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Abstract: In Discrete-Event Systems (DES), deadlocks frequently occur. Flexible 

Manufacturing Systems (FMS) have the character of DES. Namely, FMS consist of many 

cooperating devices (like robots, machine tools, transport belts, etc.). Frequently, deadlocks 

occur because of insufficient resources. Petri Nets (PN) are often used to model FMS and to 

synthesize control for them. To deal with deadlocks, first of all, it is necessary to find and/or 

avoid them. There are several principal approaches for doing this - either by computing and 

analyzing the PN reachability tree (RT) or by finding PN model siphons. Then, in the former 

concept, the supervisor is synthesized by means of P-invariants of the PN model used, while 

in the latter concept the supervisor, based on siphons, is synthesized. In addition to these 

approaches, additional techniques can sometimes, be applied - e.g. a suitable utilization of 

added PN transitions. 
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1 Introduction 

In Discrete-Event Systems (DES) a next state depends only on the actual state and 

on the occurrence of discrete events. For modeling and control of DES Petri nets 

(PN) are frequently used. One of the typical representatives of DES is the family of 

Flexible Manufacturing Systems (FMS), newer Automated Manufacturing Systems 

(AMS). In such systems (robotized working cells, discrete production lines, and the 

like) many devices cooperate together - robots, machine tools, transport belts, 

automatically guided vehicles (AGV), etc. They are called to be resources. Inside 

FMS/AMS the resource allocation is very important. Hence, Resource Allocation 

Systems (RAS) are investigated. 

For above mentioned reasons deadlocks often occur in RAS. Deadlocks are, of 

course, undesirable and unfavorable. They disrupt the normal course of the 

production process. Due to deadlocks, it remains stagnate. Thus, the primary 

intention of the production cannot be achieved. Deadlocks can arise, for example, 

when a machine M, completes a part and there is no part in a buffer to be fed to M, 
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it is the situation called starvation. In general, release of too few parts to RAS may 

starve some machines and lower their production rate. Therefore, it is necessary to 

pursue the maximally permissive control policy, for deadlock avoidance [1] by 

releasing as many jobs as possible into the system. On the other hand, when a 

machine M completes a part that cannot be unloaded because of the lack of buffer 

spaces, it is blocked. In general, blocking is caused by the excessive job releases 

and limited buffer spaces. Blocked machines are forced to be idle, thereby they loss 

their productivity. The more parts occur in the system, the more likely is occurrence 

of deadlocks and the machines are blocked. To operate RAS effectively, the system 

should be well scheduled and deadlocks should be completely avoided, in this way, 

the reduction of starvation and blocking is efficiently achieved. 

To deal with the deadlocks, it is necessary to find them, and to find a suitable 

methodology for how to eliminate their impact and to successfully control the 

system. The deadlocks in FMS can be found by applying two main manners: 

(i) Finding and analyzing the reachability tree (RT) of the PN model 

representing the causality of PN states. 

(ii) Finding and analyzing structural properties - namely the set of siphons 

and traps of the PN model. Traps are some complements of siphons. 

Sometimes, the approach using an application of additional transition(s) 

into the PN model may be very suitable. 

As to the control of deadlocked FMS, i.e. elimination of the deadlock impact, three 

concepts of synthesizing the supervisor are used here: 

(i) The approach based on P-invariants of the PN model and simultaneous 

utilizing its RT 

(ii) The approach-based on PN model siphons and traps 

(iii) The auxiliary approach adding some supplementary transitions to the PN 

model 

1.1 The State of the Art Review 

Deadlocks are looking for and analyzed for tens of years in software engineering 

and other branches, and for a long time also in FMS/AMS. 

Among pioneers of deadlock avoidance in DES and RAS belongs S. A. Reveliotis 

with his school. Their oldest publications were devoted especially to software 

engineering, but their newer ones - see [2-4] - are concerning RAS in FMS/AMS. 

Another school around P. J. Antsaklis - see [5] - is specialized on RT-based 

approaches to the deadlock avoidance. Both schools are American. 

There are many other authors, even schools, interested in this area. The newer 

schools are the Chinese-American school around Meng Chu Zhou and Zhi Wu Li - 
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see [6-9] specialized on siphon-based approaches. This school publishes very 

intensively. Smaller schools are the French school around K. Barkaoui - see e.g. 

[10], and several others schools - in Spain [12], Italy [12-14], Germany [15]. 

But at present the peak school is the pure Chinese school with enormous number of 

authors from various universities - see e.g. [16-18] - with top results. Some authors 

from the above introduced schools publish also together cross by cross the schools. 

It is impossible to make a complete overview of all the works of these schools on a 

limited number of pages per paper. 

Deadlocks may occur also in DES and RAS with non-determinism analysed in the 

paper [19]. Such deadlocks have to be avoided too. 

Simply, this area of research in FMS/AMS lives through a boom. Therefore, it is 

useful to choose the more important approaches and compare them. The best form 

is to do this by applying them on the same real plant and compare and evaluate their 

results. Such a process has not be published until now. 

1.2 The Main Aim of the Paper 

The main aim of this paper is to point out: 

(i) The three principal kinds of approaches extracted from the huge amount of 

literature 

(ii) How to avoid deadlocks in real RAS 

(iii) How to synthesize the control of RAS by means of PN models 

(iv) How to apply particular approaches on the same real discrete plants in 

order to compare them 

(v) How to perform the comparison on the basis of achieved results and how 

they are evaluated. (In the literature, the author of this paper did not find 

such comparison and evaluation of different approaches). 

Of course, finding the computational complexity of algorithms for computing RT 

(at the state analysis) and minimal siphons (at the structural analysis), respectively, 

is also an associated, but not less important, aim. 

For FMS/AMS practice such a comparison and evaluation may be very useful. 

Namely, on one hand it is important to avoid deadlocks, but on the other hand it is 

also necessary to detect whether the proposed supervisor avoiding deadlocks 

ensures satisfying functionality of RAS or not. If not, a structural reconstruction of 

the original system and/or changing the number of resources and repeating the 

procedure of the supervisor synthesis is needful. 



F. Čapkovič Control of Deadlocked Discrete-Event Systems Using Petri Nets 

‒ 216 ‒ 

1.3 Paper Organization 

Here, in this Section 1, the state of the art review and the main aim of this paper are 

introduced. In the Section 2, the PN themselves as well as PN P-invariants and PN 

siphons and traps were defined and two approaches how to control RAS were 

sketched. In the next Section 3 the auxiliary simple approach to control of 

deadlocked RAS will be introduced and illustrated on an example, namely the 

approach based on additional (supplementary) transitions. Next, in the Section 4, 

the second approach to solving that problem will be introduced and illustrated on 

examples, namely the approach based on P-invariants. In the Section 5 the approach 

based on siphons and traps will be presented and illustrated on examples. In the 

Section 6 both approaches will be compared (as to their advantageous and 

disadvantageous) and evaluated. In the Conclusions, the final view on the dealing 

with deadlocks in this paper and the plans for future research will be introduced. 

2 Preliminaries 

PN are perspective tool [12] for modeling and DES. Essentials of PN were presented 

in many older papers - see e.g. [10]. The state equation of place/transition PN (P/T 

PN) - see [19] - is the following 

xk+1 = xk  + B.uk  , k = 0, 1, …                                                                                (1) 

F.uk ≤ xk                                                                                                                 (2) 

where  

xk = (xp1
, xp2, …, xpn

)T is the state vector with integer entries xpi
 ∈  {0, 1, … ,∞} 

being the states of particular places pi, i = 1, …, n, in the step k, namely xpi 

represents the actual number of tokens in the place pi. The vector x0 is the initial 

state vector. 

uk = (𝑢𝑡1, 𝑢𝑡2, …, 𝑢𝑡𝑚)T
 is the control vector with entries 𝑢𝑡𝑗 ∈  {0, 1} being the 

states of particular transitions tj,  j = 1, …, m, in the step k. They can be disabled or 

enabled. The disabled tj cannot be fired, i.e. 𝑢𝑡𝑗  = 0, while enabled tj may be (but 

needs not be) fired i.e. 𝑢𝑡𝑗  = 1. In P/T PN enabled transitions represent the 

occurrence of discrete events. 

B = GT - F is the structural matrix of integers with G being the incidence matrix of 

directed arcs from transitions to places while F being the incidence matrix of 

directed arcs from places to transitions 

Let P = {p1, …, pn} and T = {t1, …, tm} are, respectively, the set of PN places and 

the set of PN transitions. Thus, F = {fij}, i = 1, …, n; j = 1, …, m, fij ∈ 𝑍, where 𝑍 

is the set of integers, and it represents the existence and multiplicity of arcs directed 
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from pi to tj; G = {gji}, j = 1, …, m; i = 1, …, n, gji ∈ 𝑍, and it represents the existence 

and multiplicity of arcs directed from tj to pi. 

x0 is the initial state vector. 

Starting from x0 and firing an enabled transition the next state x1 can be reached. 

The reachability tree (RT) expresses all possible branches of the development of the 

system (1), (2). A firing sequence of transitions ta, tb, …,tc represents a branch 

𝐱0

𝑢𝑡𝑎
→ 𝐱1

𝑢𝑡𝑏
→ …  𝐱k-1

𝑢𝑡𝑐
→ 𝐱k of RT. All reachable states create the state space, i.e. the set 

ℛ = { 𝐱0, 𝐱1, …,  𝐱k}. PN transitions symbolize edges of RT. By means of the 

thorough analysis of RT (either in graphical form or in the form of the adjacency 

matrix) all deadlocks can be found. Then the supervisor based on P-invariants can 

be synthesized. The P-invariant is the (n×1)-dimensional vector y ≠ 0 for which 

yT.B = 0. 

A nonempty subset S ⊂ P in P/T PN is called a siphon if every transition having an 

output place in S has an input place in S. A nonempty subset Q ⊂ P in P/T PN is 

called a trap if every transition having an input place in Q has an output place in Q. 

Siphons create a set of places which, if become empty of tokens, will always remain 

empty for all reachable markings of the net. When all places in a siphon have no 

token, all transitions connecting with the siphon can no longer be firable. Traps 

create a set of places which, if become marked, will always remain marked for all 

reachable markings of the net. The union of two siphons (traps) is again a siphon 

(trap). 

If every non-empty siphon of PN includes a sufficiently marked trap then - see e.g. 

[6], no dead marking is reachable. It is very important piece of knowledge. 

Thorough analysis of siphons and traps is a path to the proposal of the supervisor. 

Then, the supervisor will be synthesized by means of utilizing properties of siphons 

and traps. 

It is not necessary to work with all siphons (there are many). It is sufficient to work 

with elementary siphons, i.e. linearly independent siphons. Even, it is sufficient to 

work with minimal siphons and minimal traps - see e.g. [11] [20]. 

In next, both approaches to control of deadlocked FMS, especially of the special 

kind of FMS called RAS, will be presented. Namely, above mentioned devices - 

machine tools, robots, buffers, transport belts, AGV, and so on, can be understood 

to be various resources. The resources are usually shared by two or more subsystems 

of RAS. Because of a limited number of resources different kinds of problems, 

especially deadlocks, arise during the system operation. 
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3 Approach Based on Additional Transitions 

This approach is very useful especially in the case of so called diamonds in RT of 

the deadlocked PN model. The diamond ∂ from the start state xa in RT to the end 

state xb,  xa  ≠ xb, is a pair of paths ∂ = <xa σ1 xb, xa σ2 xb>, where paths σ1 ∩ σ2 = ∅, 

σ1 ∪ σ2 ≠ ∅, with ∅ being the empty set, and xa, xb do not belong in σ1 ∪ σ2. When 

xb is the deadlock, the following approach is possible in order to deal with it. After 

adding a transition into the PN model, the structural matrix of the supervisor: 

Bc =  xc - xb                                                                                                             (3) 

where usually xc = x0 (being the initial state of the PN model (1)-(2)). 

3.1 Example 1 

Consider the RAS in Figure 1 consisting of three loading buffers I1–I3 and three 

unloading buffers O1–O3. They, respectively, load and unload the FMS 

corresponding to three raw product types, Pr1–Pr3, to be processed by machine M. 

They are moved by robot R. The production cycles are the following: a raw product 

Pr1 is taken from I1 by R and put in M. After being processed by M, it is taken by 

R and put to output O1. A raw product Pr2 is taken by R from I2, processed by M 

and then moved by R from M to O2. A raw product Pr3 is taken by R from I3, 

processed by M and moved by R from M to O3. The PN model is given in Fig. 2. 

The initial state x0 = (8 0 0 8 0 0 1 0 4 4)T. Because figures of RT from x0 produced 

by a graphic tool has a poor quality at a greater dimensionality of RT, the deadlocks 

will be computed by means of the zero rows of the RT adjacency matrix. There are 

32 nodes (states) in the RT. 

 

 

Figure 1 

The scheme of RAS 
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Figure 2 

The PN model of the deadlocked RAS 

The structural matrix of the PN model and its initial state are the following: 

B = 

(

 
 
 
 
 
 
 

−1 0 1 0 0 0 0 0
1 −1 0 0 0 0 0 0
0 1 −1 0 0 0 0 0
0 0 0 −1 0 1 0 0
0 0 0 1 −1 0 0 0
0 0 0 0 1 −1 0 0
0 0 0 0 0 0 −1 1
0 0 0 0 0 0 1 −1
−4 4 0 0 −1 1 0 0
0 −4 4 −2 2 0 −1 1)

 
 
 
 
 
 
 

 

x0 = (8  0  0  8  0  0  1  0  4  4 )T 

Small numbers in the neighborhood of some directed arcs mean their multiplicity. 

This plant has only one deadlock – the state x11 = (7 1 0 6 2 0 1 0 0 0)T (i.e. numbers 

of tokens in corresponding places are: p1 = 7, p2 = 1, p4 = 6, p5 = 2, p7 = 1) is the 

deadlock. Thus, Bc = x0 - x11 = (1 -1 0 2 -2 0 0 0 4 4)T, where the vector Bc
(-)  = (0 1 

0 0 2 0 0 0 0 0)T represents the multiplicity of directed arcs from corresponding PN 

places to the added transition and the vector Bc
(+)= (1 0 0 2 0 0 0 0 4 4)T represents 

those from the added transition to corresponding PN places. The PN model of the 

modified structure is given in Figure 3. Alike as in previous case, the RT is not 

introduced in the graphical form. From the RT adjacency matrix, it follows that PN 

has 32 nodes and no deadlock exists in the supervised system displayed in Fig. 3. 

Adding the transition t9 into the PN model of RAS given in Figure 2 and applying 

its interconnections with the original model through the relation (3) the deadlock 

x11 was eliminated. 
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Figure 3 

The PN model of RAS supervised by means of the transition t9 without any deadlock 

4 Approach Based on P-invariants 

As it was mentioned above a vector y ≠ 0 fulfilling the relation yT.B = 0 is named 

as the invariant. For more invariants, e.g. s, the matrix Y consisting of s invariants 

being its columns, has to fulfill: 

YT.B = 0                                                                                                        (4) 

Putting a restricted condition: 

L.x ≤ b,                                                                                                                   (5) 

where L is a (s × n) matrix of positive integers, expressing by its rows suitable linear 

combinations of state vectors entries (i.e. numbers of tokens inside corresponding 

PN places), and b is a (s × 1) column vector of limits for each row of L (i.e. a 

maximal number of tokens in places in the corresponding row together). To remove 

inequality in (4), we can put the following: 

L.x + xs = L.x + Is.xs = (L Is ).(xT xs
T)T= b                                                            (6) 

where Is is the (s × s) identity matrix. To synthesize the supervisor with the structure 

Bs (unknown till now), we force (L Is ) into (4) instead of YT as well as (BT Bs
T)T 

instead of B. In such a way we finally obtain the supervisor structure: 

Bs = - L.B                                                                                                               (7) 

Bs = Gs
T -  Fs                                                                                                           (8) 

Fs  =  - Bs
(-) ;  Gs

T=  Bs
(+)    

x0s = b - L.x0                                                                                                            (9) 
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Besides (5) the general linear constraints can be imposed to be satisfied by the 

supervised system: 

Lp.x + Lt .u + Lv .v ≤ b                                                                                         (10) 

where, 

b is s - dimensional nonnegative integer vector expressing some limits 

Lp, Lt, Lv are, respectively, (s × n)−, (s × m)−, (s × m)− dimensional matrices of 

integers. They concern, respectively, PN places, PN transitions and the Parikh's 

vector v. The sense of the Parikh's vector v is clear from the following relation 

expressing the evaluation of PN model (1), (2), i.e. 

xk = x0 + B.(u0 + u1 +  . . .  + uk−1) = x0 + B.v                                                    (11) 

As to (11), it was proved in [5] that when Lp.x - b ≤  0 the supervisor with the 

following structure and initial state 

Fs = max(0, Lp.B + Lv , Lt )                                                                                  (12) 

GT
s = max(0, Lt − max(0, Lp.B + Lv )) − min(0, Lp.B + Lv)                                (13) 

x0s = b − Lp.x0 − Lv .v0                                                                                         (14) 

guarantees that constraints are verified for the states resulting from the initial state 

x0. Here, the max(.) is the maximum operator of operands. For matrices it is applied 

element by element, i.e. Z = max(X, Y) means that zij = max(xij, yij ). 

v0 is the (m × 1) vector containing nonzero entries (namely equal to 1) solely in 

positions of transitions being firable in x0. 

Now, consider the RAS in Figure 1 with PN model given in Figure 2. Let us deal 

with the deadlock state x11 using the P-invariants based approach for both versions 

the simpler (5) and the generalized (10). 

4.1 Simpler Version of the Approach 

Analyzing RT by means of the adjacency matrix we can reveal that the deadlocked 

state x11 is reached by two ways: 

x0 
𝑡1
→ x1 

𝑡4
→ x5 

𝑡4
→ x11                                                                                               (15) 

x0 
𝑡4
→ x2 

𝑡4
→ x7 

𝑡1
→ x11                                                                                               (16) 

The corresponding critical RT nodes are the following: 

x5  = (7  1  0  7  1  0  1  0  0  2)T 

x7  = (8  0  0  6  2  0  1  0  4  0)T 

x11 = (7  1  0  6  2  0  1  0  0  0)T 
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x5 - x11 = ( 0  0  0  1  -1  0  0  0  0  2)T 

x7 - x11 = (1 -1  0  0  0  0  0  0  4  0)T 

Using the approach (6)-(8) based on P-invariants, we have to put some restrictions 

on combinations of some critical places. Such places are p2, p5 and moreover p8, 

p10. Namely, the following restrictions have to be imposed: 

p8+p10 ≤ 5                                                                                                              (17) 

p2+p5 ≤ 1                                                                                                               (18) 

Consequently, 

L = (
0 0 0 0 0 0 0 1 0 1
0 1 0 0 1 0 0 0 0 0

)                                                         (19) 

b = (
5
1
)                                                                                                                 (20) 

Applying these matrices into (6)-(8) we obtain the supervisor structure and initial 

state as follows: 

Bs = (
   0 4 −4    2 −2 0 0 0
−1 1    0 −1    1 0 0 0

) 

Fs = - Bs
(-) =  (

 0  0 4 0 2 0 0 0
 1  0 0 1 0 0 0 0

) 

Gs
T = Bs

(+)  =   ( 
 0 4 0 2 0 0 0 0
 0 1 0 0 1 0 0 0

)   

 x0s  =  (
1
1
)  

The PN model of RAS controlled by such supervisor is displayed in Figure 4. The 

supervisor ensures that no deadlock occurs here. RT has 24 nodes in this case. 

 

Figure 4 

The PN model of RAS controlled by the P-invariants based supervisor removing the deadlock 
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After deeper analysis, we can found that the condition (17) may be omitted and it is 

sufficient in this RAS to use solely the condition (18). Thus, we obtain: 

L= (0 1 0 0 1 0 0 0 0 0)   

b = (1) 

consequently, 

Fs= (1 0 0    1 0 0    0 0)   

GT
s= (0 1 0    0 1 0    0 0)    

x0s = (1) 

The PN model of the controlled RAS is almost-certain as that on Figure 4, only 

place p11 together with its interconnections are missing. However, the RT is the 

same. It means that no deadlocks are indicated in it. 

4.2 The Generalized Version of the Approach 

Here we use the approach (10)-(14) to illustrate its potency. From the PN model of 

the original uncontrolled system in Figure 2 it can be seen that main problem 

consists in the places p2 and p5 as well as in Parikh's vectors v1 and v4. Let us put   

p2 + p5 ≤ 1 and because of the Parikh's vectors put t4 > t1 and t1 > t4. Hence: 

Lp = (
0 0 0 0 0
0 1 0 0 1

     
0 0 0 0 0
0 0 0 0 0

) ;   b =(
1
1
)   

Lv = (
−1 0 0    1 0
1 0  0 −1 0

     
0 0 0
0 0 0

); Lt = (
0 0 0 0 0
0 0 0 0 0

     
0 0 0
0 0 0

) 

v0 = (1   0   0   1   0   0   1   0)T is the initial vector expressing enabled transitions at 

the initial state x0. 

These inputs into (12) - (14) result the following synthesized supervisor 

Fs = (
0 0 0 1 0
2 0 0 0 0

     
0 0 0
0 0 0

) 

Gts = (
1 0 0 0 0
0 1 0 0 1

     
0 0 0
0 0 0

) 

x0s = (1   1)T 

The PN model of the controlled RAS is displayed in Figure 5 and its RT is given in 

Figure 6. For such a small RT like this, as opposed to greater ones, the graphical 

output of RT has a better quality, is readable and sufficiently highlighted.                  

No deadlock occurs there. 

As to evolution of the PN model behavior, restrictions on the supervised system are 

more rigorous. Thus, the RT is not so much branching out but in spite of this it 

guarantees a deadlock-free behavior of the PN model. It has only 13 nodes 
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(including the initial node) - states of the system. In comparison with the previous 

one given in Figure 4, having 24 nodes, it can be seen that this structure of controlled 

RAS yields only about half number of states, what may be insufficient from 

practical point of view (e.g. the functionality of a real plant, its utility, etc.).            

The user in practice has to consider if this structure is adequate for his requirements, 

or he will use the previous structure displayed in Figure 4. Namely, the too severe 

supervisor can hamper the required behavior of the system. In such a case the user 

has to change the structure of RAS and/or the number of resources and to repeat the 

whole process of the supervisor synthesis. 

  

Figure 5 

The PN model of the controlled RAS 
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Figure 6 

The RT of the PN model of the controlled RAS 

4.3 Example 2 

Consider RAS schematically sketched in Figure 7. 

 

Figure 7 

The scheme of RAS 

There are two uploading buffers I1 and I2 and two unloading buffers O1 and O2 in 

order to upload and download RAS by two raw product types Pr1 and Pr2. They 

are processed by machine M and moved by robot R1 (resp. R2) and R2 (resp. R1). 

There are two production cycles: (i) a raw product Pr1 is taken from I1 by R2 and 

put in M. After being processed by M, the product is unloaded by R1 and put to O1. 
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(ii) a raw product Pr2 is taken from I2 by R1 and put in M. After being processed by 

M it is moved from M to O2 by R2. 

The PN model of this RAS is given in Figure 8. RT of the PN model is too large for 

displaying here, because it has 216 nodes (including x0). It (more precisely its 

adjacency matrix) points out on 5 deadlocks - x54, x58, x62, x86, x121. 

 

Figure 8 

The PN model of RAS 

4.3.1 P-invariant Based Approach 

Let us apply the approach based on P-invariants to resolve the problem of deadlock 

avoidance. 

x0  = (8  0  0  0  8  0  0  0  4  4  2)T ; x54 = (4  4  0  0  6  2  0  0  0  0  0)T 

x58= (5  2  1  0  6  2  0  0  2  0  0)T ;  x62 = (6  0  2  0  6  2  0  0  4  0  0)T  

x86 = (5  3  0  0  5  2  1  0  1  0  0)T ; x121 = (6  2  0  0  4  2  2  0  2  0  0)T  

The structural matrix and x0 of the original uncontrolled system are the following: 

B =

(

 
 
 
 
 
 
 

−1 0 1 0 0 0 0 0
1 −1 0 0 0 0 0 0
0 1 −1 0 0 0 0 0
0 0 0 −1 0 1 0 0
0 0 0 1 1 0 0 0
0 0 0 0 1 −1 0 0
0 0 0 0 0 0 −1 1
0 0 0 0 0 0 1 −1
−4 4 0 0 −1 1 0 0
0 −4 4 −2 2 0 −1 1)

 
 
 
 
 
 
 

  

x0 = (8  0  0  0  8  0  0  0  4  4  2 )T 
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After analysis between deadlocks and relative states (nodes RT) we can put L and 

b as follows: 

L = 

(

 
 

0 1 0 0 0 1 0 0 0 0 0
0 1 1 0 0 1 0 0 0 0 0
0 0 1 0 0 1 0 0 0 0 0
0 1 0 0 0 1 1 0 0 0 0
0 1 0 1 1 0 0 0 0 0 0)

 
 

 ; b = 

(

 
 

2
1
2
1
12)

 
 
   

Hence, we obtain the structure and the initial state of the supervisor: 

Fs =  

(

 
 

1 0 0 0 1 0 0 0
1 0 0 0 1 0 0 0
0 1 0 0 1 0 0 0
1 0 0 0 1 0 0 0
1 0 1 0 0 0 0 1)

 
 

 ;  Gs
T = 

(

 
 

0 1 0 0 0 1 0 0
0 0 1 0 0 1 0 0
0 0 1 0 0 1 0 0
0 1 0 0 0 0 1 0
0 1 0 1 1 0 0 0)

 
 

 

xs0 = (2  1  2  1  4)T 

The PN model of the supervised system is displayed in Figure 9. No deadlocks 

occur there in the supervised system. 

 

Figure 9 

The PN model of the controlled RAS 

5 Approach Based on Siphons and Traps 

At this approach minimal siphons and minimal traps are computed. It may be 

realized e.g. using the tool [20] in Matlab. However, in general, at more complicated 

structure of the PN model and a big number of PN places, such approach may be 

also fairly time-consuming. This is valid for this tool too. 
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When we have minimal siphons in the matrix form SM (with particular siphons being 

its rows), we can obtain the supervisor structure as follows: 

Bs = SM.B;    Fs = −Bs
(-) ;    Gs

T = Bs
(+)                                                               (21) 

5.1 Application on Example 1 

First of all, let us apply this approach on Example 1 in the Subsection 3.1. Let us 

resolve the problem with the deadlock in it by this way. The minimal siphons are 

the rows of the following matrix: 

SM= 

(

  
 

0 0 0 0 0 0 1 1 0 0
1 1 1 0 0 0 0 0 0 0
0 1 0 0 0 1 0 0 1 0
0 0 0 1 1 1 0 0 0 0
0 0 1 0 1 0 0 1 0 1
0 0 1 0 0 1 0 1 1 1)

  
 

 

Consequently, using the structural matrix B of the original system we obtain the 

structural matrix of the supervisor: 

Bs = SM.B =   

(

  
 

    0    0 0
    0    0 0
 −3    3 0

   
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

    0    0 0
    0 −3 3
 −4    1 3

   0 0 0 0 0
−1 1 0 0 0
−2 2 0 0 0)

  
 

 

x0s =(0   0   3   0   3   4)T 

The PN model of the controlled RAS is given in Figure 14. 

 

Figure 10 

The PN model of the controlled RAS 
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5.2 Application on Example 2 

Now, apply such an approach on the Example 2 analyzed in the Subsection 4.3. 

There are 199 siphons in the uncontrolled PN model and 8 minimal siphons (rows 

of the matrix SM) and 8 minimal traps (rows of TM), namely: 

SM = 

(

 
 
 
 
 

0 0 0
0 0 1
0 1 0

1 0 1
0 0 0
0 0 0

1 1 1
0 0 0
0 0 1

1 0 0
1 0 0
0 0 0

0 0 0
1 0 0
0 1 1

0 1
1 0
0 0

0 0 0
1 0 0
0 1 1

0 0
1 1
1 0

0 0 0
0 0 0

0 1 1
1 0 0

1 1 0
0 1 1

0 0
1 1)

 
 
 
 
 

 

TM = 

(

 
 
 
 
 

0 0 0
0 1 0
1 1 1

1 0 1
0 0 0
1 0 0

0 1 1
0 1 0
0 0 0

0 0 0
0 0 0
0 1 1

0 0 0
0 1 1
0 0 0

0 1
0 0
0 0

1 0 0
1 0 1
1 1 0

1 0
1 0
0 0

0 1 1
0 1 0

0 0 1
0 0 1

0 0 0
0 0 1

1 1
1 1)

 
 
 
 
 

 

As we can see at comparing SM an TM, minimal siphons S1 = Tr1, S3 = Tr2, S4 = Tr3, 

S7 = Tr6. Because these traps are marked and they cannot lose tokens, the 

corresponding siphons cannot stay deadlocks. It means, that at synthesizing of the 

supervisor it is sufficient to use only siphons as follows: 

S = (

0 0 1
0 0 0
0 0 1

0 0 0
1 0 0
0 0 0

0 0 0 1 0 0

1 0 0
1 0 0
0 1 1

1 0
1 1
1 0

0 1 1 1 1

) 

Then, the structural matrix of the supervisor S is as follows: 

Bs = GT
s - Fs = S.B =  (

−1 0 1 0 0 0 0 0
−1 −1 2 0 −1 1 0 0
−2 1 1 0 0 −1 −1 2
−2 0 2 0 −1 0 −1 2

) 

where GT
s =  Bs

(+)), while Fs = |Bs
(-)|).  

For the initial state x0 of the uncontrolled PN model the initial state of the supervisor 

is x0s = (4 6 8 10)T. The PN model of the supervised system is displayed in Fig. 11. 

To verify if the supervised system is deadlock-free, we can compute RT starting 

from x0. It has 95 nodes. No deadlocks were found in RT. 
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Figure 11 

The PN model of the controlled RAS. The controller is created by the four places p12 - p15 

6 Comparison of the Presented Approaches 

The approach in Section 3, using additional transitions, is only an auxiliary 

approach, but it has its importance, in cases with several diamonds in RT. Both 

principal approaches, presented in Section 4 and Section 5, respectively, are general 

and have their advantages and disadvantages. Moreover, the P-invariant based 

approach and the siphons and traps based one are much more powerful than that in 

Section 3. Therefore, only these two approaches will be compared here. The P-

invariant based approach is more detailed because it works with PN places at the 

formulation of the matrix L and the vector b. Suitable combinations of places and 

assigning them maximal common numbers of tokens is very useful. On the other 

hand, at large or complicated PN models the computing of RT may be time-

consuming and analyzing RT may be complicated. The siphons and traps based 

approach, does not need to compute RT, but only the siphons and traps have to be 

computed. However, the computation of them also depends on the size and 

especially on the complicacy of the PN model structure. This process can also be 

time-consuming, even more than that in previous case. Both of the compared 

approaches are very useful at synthesizing supervisor for deadlocked DES and 

especially RAS. Thus, they are able to avoid deadlocks and simultaneously, 

successfully control RAS. 

Nevertheless, it is necessary to take into account the computational complexity of 

algorithms in both approaches, especially in the case of greater number of places 

and complicated structure of the PN model. The complexity at computation RT is 

between the upper bound 2O(n log n) and the lower bound 2O(√n), where n is a number 

of PN places. At computing minimal siphons, the complexity is O(2n + k(k − 1)/2), 
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where n and k denote, respectively, the number of PN places and the number of all 

PN siphons. However, all PN siphons can be found with the computational 

complexity O(2n). Of course, the computational time depends on the hardware 

ability of a computer in question, however, the computational complexity of 

algorithms is unchanged. 

Conclusions 

With regard to the aims declared in Subsection 1.2, three approaches for control 

deadlocked DES were introduced in this paper. One of them, using insertion of 

additional transitions, is in effect, auxiliary but sometimes useful. The further two 

approaches, are very useful for avoiding deadlocks in DES and simultaneously for 

controlling them. For two examples, all approaches were applied and illustrated.      

It can be said that both of the essential approaches are very appropriate. 

Comparisons for them were also introduced. To declare unambiguously, which is 

better, further research is needed, especially testing larger and more complicated 

structures of DES and thus, more knowledge can be obtained. From the introduced 

examples, is clear, that the siphon and traps based approach, is more practical, since 

it employs one-stage and does not need any further computations. On the other 

hand, the RT based approach, uses two-stages. It needs deep analysis of RT and 

then, to set corresponding conditions, for the matrix L creation. A large RT cannot 

be seen in graphical form but only in the form of its adjacency matrix, which is also 

very large. Therefore, the creation of the matrix L may be time consuming and even 

sometimes, impossible. Conversely, the computational complexity of the siphon 

based approaches, is better at calculating RT. In a large RAS, it can lead to the long 

computational times. Hence, in general, new approaches with smaller 

computational complexity have to be explored. 

As to our plans for further research, the utilization of the mixed integer 

programming (MIP) will be tested in the siphon based approach, for the control of 

RAS, since the interesting area seems to be discovering robust algorithms for the 

RAS control. 
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