
Acta Polytechnica Hungarica Vol. 9, No. 4, 2012

 – 193 –

Performance Evaluation Metrics for Software
Fault Prediction Studies

Cagatay Catal
Istanbul Kultur University, Department of Computer Engineering, Atakoy
Campus, 34156, Istanbul, Turkey, c.catal@iku.edu.tr

Abstract: Experimental studies confirmed that only a small portion of software modules
cause faults in software systems. Therefore, the majority of software modules are
represented with non-faulty labels and the rest are marked with faulty labels during the
modeling phase. These kinds of datasets are called imbalanced, and different performance
metrics exist to evaluate the performance of proposed fault prediction techniques. In this
study, we investigate 85 fault prediction papers based on their performance evaluation
metrics and categorize these metrics into two main groups. Evaluation methods such as
cross validation and stratified sampling are not in the scope of this paper, and therefore
only evaluation metrics are examined. This study shows that researchers have used
different evaluation parameters for software fault prediction until now and more studies on
performance evaluation metrics for imbalanced datasets should be conducted.

Keywords: performance evaluation; software fault prediction; machine learning

1 Introduction

Performance evaluation of machine learning-based systems is performed
experimentally rather than analytically [33]. In order to evaluate analytically, a
formal specification model for the problem and the system itself would be needed.
This is quite difficult and inherently non-formalisable for machine learners, which
are nonlinear and time-varying [40, 33]. The experimental evaluation of a model
based on machine learning is performed according to several performance metrics,
such as probability of detection (PD), probability of false alarm (PF), balance, or
area under the ROC (Receiver Operating Characteristics) curve. As there are
numerous performance metrics that can be used for evaluation, it is extremely
difficult to compare current research results with previous works unless the
previous experiment was performed by a researcher under the same conditions.
Finding a common performance metric can simplify this comparison, but a
general consensus is not yet reached. Experimental studies have shown that only a
small portion of software modules cause faults in software systems. Therefore, the

C. Catal Performance Evaluation Metrics for Software Fault Prediction Studies

 – 194 –

majority of software modules are represented with non-faulty labels and the rest
are marked with faulty labels during the modeling phase. These kinds of datasets
are called imbalanced / unbalanced / skewed, and different performance metrics
exist to evaluate the performance of fault prediction techniques that are built on
these imbalanced datasets. The majority of these metrics are calculated by using a
confusion matrix, which will be explained in later sections. Furthermore, ROC
curves are very popular for performance evaluation. The ROC curve plots the
probability of a false alarm (PF) on the x-axis and the probability of detection
(PD) on the y-axis. The ROC curve was first used in signal detection theory to
evaluate how well a receiver distinguishes a signal from noise, and it is still used
in medical diagnostic tests [45].

In this study, we investigate 85 software fault prediction papers based on their
performance evaluation metrics. In this paper, these metrics are briefly outlined
and the current trend is reflected. We included papers in our review if the paper
describes research on software fault prediction and software quality prediction.
We excluded position papers that do not include experimental results. The
inclusion of papers was based on the degree of similarity of the study with our
fault prediction research topic. The exclusion did not take into account the
publication year of the paper or methods used. We categorized metrics into two
main groups: the first group of metrics are used to evaluate the performance of the
prediction system, which classifies the module into faulty or non-faulty class; the
second group of metrics are used to evaluate the performance of the system, which
predicts the number of faults in each module of the next release of a system.
Therefore, researchers can choose a metric from one of these groups according to
their research objectives. The first group of metrics are calculated by using a
confusion matrix. These metrics were identified through our literature review and
this set may not be a complete review of all the metrics. However, we hope that
this paper will cover the major metrics applied frequently in software fault
prediction studies. This paper is organized as follows: Section 2 describes the
software fault prediction research area. Section 3 explains the performance
metrics. Section 4 presents the conclusions and suggestions.

2 Software Fault Prediction

Software fault prediction is one of the quality assurance activities in Software
Quality Engineering such as formal verification, fault tolerance, inspection, and
testing. Software metrics [30, 32] and fault data (faulty or non-faulty information)
belonging to a previous software version are used to build the prediction model.
The fault prediction process usually includes two consecutive steps: training and
prediction. In the training phase, a prediction model is built with previous
software metrics (class or method-level metrics) and fault data belonging to each

Acta Polytechnica Hungarica Vol. 9, No. 4, 2012

 – 195 –

software module. After this phase, this model is used to predict the fault-
proneness labels of modules that locate in a new software version. Figure 1 shows
this fault prediction process. Recent advances in software fault prediction allow
building defect predictors with a mean probability of detection of 71 percent and
mean false alarm rates of 25 percent [29]. These rates are at an acceptable level
and this quality assurance activity is expected to quickly achieve widespread
applicability in the software industry.

Figure 1

The software fault prediction process [34]

Until now, software engineering researchers have used Case-based Reasoning,
Neural Networks, Genetic Programming, Fuzzy Logic, Decision Trees, Naive
Bayes, Dempster-Shafer Networks, Artificial Immune Systems, and several
statistical methods to build a robust software fault prediction model. Some
researchers have applied different software metrics to build a better prediction
model, but recent papers [29] have shown that the prediction technique is much
more important than the chosen metric set. The use of public datasets for software
fault prediction studies is a critical issue. However, our recent systematic review
study has shown that only 30% of software fault prediction papers have used
public datasets [5].

3 Performance Evaluation Metrics

According to the experimental studies, a majority of software modules do not
cause faults in software systems, and faulty modules are up to 20% of all the
modules. If we divide modules into two different types, faulty and non-faulty, the
majority of modules will belong to the non-faulty class and the rest will be
members of the faulty class. Therefore, datasets used in software fault prediction
studies are imbalanced. Accuracy parameter cannot be used for the performance
evaluation of imbalanced datasets. For example, a trivial algorithm, which marks
every module as non-faulty, can have 90% accuracy if the percentage of faulty
modules is 10%. Therefore, researchers use different metrics for the validation of
software fault prediction models. In this section, the metrics identified during our
literature review will be briefly outlined.

C. Catal Performance Evaluation Metrics for Software Fault Prediction Studies

 – 196 –

3.1 Metrics for Evaluation of Classifiers

Model validation for machine learning algorithms should ensure that data were
transformed to the model properly and the model represents the system with an
acceptable accuracy. There are several validation techniques for model validation,
and the best known one is N-fold cross-validation technique. This technique
divides the dataset into N number of parts, and each of them consists of an equal
number of samples from the original dataset. For each part, training is performed
with (N-1) number of parts and the test is done with that part. Hall and Holmes
[17] suggested repeating this test M times to randomize the order each time [29].
Order effect is a critical issue for performance evaluation because certain
orderings can improve / degrade performance considerably [13, 29]. In Table 1, a
confusion matrix is calculated after N*M cross-validation.

Table 1
Confusion Matrix

 NO (Prediction) YES (Prediction)
NO (Actual) True Negative (TN)

A
False Positive (FP)

B
YES (Actual) False Negative (FN)

C
True Positive (TP)

D

Columns represent the prediction results and rows show the actual class labels.
Faulty modules are represented with the label YES, and non-faulty modules are
represented with the label NO. Therefore, diagonal elements (TN, TP) in Table 1
show the true predictions and the other elements (FN, FP) reflect the false
predictions. For example, if a module is predicted as faulty (YES) even though it
is a non-faulty (NO) module, this test result is added to the B cell in the table.
Therefore, number B is incremented by 1. After M*N tests, A, B, C, and D values
are calculated. In the next subsections, these values (A, B, C, D) will be used to
compute the performance evaluation metrics.

3.1.1 PD, PF, Balance

The equations used to calculate probability of detection (PD), probability of false
alarm (PF), and accuracy metrics are shown in Formulas 1, 2, and 3 respectively.
The other term used for PD metric is recall.

PD = recall =
DC

D
+

 =
FNTP

TP
+

 (1)

PF =
BA

B
+

=
TNFP

FP
+

 (2)

Acta Polytechnica Hungarica Vol. 9, No. 4, 2012

 – 197 –

Accuracy =
D) C B (A

DA
+++

+ (3)

Balance metrics is the Euclidean distance between (0, 1) and (PF, PD) points. PD,
accuracy, and balance parameters should be maximized and PF metrics should be
minimized for fault predictors. Menzies et al. [29] reported that the best fault
predictors provide 71% of PD and 25% of PF values. They used PD, PF, and
balance parameters as the performance evaluation metrics in this study. Turhan
and Bener [38] showed that the independence assumption in the Naive Bayes
algorithm is not detrimental with principal component analysis (PCA) pre-
processing, and they used PD, PF, and balance parameters in their study.

3.1.2 G-mean1, G-mean2, F-measure

Some researchers use G-mean1, G-mean2, and F-measure metrics for the
evaluation of prediction systems, which are built on imbalanced datasets.
Formulas 6, 7, and 8 show how to calculate these measures, respectively. Formula
4 is used for precision parameter and True Negative Rate (TNR) is calculated by
using Formula 5. The formula for recall is given in Formula 1.

Precision =
FPTP

TP
+

 (4)

True Negative Rate (TNR) =
FPTN

TN
+

 (5)

G-mean1 = recall*Precision (6)

G-mean2 = TNRrecall * (7)

F-measure =
Precision recall

 Precision)*(recall 2
+

 (8)

Ma et al. [26] used G-mean1, G-mean2, and G-mean3 to benchmark several
machine learning algorithms for software fault prediction. They sorted algorithms
according to their performance results for each metric and marked the top three
algorithms for each metric. They identified the algorithm that provides G-mean1,
G-mean2, and F-measure values in the top three. According to this study,
Balanced Random Forests is the best algorithm for software fault prediction
problems. Furthermore, they reported that boosting, rule set, and single tree
classifiers do not provide acceptable results even though these algorithms have
been used in literature. Koru and Liu [23] evaluated the performance of classifiers
according to the F-measure value. Arisholm et al. [1] built 112 fault prediction
models and compared them according to precision, recall, accuracy, Type-I error,
Type-II error, and AUC parameters. The following sections will explain AUC,
Type-I, and Type-II errors.

C. Catal Performance Evaluation Metrics for Software Fault Prediction Studies

 – 198 –

3.1.3 AUC

Receiver Operating Characteristics (ROC) curves can be used to evaluate the
performance of software fault prediction models. In signal detection theory, a
ROC curve is a plot of the sensitivity vs. (1-specificity) and it can also be
represented by plotting the probability of false alarm on the X-axis and the
probability of detection on the Y-axis. This curve must pass through the points (0,
0) and (1, 1) [29]. The important regions of ROC curve are depicted in Figure 2.
The ideal position on ROC curve is (0, 1) and no prediction error exists at this
point. A line from (0, 0) to (1, 1) provides no information and therefore the area
under ROC curve value (AUC) must be higher than 0.5. If a negative curve
occurs, this means that the performance of this classifier is not acceptable. A
preferred curve is shown in Figure 2. The cost-adverse region has low false alarm
rates and is suitable if the validation & verification budget is limited. In the risk-
adverse region, even though the probability of detection is high, the probability of
false alarm is also high, and, therefore, cost is higher. For mission critical systems,
a risk-adverse region is chosen and for business applications, a cost-adverse
region is more suitable.

Figure 2

Regions of ROC curve [29]

The area under the ROC curve (AUC) is a widely used performance metric for
imbalanced datasets. Ling et al. [25] proposed the usage of an AUC parameter to
evaluate the classifiers and showed that AUC is much more appropriate than
accuracy for balanced and imbalanced datasets. Van Hulse et al. [39] applied an
AUC metric to evaluate the performance of 11 learning algorithms on 35 datasets.
In addition to this metric, they also utilized Kolmogorov-Smirnov (K/S) statistics
[18], geometric mean, F-measure, accuracy, and true positive rate (TPR)
parameters. They stated that AUC and K/S parameters measure the capability of
the classifier and showed AUC values of algorithms in tables. Li et al. [24], and
Chawla and Karakoulas [7] used an AUC parameter for unbalanced datasets. For a
competition in “11th Pacific-Asia Conference on Knowledge Discovery and Data
Mining” (PAKDD2007), performance evaluations for an imbalanced dataset were

Acta Polytechnica Hungarica Vol. 9, No. 4, 2012

 – 199 –

performed according to AUC values, and the model that provides 70.01% of AUC
value was selected as the best algorithm. Catal and Diri [6] examined nine
classifiers and compared their performance according to the AUC value. Mende
and Koschke [28] used an AUC parameter to compare classifiers on thirteen
datasets.

3.1.4 Sensitivity, Specificity, J Coefficient

El-Emam et al. [11] proposed the usage of the J parameter to measure the
accuracy of binary classifiers in software engineering. The J coefficient was first
used in medical research [41]; it is calculated by using sensitivity and specificity
parameters. El-Emam et al. [12] used the J coefficient for performance evaluation
of algorithms. Sensitivity, specificity, and the J parameter are calculated by using
Formulas 9, 10, and 11 respectively.

Sensitivity =
DC

D
+

 =
FNTP

TP
+

 (9)

Specificity =
BA

A
+

 =
FPTN

TN
+

 (10)

J = sensitivity + specificity – 1 (11)

Sensitivity measures the ratio of actual faulty modules which are correctly
identified and specificity measures the ratio of non-faulty modules which are
correctly identified.

3.1.5 Type-I error, Type-II error, Overall Misclassification Rate

Some researchers used Type-I error and Type-II error parameters to evaluate the
performance of fault prediction models [42, 15, 35, 1, 2]. The overall
misclassification rate parameter takes care of these two error parameters.
Formulas 12, 13, and 14 are used to calculate the Type-I error, Type-II error, and
overall misclassification rate respectively. If a non-faulty module is predicted as a
faulty module, a Type-I error occurs, and if a faulty module is predicted as a non-
faulty module, a Type-II error occurs. A Type-II error is more significant than a
Type-I error because faulty modules cannot be detected in that case.

Type-I error =
DCBA

B
+++

 =
TPFNFPTN

FP
+++

 (12)

Type-II error =
DCBA

C
+++

=
TPFNFPTN

FN
+++

 (13)

Overall misclassification rate =
DCBA

BC
+++

+ (14)

C. Catal Performance Evaluation Metrics for Software Fault Prediction Studies

 – 200 –

3.1.6 Correctness, Completeness

Correctness and completeness parameters were used for the evaluation of fault
prediction models [4, 44, 9, 16, 27]. Formulas 15 and 16 show how to calculate
correctness and completeness measures.

Correctness =
DB

D
+

 =
TPFP

TP
+

 (15)

Completeness =
DC

D
+

 =
TPFN

TP
+

 (16)

3.1.7 FPR, FNR, Error

The false positive rate (FPR), the false negative rate (FNR), and error parameters
are used for performance evaluation [41, 43].

TNFP
FPFPR
+

= (17)

TPFN
FNFNR
+

= (18)

TNFNFPTP
FPFNError

+++
+

= (19)

These three performance indicators should be minimized, but there is a trade-off
between the FPR and FNR values. The FNR value is much more crucial than the
FPR value because it quantifies the detection capability of the model on fault-
prone modules and high FNR values indicate that a large amount of fault-prone
modules cannot be captured by the model before the testing phase. Therefore,
users will probably encounter these problems in the field and the nondetected
faulty modules can cause serious faults or even failures. On the other hand, a
model having high FPR value will simply increase the testing duration and test
efforts.

3.1.8 Cost Curve

Jiang et al. [19] recommended adopting cost curves for the fault prediction
performance evaluation. This is the first study to propose cost curves for
performance evaluation of fault predictors and it is not yet widely used. However,
it is not easy to determine the misclassification cost ratio and the selection of this
parameter can make the model debatable. Drummond and Holte [10] proposed
cost curves to visualize classifier performance and the cost of misclassification
was included in this technique. Cost curve plots the probability cost function on
the x-axis and the normalized expected misclassification cost on the y-axis.
Details of this approach will not be given here due to length considerations, and

Acta Polytechnica Hungarica Vol. 9, No. 4, 2012

 – 201 –

readers may apply to papers by Jiang et al. [19] or Drummond and Holte [10] to
learn the details of this approach. However, this approach is not widely used in the
software fault prediction research area.

3.2 Metrics for the Evaluation of Predictors

Some researchers predict the number of faults in each module of the next release
of a system, and the modules’ classification is performed according to the number
of faults. Modules are sorted in descending order with respect to the number of
faults, and the modules which should be tested rigorously are identified according
to the available test resources.

3.2.1 Average Absolute Error, Average Relative Error

Average absolute error and average relative error parameters have been used as
performance evaluation metrics by numerous researchers for software quality
prediction studies [22, 20, 21, 14]. Formulas 20 and 21 show how to calculate
average absolute error (AAE) and average relative error (ARE) parameters,
respectively. The actual number of faults is represented by yi, while yj represents
the predicted number of faults, and n shows the number of modules in the dataset.

AAE = ∑
=

−
n

i
ji yy

n 1

1 (20)

ARE = ∑
= +

−n

i i

ji

y
yy

n 1 1
1 (21)

3.2.2 R2

R2 measures the power of correlation between predicted and actual number of
faults [37]. Another term for this parameter is the coefficient of multiple
determination, and this parameter is widely used in studies that predict the number
of faults. Many researchers have applied this parameter in their studies [9, 36, 8,
37, 31, 3]. This metric’s value should be near to 1 if the model is to be acceptable,
and Formula 22 is used to calculate this parameter. The actual number of faults is
represented by yi, iŷ represents the predicted number of faults, and y shows the
average of fault numbers.

R2 =
2

1

1

2

)(

)ˆ(
1

∑

∑

=

=

−

−
−

n

i

i

n

i

ii

y

yy

y

 (22)

C. Catal Performance Evaluation Metrics for Software Fault Prediction Studies

 – 202 –

Conclusions

The use of different evaluation parameters prevents the software engineering
community from easily comparing research results with previous works. In this
study, we investigated 85 fault prediction papers based on their performance
evaluation metrics and categorized these metrics into two main groups. The first
group of metrics are used for prediction systems that classify modules into a faulty
or non-faulty module and the second group of metrics are applied to systems that
predict the number of faults in each module of the next release of a system. This
study showed that researchers have used numerous evaluation parameters for
software fault prediction up to now, and the selection of common evaluation
parameters is still a critical issue in the context of software engineering
experiments. From the first group, the most common metric for software fault
prediction research is the area under ROC curve (AUC). The AUC value is only
one metric and it is not a part of the metric set. Therefore, it is easy to compare
several machine learning algorithms by using this parameter. In addition to AUC,
PD, and PF, balance metrics are also widely used. In this study, we suggest using
the AUC value to evaluate the performance of fault prediction models. From the
second group of metrics, R2 and AAE / ARE can be used to ensure the
performance of the system that predicts the number for faults. We suggest the
following changes in software fault prediction research:

• Conduct more studies on performance evaluation metrics for software fault
prediction. Researchers are still working on finding a new performance
evaluation metric for fault prediction [19], but we need more research in this
area because this software engineering problem is inherently different than
the other imbalanced dataset problems. For example, it is not easy to
determine the misclassification cost ratio (Jiang et al., 2008) and therefore,
using cost curves for evaluation is still not an easy task.

• Apply a widely used performance evaluation metric. Researchers would like
to be able to easily compare their current results with previous works. If the
performance metric of previous studies is totally different than the widely
used metrics, that makes the comparison difficult.

References

[1] E. Arisholm, L. C. Briand, and E. B. Johannessen, A Systematic and
Comprehensive Investigation of Methods to Build and Evaluate Fault
Prediction Models, Journal of Systems and Software 83 (1) (2010) 2-17

[2] Y. Bingbing, Y. Qian, X. Shengyong, and G. Ping, Software Quality
Prediction Using Affinity Propagation Algorithm, Proc. IJCNN 2008, 2008,
pp. 1891-1896

[3] D. Binkley, H. Feild, D. Lawrie, M. Pighin, Software Fault Prediction
Using Language Processing, Proc. Testing: Academic and industrial
Conference Practice and Research Techniques - MUTATION,
TAICPART-MUTATION 2007, Washington, DC, 2007, pp. 99-110

Acta Polytechnica Hungarica Vol. 9, No. 4, 2012

 – 203 –

[4] L. C. Briand, V. Basili, C. Hetmanski, Developing Interpretable Models
with Optimized Set Reduction for Identifying High Risk Software
Components, IEEE Transactions on Software Engineering 19 (11) (1993)
1028-1044

[5] C. Catal, B. Diri, A Systematic Review of Software Fault Prediction
Studies, Expert Systems with Applications 36 (4) (2009a) 7346-7354

[6] C. Catal, B. Diri, Investigating the Effect of Dataset Size, Metrics Sets, and
Feature Selection Techniques on Software Fault Prediction Problem, Inf.
Sci. 179 (8) (2009b) 1040-1058

[7] N. V. Chawla, G. J. Karakoulas, Learning from Labeled and Unlabeled
Data. An Empirical Study across Techniques and Domains, Journal of
Artificial Intelligence Research, 23 (2005) 331-366

[8] G. Denaro, Estimating Software Fault-Proneness for Tuning Testing
Activities, Proc. 22nd Int’l Conf. on Soft. Eng., Limerick, Ireland, 2000, pp.
704-706

[9] G. Denaro, M. Pezzè, S. Morasca, Towards Industrially Relevant Fault-
Proneness Models, International Journal of Software Engineering and
Knowledge Engineering 13 (4) (2003) 395-417

[10] C. Drummond, R. C. Holte, Cost Curves: An Improved Method for
Visualizing Classifier Performance, Machine Learning 65 (1) (2006) 95-
130

[11] K. El-Emam, S. Benlarbi, N. Goel, Comparing Case-based Reasoning
Classifiers for Predicting High Risk Software Components, Technical
Report, National Research Council of Canada, NRC/ERB-1058, Canada,
1999

[12] K. El-Emam, W. Melo, J. C. Machado, The Prediction of Faulty Classes
Using Object-oriented Design Metrics, Journal of Systems and Software 56
(1) (2001) 63-75

[13] D. Fisher, L. Xu, N. Zard, Ordering Effects in Clustering, Proc. Ninth Int'l
Conf. Machine Learning, 1992

[14] K. Gao, T. M. Khoshgoftaar, A Comprehensive Empirical Study of Count
Models for Software Fault Prediction, IEEE Transactions for Reliability 56
(2) (2007) 223-236

[15] P. Guo, M. R. Lyu, Software Quality Prediction Using Mixture Models
with EM Algorithm, Proc. 1st Asia-Pacific Conference on Quality Software,
Hong Kong, 2000, pp. 69-80

[16] T. Gyimothy, R. Ferenc, I. Siket, Empirical Validation of Object-oriented
Metrics on Open Source Software for Fault Prediction, IEEE Transactions
on Software Engineering 31 (10) (2005) 897-910

C. Catal Performance Evaluation Metrics for Software Fault Prediction Studies

 – 204 –

[17] M. Hall, G. Holmes, Benchmarking Attribute Selection Techniques for
Discrete Class Data Mining, IEEE Trans. Knowledge and Data Eng. 15 (6)
(2003) 1437-1447

[18] D. J. Hand, Good Practice in Retail Credit Scorecard Assessment, Journal
of the Operational Research Society 56 (2005) 1109-1117

[19] Y. Jiang, B. Cukic, T. Menzies, Cost Curve Evaluation of Fault Prediction
Models, Proc. 19th International Symposium on Software Reliability
Engineering, IEEE Computer Society, Washington, DC, 2008, pp. 197-206

[20] T. M. Khoshgoftaar, N. Seliya, Tree-based Software Quality Estimation
Models for Fault Prediction. 8th IEEE Symposium on Software Metrics.
Ottawa, Canada, 2002, pp. 203-215

[21] T. M. Khoshgoftaar, E. Geleyn, K. Gao, An Empirical Study of the Impact
of Count Models Predictions on Module-Order Models, Proc. 8th Int’l
Symp. on Software Metrics, Ottawa, Canada, 2002, pp. 161-172

[22] T. M. Khoshgoftaar, N. Seliya, N. Sundaresh, An Empirical Study of
Predicting Software Faults with Case-based Reasoning, Software Quality
Journal 14 (2) (2006) 85-111

[23] A. G. Koru, H. Liu, An Investigation of the Effect of Module Size on
Defect Prediction Using Static Measures, Proc. Workshop on Predictor
Models in Software Engineering, St. Louis, Missouri, 2005, pp. 1-5

[24] X. Li, L. Wang, E. Sung, AdaBoost with SVM-based Component
Classifiers, Eng. Appl. Artif. Intelligence 21 (5) (2008) 785-795

[25] C. X. Ling, J. Huang, H. Zhang, AUC: A Better Measure than Accuracy in
Comparing Learning Algorithms, Canadian Conference on Artificial
Intelligence, Halifax, Canada, 2003, pp. 329-341

[26] Y. Ma, L. Guo, B. Cukic, A Statistical Framework for the Prediction of
Fault-Proneness, Advances in Machine Learning Application in Software
Engineering, Idea Group Inc., 2006, pp. 237-265

[27] A. Mahaweerawat, P. Sophasathit, C. Lursinsap. Software Fault Prediction
Using Fuzzy Clustering and Radial Basis Function Network, Proc.
International Conference on Intelligent Technologies, Vietnam, 2002, pp.
304-313

[28] T. Mende, R. Koschke, Revisiting the Evaluation of Defect Prediction
Models, Proc. 5th international Conference on Predictor Models in Software
Engineering, Vancouver, Canada, 2009, pp. 1-10

[29] T. Menzies, J. Greenwald, A. Frank, Data Mining Static Code Attributes to
Learn Defect Predictors, IEEE Transactions on Software Engineering 32
(1) (2007) 2-13

Acta Polytechnica Hungarica Vol. 9, No. 4, 2012

 – 205 –

[30] S. Misra, Evaluation Criteria for Object-oriented Metrics, Acta
Polytechnica Hungarica 8(5) (2011) 109-136

[31] A. P. Nikora, J. C. Munson, Building High-Quality Software Fault
Predictors, Software Practice and Experience 36 (9) (2006) 949-969

[32] O. T. Pusatli, S. Misra, Software Measurement Activities in Small and
Medium Enterprises: An Empirical Assessment, Acta Polytechnica
Hungarica 8(5) (2011) 21-42

[33] F. Sebastiani, Machine Learning in Automated Text Categorization, ACM
Comput. Surv. 34 (1) (2002) 1-47

[34] N. Seliya, Software Quality Analysis with Limited Prior Knowledge of
Faults. Graduate Seminar, Wayne State University, Department of
Computer Science, 2006

[35] N. Seliya, T. M. Khoshgoftaar, Software Quality Estimation with Limited
Fault Data: A Semi-supervised Learning Perspective, Software Quality
Journal 15 (3) (2007) 327-344

[36] M. M. Thwin, T. Quah, Application of Neural Networks for Software
Quality Prediction Using Object-oriented Metrics, Proc. 19th International
Conference on Software Maintenance, Amsterdam, The Netherlands, 2003,
pp. 113-122

[37] P. Tomaszewski, L. Lundberg, H. Grahn, The Accuracy of Early Fault
Prediction in Modified Code, Proc. 5th Conference on Software Engineering
Research and Practice in Sweden, Västerås, Sweden, 2005, pp. 57-63

[38] B. Turhan, A. Bener, Analysis of Naive Bayes' Assumptions on Software
Fault Data: An Empirical Study, Data Knowl. Eng. 68 (2) (2009) 278-290

[39] J. Van Hulse, T. M. Khoshgoftaar, A. Napolitano, Experimental
Perspectives on Learning from Imbalanced Data, 24th International
Conference on Machine Learning, Corvalis, Oregon, 2007, pp. 935-942

[40] H. Wang, Y. Chen, and Y. Dai, A Soft Real-Time Web News Classification
System with Double Control Loops, Proc. WAIM 2005, 2005, pp. 81-90

[41] W. Youden, Index for Rating Diagnostic Tests, Cancer 3 (1) (1950) 32-35

[42] X. Yuan, T. M. Khoshgoftaar, E. B. Allen, K. Ganesan, An Application of
Fuzzy Clustering to Software Quality Prediction, Proc. 3rd IEEE
Symposium on Application-Specific Systems and Software Engineering
Technology, Richardson, Texas, 2000, p. 85

[43] S. Zhong, T. M. Khoshgoftaar, N. Seliya. Unsupervised Learning for
Expert-based Software Quality Estimation, Eighth IEEE International
Symposium on High Assurance Systems Engineering, 2004, pp. 149-155

C. Catal Performance Evaluation Metrics for Software Fault Prediction Studies

 – 206 –

[44] Y. Zhou, H. Leung, Empirical Analysis of Object-oriented Design Metrics
for Predicting High and Low Severity Faults, IEEE Transactions on
Software Engineering 32 (10) (2006) 771-789

[45] M. J. Zolghadri, E. G. Mansoori, Weighting Fuzzy Classification Rules
Using Receiver Operating Characteristics (ROC) Analysis, Inf. Sci. 177
(11) (2007) 2296-2307

