideal sliding mode controller and the adaptive RCMAC, so that the robust tracking 

performance of the system can be guaranteed. Finally, computer simulation results on a 

Chua’s chaotic circuit and a three-link robot manipulator are performed to verify the 

effectiveness and feasibility of the proposed control algorithm. The simulation results 

confirm that the developed control algorithm not only can guarantee the system stability 

but also achieve an excellent robust tracking performance. 
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1 Introduction 

In recent year, controls of uncertain nonlinear systems have been one of active 

research topics for many control engineering. Various control efforts have been 

utilized to design and analyze the uncertain nonlinear systems. Sliding mode 

control (SMC) has been confirmed as a powerful robust scheme for controlling the 

nonlinear systems with uncertainties [1], [2]. The most outstanding features of 

SMC are insensitive to system parameter variations, fast dynamic response and 

external disturbance rejection [1]. However, in practical applications, SMC suffers 

two main disadvantages. One is that it requires the system models that may be 

difficult to obtain in some cases. The other is that because the magnitude of 

uncertainty bound is unknown, the large uncertainty bound is often required to 

achieve robust characteristics; however, this will lead the control input chattering. 

Neural networks (NNs) possess several advantages such as parallelism, fault 

tolerance, generalization and powerful approximation capabilities, so that NNs 

have been applied for system identifications and controls [3]-[6]. Some significant 

results indicate that the main property of NNs is adaptive learning so that it can 

uniformly approximate arbitrary input-output linear or nonlinear mappings on 

closed subsets. Based on this property, a number of researchers have proposed the 

NN-based adaptive sliding mode controllers which combine the advantages of the 

sliding mode control with robust characteristics and the NNs with on-line adaptive 

learning ability; so that the stability, convergence and robustness of the system can 

be improved [7]-[9]. For example, Lin and Hsu presented an NN-based hybrid 

adaptive sliding mode control system [7]; in this approach, NN is used as a 

compensation controller. In [8], Tsai etc. presented a neuro-sliding mode control 

that utilized two parallel neural networks to realize equivalent control and 

corrective control; thus the system performance can be improved and the 

chattering can be eliminated. In [9], Da introduced an identification-based sliding 

mode control and the bound of uncertainties is also not required. However, the 

above approaches suffer the computational complexity. 

On the neural network structure aspect, NNs can be classified as feedforward 

neural network (FNN [3], [5], [8], [9]) and recurrent neural network (RNN [4], [6], 

[7]).
 
As known, FNN is a static mapping. Moreover, the weight updates of FNNs 

do not utilize the internal network information so that the function approximation 

is sensitive to the training data. For RNNs, of particular interest is their ability to 

deal with time varying input or output through their own natural temporal 

operation [7]. Thus, RNN is a dynamic mapping and demonstrates good control 

performance in the presence of unmodelled dynamics. However, no matter for 
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FNNs or RNNs, the learning is slow since all the weights are updated during each 

learning cycle. Therefore, the effectiveness of NN is limited in problems requiring 

on-line learning. 

Cerebellar-model-articulation-controller (CMAC) is classified as a non-fully 

connected perceptron-like associative memory network with overlapping 

receptive-fields [10]; and it intends to resolve the fast size-growing problem and 

the learning difficult in currently available types of neural networks (NNs). 

Comparing to neural networks, CMACs possess good generalization capability, 

fast learning ability and simple computation [10], [11]. This network has already 

been shown to be able to approximate a nonlinear function over a domain of 

interest to any desired accuracy [11]-[13]. For the reasons, CMACs have adopted 

widely for the closed-loop control of complex dynamical systems in recent 

literatures [14]-[17]. However, the major drawback of existing CMACs is that 

their application domain is limited to static problem due to their inherent network 

structure. 

In order to resolve the static CMAC problem and preserve the main advantage of 

SMC with robust characteristics, this paper develops an intelligent robust control 

algorithm for a class of uncertain nonlinear multivariable systems via sliding 

mode technology. The proposed control system is comprised of an adaptive 

recurrent CMAC (RCMAC) and a robust controller. The adaptive RCMAC is a 

main tracking controller utilized to mimic an ideal sliding mode controller, and the 

parameters of the adaptive RCMAC are on-line tuned by the derived adaptive 

laws. Moreover, based on the   H control approach, the robust controller is 

employed to efficiently suppress the influence of residual approximation error 

between the ideal sliding mode controller and the adaptive RCMAC, so that the 

robust tracking performance of the system can be guaranteed. Finally, two 

examples are presented to support the validity of the proposed control algorithm. 

2 System Description 

Consider the nth-order multivariable nonlinear systems expressed in the following 

form: 

)()())(())(()()( tttttn
duxGxfx  , 

)()( tt xy   (1) 

where 

  ])( , ,)(,)([)(
21

mT

m
tututut  u is the control input vector of the system, 

 mT

m txtxtxtt  ])( , ,)(,)([)()( 21 xy is the system output vector, 

 mnTTnTT tttt  ])(, ,)(,)([)( 1)-(
xxxx   is the state vector of the system, 



C-H. Chen et al.       Intelligent Robust Control for Uncertain Nonlinear Multivariable Systems using  
 Recurrent Cerebellar Model Neural Networks 

 – 10 – 

  ))(( mt xf   is an unknown but bounded smooth nonlinear function, 

 mmt ))((xG  is an unknown but bounded control input gain matrix, 

 mT

m
tdtdtdt  ])( ,  ,)(,)([)(

21
d  is an external bounded disturbance. 

Assume that the nominal model of the multivariable nonlinear systems (1) can be 

represented as 

)())(()(
 

)( ttt
nn

n
uGxfx  ,                                                                                    (2) 

where  ))(( t
n

xf is the nominal function of ))(( txf  and   
n

G is the nominal 

constant gain of .))(( txG  By appropriately choosing the control parameters and 

suitably arranging the control inputs and their directions,   
n

G can be chosen to be 

positive definite and invertible. If the external disturbance and uncertainties are 

included, the multivariable nonlinear systems (1) can be described as 

)()( ]))((Δ[))((Δ))(()()( tttttt
nn

n
duxGGxfxfx   

   )),(()(  ))(( tttt nn xluGxf  ,                                                                  (3) 

where  ))((Δ txf and  ))((Δ txG denote the system uncertainties, ),)(( ttxl  is 

referred to as the lumped uncertainty, defined as 

).()())((Δ ))((Δ ),)(( tttttt duxGxfxl   Then (1) can be expressed as state 

and output equations as follows: 

)]),(()( ))(([)()(
 

tttttt
nnmm

xluGxfBxAx  , 

)()( tt T

m xCy  ,                                                                                                        (4) 
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The objective of a control system is to design a suitable controller such that the 

system state vector )(tx  can track a desired trajectory 

.])(, ,)(,)([)( 1)-( mnTTn

d

T

d

T

dd
tttt  xxxx   To begin with, define the tracking 

error ,)()()( m

d ttt  xxe and the tracking error vector of the system is 

defined as .)](,),(),([)( )1( mnTTnTT tttt  
eeee   The reference trajectory 

dynamic equation can be expressed as 

)()()( )( ttt n

dmdmd
xBxAx  .                                                                                 (5) 
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Subtracting (4) from (5), gives 

)]),(()( ))(()([)()(  

)( ttttttt nn

n

dmm xluGxfxBeAe  .                                   (6) 

3 Sliding Mode Control System 

Sliding mode control (SMC) is one of the effective nonlinear robust control 

schemes since it provides system dynamics with an invariance property to 

uncertainties once the system dynamics are controlled in the sliding mode [1], [2]. 

In general, SMC design can be derived into two phases, that is the reaching phase 

and the sliding phase. The system state trajectory in the period of time before 

reaching the sliding surface is called the reaching phase. Once the system 

trajectory reaching the sliding surface, it stays on it and slides along the sliding 

surface to the origin is the sliding phase. When the states of the controlled system 

enter the sliding mode, the dynamics of the system are determined by the pre-

specified sliding surface and are independent of uncertainties. In order to 

implement SMC, the first step is to select a sliding surface that models the desired 

closed-loop performance in state variable space. Then, design the control law such 

that the system state trajectories are forced toward the sliding surface and stay on 

it. Thus, the sliding hyperplane can be defined as: 

)()())((

1

ttλ
dt

d
t T

n

eKees 











,                                                                       (7) 

where mmnTnn λnλ   ],,)1(,[ 21
IIIK   satisfies that all roots of the 

equation: 

0 
IIII

1221 )1()1( nnnn λqλnλqnq                                              (8) 

are in the open left half-plane, in which q is the Laplace operator. The process of 

SMC can be divided into two phases, that is the reaching phase with 0))(( tes  

and the sliding phase with 0))(( tes . If the sliding mode exists on the sliding 

surface, then the motion of the system is governed by the linear differential 

equation presented in (7) whose behavior is dictated by the sliding surface design 

[1], [2]. Thus, the tracking error vector decays exponentially to zero, so that 

perfect tracking can be asymptotically achieved. Thus the control objective 

becomes the design of a control law to force 0))(( tes . A sufficient condition for 

the existence and reachable of the sliding hyperplane in the system state space is 

to choose the control law such that the following reaching condition is satisfied: 

)()()())(())(()))(())(((
2

1

11

tsσtststttt
dt

d
i

m

i
ii

m

i
i

TT



 eseseses ,                     (9) 
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where iσ  is a small positive constant. Taking the time derivative of both sides of 

(7) and using (6), yields 

)),(()(  ))(()()()())(( )( tttttttt nn

n

dm

TT
xluGxfxeAKeKes   .             (10) 

Therefore, an ideal sliding mode controller 
ISMC

u  which guarantees the reaching 

condition must satisfy the following condition: 

)]),(()(  ))(()()())[(())(())(( )( ttttttttt nn

n

dm

TTT
xluGxfxeAKeseses   

)(
1

tsσ
i

m

i

i


 .                                                                                                      (11) 

If the system dynamics and the lumped uncertainty are exactly known, an ideal 

sliding mode controller can be designed as follows to satisfy inequality (11) 

] )))(((  )()(),)(())(([ )(1 tsgnttttt m

Tn

dnnISMC esσeAKxxlxfGu   ,        (12) 

where ) (sgn  is a sign function and ) ,...., ,.... ,(
1 mi

σσσdiagσ . However, in 

practical applications, the dynamical functions are not precisely known, and the 

lumped uncertainty is always unknown. Therefore, the ideal sliding mode 

controller in (12) is unobtainable. Thus, an intelligent robust control algorithm 

based on RCMAC and sliding mode technology is proposed in the following 

section to achieve robust tracking performance. 

4 Intelligent Robust Control Algorithm 

The configuration of the intelligent robust control algorithm, which consists of an 

adaptive RCMAC and a robust controller, is depicted in Fig. 1. 

The control system is assumed to take the following form: 

RCARCMAC uuu  ,                                                                                               (13) 

where 
ARCMAC

u  is an adaptive RCMAC and 
RC

u  is a robust controller. The adaptive 

RCMAC 
ARCMAC

u  is a main tracking controller utilized to mimic the ideal sliding 

mode controller, and the parameters of the adaptive RCMAC are on-line tuned by 

the derived adaptive laws from the Lyapunov function. The robust controller 
RC

u  

is employed to efficiently suppress the influence of residual approximation error 

between the ideal sliding mode controller and adaptive RCMAC, so that the robust 

tracking performance of the system can be guaranteed. 
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Figure 1 

The configuration of the intelligent robust control system 

4.1 Description of RCMAC 

An RCMAC is proposed and shown in Fig. 2, in which   T denotes a time delay. 

This RCMAC is composed of input space, association memory space with 

recurrent weights, receptive-field space, weight memory space and output space. 
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Figure 2 

Architecture of an RCMAC 
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The signal propagation and the basic function in each space are described as 

follows. 

1) Input space I : For a given a

a

nT

n
ppp  ],,,[ 

21
p , where

a
n  is the 

number of input state variables, each input state variable   
i

p must be quantized 

into discrete regions (called elements) according to given control space. The 

number of elements,
e

n , is termed as a resolution. 

2) Association memory space A : Several elements can be accumulated as a block, 

the number of blocks, 
b

n , is usually greater than or equal to two. A  denotes an 

association memory space with 
c

n  (
bac

nnn  ) components. In this space, each 

block performs a receptive-field basis function, the Gaussian function is adopted 

here as the receptive-field basis function, which can be represented as 








 


2

2)(

ik

ikrik

ik
v

cp
exp ,  for 

b
nk ,2,1 ,                                                         (14) 

where   
ik

 represents the output of the k-th receptive-field basis function for the i-

th input with the mean   
ik

c and variance  . 
ik

v In addition, the input of this block 

can be represented as 

)()()( Ttrtptp
ikikirik

  ,                                                                               (15) 

where 
ik

r  is the recurrent weight, and )( Tt
ik

 denotes the value of   
ik

 through 

delay time T . It is clear that the input of this block contains the memory 

term )( Tt
ik

 , which stores the past information of the network and presents a 

dynamic mapping. Figure 3 depicts the schematic diagram of a two-dimensional 

RCMAC with 5
e

n  and 4
f

n  (
f

n  is the number of elements in a complete 

block); in which 
1

p  is divided into blocks 
1a

B  and 
1b

B , and 
2

p  is divided into 

blocks 
2a

B  and 
2b

B . By shifting each variable an element, different blocks will be 

obtained. For instance, blocks 
1c

B  and 
1d

B  for 
1

p , and blocks 
2c

B  and 
2d

B  for 

2
p  are possible shifted elements for the second layer; and 1eB and 1fB  for 

1
p , 

and 2eB and 2fB  for 
2

p  for the third layer; and 1gB and 1hB  for 
1

p , and 2gB and 

2hB  for 
2

p  for the fourth layer. The receptive-field basis function   
ik

 of each 

block in this space has three adjustable parameters 
ik

c , 
ik

v  and 
ik

r . 
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Figure 3 

A two-dimensional RCMAC with 4fn  and 5en  

3) Receptive-field space R : Areas formed by blocks, referred to as 
21 aa

BB  and 

21 bb
BB  are called receptive-fields. The number of receptive-fields, , 

d
n is equal to 

b
n  in this study. The k-th multi-dimensional receptive-field function is defined as 
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be expressed in a vector form as 
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4) Weight memory space W : Each location of R  to a particular adjustable value 

in the weight memory space can be expressed as 
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where d

d

nT

pnkppp
www  ],,[

1
w , and 

kp
w  denotes the connecting weight 

value of the p-th output associated with the k-th receptive-field. 

5) Output space O : The output of RCMAC is the algebraic sum of the activated 

weights in the weight memory, and is expressed as 





dn

k

kkp

T

pp
wo

1

Φw ,  for 
o

np ,2,1 .                                                             (19) 

The outputs of RCMAC can be expressed in a vector notation as 

ΦWo
TT

np O

ooo  ],,[
1

 .                                                                             (20) 

In the two-dimensional case shown in Fig. 3, the output of RCMAC is the sum of 

the value in receptive-fields 
21 bb

BB , 
21 dd

BB , 
21 ff

BB  and ,
21 gg

BB where the input 

state is (0.8,0.8). The architecture of RCMAC is designed to have the advantages 

of simple structure with dynamic characteristics. The role of the recurrent loops is 

to consider the past value of the receptive-field basis function in the association 

memory space. Thus, this RCMAC has dynamic characteristics. 

4.2 Robust Controller Design 

Subtracting (12) from (10), yields 

))](([ ][ ))(( tsgnt ISMCn esσuuGes  .                                                             (21) 

Assume there exists an optimal RCMAC *

ARCMAC
u  to estimate the ideal sliding 

mode controller 
ISMC

u  such that 

εΦWεrvcWpuu  ******* ),,,,( 
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where T

mi
] ,...., ,.... ,[

1
ε  is a minimum reconstructed error vector; *

W , 

,*
Φ

***    and    , rvc are the optimal parameter matrix and vectors of 

,W ,Φ ,   and    , rvc  respectively. However, the optimal RCMAC cannot be 

obtained; thus, an estimating RCMAC is used to estimate the optimal RCMAC. 

From (20), the control law (13) can be rewritten as follows: 

RC

T

RCARCMAC
t uΦWurvcWpuu  ˆˆ)ˆ ,ˆ ,ˆ,ˆ,()( ,                                                   (23) 

where ,Ŵ ,Φ̂ rvc ˆ   and  ˆ  ,ˆ  are the estimated matrix and vectors of 

,*
W ,*

Φ ,   and    , ***
rvc  respectively. Thus, the dynamic equation (21) can be 

expressed via (22) and (23) as 

))](([  ] [ ))(( * tsgnt RCARCMACARCMACn esσuuεuGes   



Acta Polytechnica Hungarica Vol. 12, No. 5, 2015 

 – 17 – 
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n esσuεΦWΦWG  ,                                    (24) 

where ΦΦΦWWW ˆ~
  and  ˆ~ **  . Moreover, the linearization technique is 

employed to transform the multi-dimensional receptive-field basis functions into a 

partially linear form. The expansion of Φ
~

 in Taylor series can be obtained as 
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,                                                                                     (25) 

where ;|, , , , ˆ

1 dadd nnn
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β  is a vector of higher-order terms. Moreover, 
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
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
k

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r


k
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Rewriting (25), it can be obtained that 

βrΦvΦcΦΦΦ  ~~~ˆ*

rvc
.                                                                           (29) 
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Substituting (25) and (29) into (24), yields 

))](([  ])~~~(ˆ)~~~ˆ(
~

[ ))(( tsgnt RCrvc

T

rvc

T

n esσuεβrΦvΦcΦWβrΦvΦcΦΦWGes 
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~

)~~~(ˆˆ~
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[ tsgnRCrvc

TT

n esσuωrΦvΦcΦWΦWG  ,                     (30) 

where the approximation error .)~~~(
~*

εrΦvΦcΦWβWω 
rvc

TT  

In case of the existence of ,ω  consider a specified   


H tracking performance [18] 
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2211   )()0(~)0(~)0(~)0(~ rΞrvΞv ,                     (31) 

where 
rvcw

ΞΞΞΞ   and     ,   ,  are diagonal positive constant learning-rate matrices, 

and i is a prescribed attenuation constant. If the system starts with initial 

conditions ,)0( 0s ,)0(
~

0W ,)0(~ 0c ,)0(~ 0v ,)0(~ 0r then the   


H tracking 

performance in (31) can be rewritten as 
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where 
T

ii
dttss

 

0 

22

  )( and 
T

ii
dtt

 

0 

22

 . )( This shows that i is an attenuation 

level between the approximation error  )( t
i

 and system output function ).(ts
i

 

If i , this is the case of minimum error tracking control without 

approximation attenuation [18]. Therefore, the following theorem can be stated 

and proved. 

Theorem 1: Consider the nth-order multivariable nonlinear systems represented 

by (1). The intelligent robust control system is defined as in (13), in which the 

adaptive laws of RCMAC are designed as in (33)-(36) and the robust controller is 

designed as in (37). Then, the robust tracking performance in (31) can be achieved 

for the prescribed attenuation level   ..., 2, 1,  , mii  , where R=diag[ 1 , 2 ,…, 

m ] mm  is a diagonal matrix. 

))((ˆ ˆ tT

w esΦΞW 


,                                                                                             (33) 

))((ˆ ˆ tT

cc esWΦΞc  ,                                                                                            (34) 

))((ˆ ˆ tT

vv esWΦΞv  ,                                                                                            (35) 
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))((ˆ ˆ tT

rr esWΦΞr  ,                                                                                            (36) 

))(( )()(2 212 tRC esRRu I  .                                                                              (37) 

Proof:  The Lyapunov function candidate is given by 

  ~~~~~~)
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Taking the derivative of the Lyapunov function and using (30), yields 
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It can be noted that )))(( ˆ
~

(ˆ~
 ))(( ttrt TTTT

esΦWΦWes   and 

0))](([   ))(( 1  tsgnt n
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From (33)-(36) and using (37), (40) can be rewritten as 
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Assuming ),[0, ],[0, 
2

 TTL
i

  integrating the above equation 

from  0 t to  , Tt  yields 
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Since 0)( TV , the above inequality implies the following inequality 
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Using (38), the above inequality is equivalent to the following 
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Thus the proof is completed. 

5 Simulation Results 

To illustrate the effectiveness of the proposed control system, it is applied to control 

a Chua’s chaotic circuit and a three-links robot manipulator. Moreover, an adaptive 

fuzzy neural network controller (AFNNC) [19] and the proposed RCMAC are 

applied to these two systems for comparison. 

Example 1: Chua’s chaotic circuit 

A typical Chua’s chaotic circuit consists of one linear resistor ( R ), two capacitors 

(
1

C ,
2

C ), one inductor ( L ) and one nonlinear resistor ( )(
1C

vg ) as shown in Fig. 4. 
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Figure 4 

Chua’s chaotic circuit 

The dynamic equations of the Chua’s circuit are written as [20] 
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)())((
1

332

tdtuv
L

i
CL

 ,                                                                                  (47) 

where  ])(  ,)(  ,)([)( 321

Ttututut u denotes the control input 

and Ttdtdtdt ])(  ,)(  ,)([)( 321d denotes the external disturbance. The 

voltages ),( 
1

tv
C

 )(
2

tv
C

and the current  )( ti
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are the state variables. Thus, the state 

vector of chaotic system is defined as 
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The external disturbance is given as .
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The physical parameters of chaotic circuit are assumed as 
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ΔC  denote the unknown nonlinear time-varying 

perturbations [19]. The nominal values are given as 
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where
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 is the input signal to the reference model. The initial conditions of the 

Chua’s chaotic circuit and the reference models are given as 
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reference inputs are unit periodic rectangular signals. For the proposed control 

scheme, the sliding hyperplane is design as ).( ))(( tt ees   The proposed RCMAC 

is characterized as: 
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 number of input state variables: 3
a

n , 

 number of elements for each state variable: 5
e

n (elements), 

 generalization: 4
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 number of blocks for each state variable: 2
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Gaussian functions are divided equally and are set as 

]8.2,2,2.1,4.0,4.0,2.1,2,8.2[],,,,, ,,[
87654321


iiiiiiii

cccccccc  and the 

initial variances are set as 1.6
ik

v  for 3 2, 1,i  and 8,,2,1 k . The learning-

rate matrices of RCMAC are selected as 
242488

5.0    ,30


 IΞΞΞIΞ
rvcw

 

and the specified attenuation constant diagonal matrix is .2.0 
33

 IR  

The simulation results of AFNNC for the Chua’s chaotic circuit are shown in Fig. 

5. The trajectories of the system states are plotted in Figs. 5(a)-(c) for )(
1

tv
C

, 

)(
2

tv
C

 and )(ti
L

, respectively. The associated control efforts  )(  ,)(  ,)(
321

tututu are 

depicted in Figs. 5(d)-(f). Moreover, the sliding hyperplanes )( 
1

ts , )(
2

ts  and )( 
3

ts  

are shown in Figs. 5(g)-(i). The simulation results of RCMAC for the Chua’s 

chaotic circuit are shown in Fig. 6. The trajectories of the system states are plotted 

in Figs. 5(a)-(c) for )(
1

tv
C

, )(
2

tv
C

 and )(ti
L

, respectively. The associated control 

efforts  )(  ,)(  ,)(
321

tututu are depicted in Figs. 6(d)-(f). Moreover, the sliding 

hyperplanes )( 
1

ts , )(
2

ts  and )( 
3

ts  are shown in Figs. 6(g)-(i). From the 

simulation results, it can be seen that the proposed RCMAC can provide better 

control performance with smaller tracking error than the AFNNC. 
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Figure 5 

The numerical simulations of AFNNC for the Chua’s chaotic circuit, (a)-(c) The trajectories of the 

system states, (d)-(f) The associated control efforts, (g)-(i) The sliding hyperplane 
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Control  input (volt) 3 u

Time (sec)(f)

Time (sec)(g)

Sliding  hyperplane 1 s

Time (sec)(h)

Sliding  hyperplane 2 s

Time (sec)(i)

Sliding  hyperplane 3 s

Time (sec)

Inductor current (ampere) Li 

(c)

3 x

3 dx

Capacitor voltage (volt)
1

 Cv

Time (sec)(a)

1 x

1 dx

Capacitor voltage (volt) 
2

 Cv

Time (sec)(b)

2 x
2 dx

Time (sec)

Control  input (ampere) 1 u

(d)

Control  input (ampere) 2 u

Time (sec)(e)  

Figure 6 

The numerical simulations of RCMAC for the Chua’s chaotic circuit, (a)-(c) The trajectories of the 

system states, (d)-(f) The associated control efforts, (g)-(i) The sliding hyperplane 
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Example 2: A three-links robot manipulator 
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Figure 7 

A three-links robot manipulator 

A three-links robot manipulator is depicted as Fig. 7. The dynamic equation is 

given as follows [21]: 

ττqgqqqCqqM 
d

)(),()(  ,                                                                       (49) 
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In (39), 3

321
)]( ),(),([  Ttqtqtqq  is the angular position vector, 3 , qq  are 

the joint velocity and acceleration vector, respectively, 33)( qM is the inertia 

matrix, 3 τ is the input torque vector, 33),( qqC  is the Coriolis/Centripetal 

matrix, 3)( qg  is the gravity vector, and 3 
d
τ  is the external disturbance. 

The acceleration of gravity is 2/ 8.9 smg  . 
i

m  is the link mass; 
i

a  is the link 

length; the short hand notations are defined as )(
jiij

qqsins  , )(
jiij

qqcosc  ; 

and 
i

d  is defined as in Table 1. In Table 1, 
i

i  denotes the moment of inertia 

( 2 mkg ). The detail data of system parameters are given in Table 1. 

Table 1 

The system parameters of robot manipulator 

i
d  ])25.0[(5.0

1

2

13211
iammmd 

21324
]5.0[ aammd   

])25.0[(5.0
2

2

2322
iammd 

3135
5.0 aamd   

])25.0[(5.0
3

2

333
iamd 

3236
5.0 aamd   

i
a   ma  5.0

1
  ma  4.0

2
  ma  3.0

3
  

i
m  kgm  2.1

1
  kgm  5.1

2
  kgm  0.3

3
  

i
i  23

1
 1033.43 kgmi   23

2
 1008.25 kgmi   23

3
 1067.32 kgmi   

The dynamic equation (52) can be expressed as 

)()())(())(()( ttttt duxGxfx  ,                                                                    (50) 

where ,])(  ),(  ,)([)]( ),(),([Δ)(
321321

TT txtxtxtqtqtqt x  

)],(),()[())((
1

qgqqqCqMxf 
 t     ),())((

1
qMxG


t  

d
t τqMd  )()(

1
  

and .])( ,)(,)([)( 3

321  Ttttt u  The reference trajectories are described as a 

reference model output and a sinusoid function at different time. When 2.11t  

sec, the reference models are described as 

 , 63.111)(63.111)(13.21)(
idididi

txtxtx   for .3 ,2 ,1i  The initial conditions 

of the robot manipulator are given 

as . 0)0(  and  0)0(  ,0)0(  0.2,)0(  0.1,)0(  ,3.0)0( 
321321

 xxxxxx   The 

initial conditions of the reference models are given as 

. 0)0(  and  0)0(  ,0)0(  0,)0(  0,)0(  ,0)0( 
321321


dddddd

xxxxxx  The 

reference inputs are unit periodic rectangular signals. When 2.11t  sec, a 

sinusoid function command is used. For the proposed control scheme, the sliding 

hyperplane is designed as ).(10)( ))(( ttt eees    The proposed RCMAC is 

characterized as: 

 number of input state variables: 3
a

n , 

 number of elements for each state variable: 5
e

n (elements), 
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 generalization: 4
f

n  (elements/ block), 

 number of blocks for each state variable: 

2
b

n (blocks/layer) 4 (layer) 8 (blocks), 

 number of receptive-fields: 2
d

n (receptive-fields/layer) 4 (layer) 

8 (receptive-fields), 

 receptive-field basis functions: ]/)([ 22

ikikrikik
vcpexp   for  3 2, 1,i  and 

.8,,2,1 k  

The inputs of RCMAC are )(
1

ts , )(
2

ts  and  );(
3

ts  while the input spaces of input 

signals are normalized within ]}5.1,5.1][5.1,5.1[]5.1,5.1{[  . The initial means 

of the Gaussian functions are divided equally and are set as 

]1.2,5.1,9.0,3.0,3.0,9.0,5.1,1.2[],,,,, ,,[
87654321


iiiiiiii

cccccccc  and the 

initial variances are set as 1.2
ik

v  for 3 2, 1,i  and 8,,2,1 k . The learning-

rate matrices of RCMAC are chosen as 
242488

05.0     ,50


 IΞΞΞIΞ
rvcw

 

and the specified attenuation constant diagonal matrix .35.0
33

 IR  The 

simulation results of AFNNC for the three-links robot manipulator are shown in 

Fig. 8. The trajectories of the system states are plotted in Figs. 8(a)-(f) for 

),(
1

tq ),(
2

tq ),(
3

tq ),(
1

tq )(
2

tq  and ),(
3

tq respectively. The associated control 

efforts  )(  ,)(  ,)(
321

tututu are depicted in Figs. 8(g)-(i). Moreover, the sliding 

hyperplanes )(
1

ts , )(
2

ts  and )(
3

ts are shown in Figs. 8(j)-(l). 
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Figure 8 

The numerical simulations of AFNNC for the three-links robot manipulator, (a)-(f) The trajectories of 

the system states, (g)-(i) The associated control efforts, (j)-(l) The sliding hyperplane 

The simulation results of RCMAC for the three-links robot manipulator are shown 

in Fig. 9. The trajectories of the system states are plotted in Figs. 9(a)-(f) for 

),(
1

tq ),(
2

tq ),(
3

tq ),(
1

tq )(
2

tq  and ),(
3

tq respectively. The associated control 

efforts  )(  ,)(  ,)(
321

tututu are depicted in Figs. 9(g)-(i). The sliding 

hyperplanes )(
1

ts , )(
2

ts  and )(
3

ts are shown in Figs. 9(j)-(l). From the simulation 

results comparison, the proposed RCMAC can also achieve better control 

performance with smaller tracking error than the AFNNC. Moreover, the 

chattering phenomenon in AFNNC has been much reduced by applying RCMAC. 
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Figure 9 

The numerical simulations of RCMAC for the three-links robot manipulator, (a)-(f) The trajectories of 

the system states, (g)-(i) The associated control efforts, (j)-(l) The sliding hyperplane 

Conclusions 

This paper proposes an intelligent robust control system for a class of uncertain 

nonlinear multivariable systems via sliding mode technology. The proposed 

control system consists of an adaptive RCMAC and a robust controller. The 

adaptive RCMAC is a main tracking controller utilized to mimic the ideal sliding 



C-H. Chen et al.       Intelligent Robust Control for Uncertain Nonlinear Multivariable Systems using  
 Recurrent Cerebellar Model Neural Networks 

 – 32 – 

mode controller, and the parameters of the adaptive RCMAC are on-line tuned by 

the derived adaptive law from a Lyapunov function. Based on the   H control 

approach, the robust controller is employed to efficiently suppress the influence of 

residual approximation error between the ideal sliding mode controller and 

adaptive RCMAC, so that the robust tracking performance of the system can be 

guaranteed. Finally, the simulation results of two multivariable nonlinear systems 

have demonstrated the effectiveness of the proposed control scheme. 
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