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Abstract: In this article, stability of the robotic manipulator with time delay in open 

kinematic chain configuration was analyzed. The dynamic equations of motions were 

derived for one five-degree-of-freedom (DOF) robotic system with system latency. The 

mathematical model includes the model of the actuators to define the parameters of the 

actuators that can stabilize such a system. Investigation of the system stability was 

performed using novel stability conditions. The system state responses and the system 

stability were analyzed for different time delays. The proposed control methodology was 

shown to be appropriate to maintain the stability of the robotic system during tracking 

tasks. To analyze the concept, we presented a numerical example together with an extensive 

system simulation. The stability analysis showed the full compliance of the system behavior 

with the desired system dynamics. The proposed method can be used for the stability 

analysis of any robotic system with state delays in the open kinematic chain configuration. 
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1 Introduction 

Time delay plays an important role in the dynamics of robotic systems in some 

applications. For instance, accurate tracking might be challenging if time delay 

exists. The fact is especially pronounced in the medical, even in some industrial, 

applications where high accuracy and positioning are strictly demanded. 

Furthermore, in repeatable motions, time delay might influence the phase shifting, 

and consequently, increases the errors. In some cases, the system instability might 

appear as an unwanted consequence of neglecting the time delay of systems. 

The influence of time delay on robotic systems was previously analyzed in 

literature [2, 3, 6, 10, 17-20, 22, 24, 25, and 35]. Different types of latencies have 

been analyzed in conjunction with system stability, such as mechanical latency, 

signal processing (transmission) latency, communication latency etc. Signal 

transmission latency was shown to be able to affect the robotic effective force-

reflecting system, [24]. A large group of teleoperation robotic systems is affected 

by time delay due to communication drifts. The overview of telemanipulators with 

constant transmission time delay and control challenges was presented in [25]. 

The instability of the systems can often be caused by time delay. Many control 

strategies have been reported to solve this problem [4, 6, 17-18, 22, 24-25, 30, 35]. 

A control strategy for a robotic system where instability was caused by time delay 

was proposed to overcome instability, [2]. An adaptive tracking controller was 

introduced to solve the instability problem. A study [17] showed the advantages of 

the compliant control over the force feedback control for one six-DOF robotic 

system within the wide range of time delay. The stability analysis for multiple 

manipulators capable of sensing latency was analyzed in [22]. Some robotic 

manipulators use video feedback [18], and the delay appears in the image 

processing module. In these situations, the discrete time modeling [6], adaptive 

motion and force control [35] can be used to overcome the suboptimal results in 

operations. In some cases, the existing time delay can be neglected in the analysis, 

as in [30]. However, a broader approach, such as the robust control, was used for 

tracking control. Consequently, the latency problem does not need to be analyzed 

separately; it should rather be analyzed within a more general set of uncertainties 

which acts on the systems [4]. 

The initial approach presented in [2, 3, 6, 17-20, 22, 24, 25, and 35] took the 

system delay into account, which potentially could destabilize the system and 

degrade the performances. The group of stability criteria that take time delay into 

account for investigations is named delay-dependent conditions [40]. Different 

control methodologies were developed based on the delay-dependent criteria. The 

latest research results on this topic are presented in the sequel. In [8, 9], robust 

tracking tasks for robotic manipulators were performed using a gradient estimator 

and an adaptive compensator, respectively. The system trajectory control i.e. 

tracking task in [27, 28] was performed using time delayed control which was 

proven to be robust against nonlinearities in the robotic dynamic system. Tracking 
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of industrial robotic systems with time delay was analyzed in [12-14] from 

different aspects. The control methodology included the time delay estimation to 

decrease nonlinearities, velocity feedback, and sliding mode control to converge 

time delay errors. Another sliding mode controller together with the impedance 

control was used in [33] for position tracking. Uncertain disturbances and time 

delay can pose a problem in the modeling of robotic systems [11]; the 

linearization procedure and application of the linear matrix inequalities were 

found suitable in this case. A teleoperated mobile robot with latency was 

presented in [29] where the usage of a sensor was recommended as a solution for 

the fulfillment of the desired tasks, similar to [26]. 

An overview of the stability problems, when the time delay is present in the 

systems, is analyzed in [41]. Another theoretic approach to the asymptotic stability 

for robotic systems with time delay was proposed in [1]. It was noticed that the 

stability of systems with time delay is often related to complicated numerical 

calculations that can make the stability criteria inapplicable. The numerical 

calculations of the system stability under the influence of latency were analyzed in 

[42]. In some articles, this approach was solved using delay-independent criteria 

[40]. The method avoided using complicated computations of the inverse system 

dynamics; a time delay estimation was used to obtain the adequate dynamics and 

local disturbances. The trajectory tracking problem for the analyzed class of 

robotic systems was solved using a neural network controller, as described in [31]. 

In this article, it is of interest to analyze trajectory tracking problems. The article 

[21] analyzed the control of a space robotic system with time delay to track the 

desired trajectory in the inertial space with several uncontrolled variables, such as 

the position of the base and vertical coordinates. The nonlinear feedback control 

law was applied. A discrete time control of a mobile robot with transport latency 

was suggested in [32], instead of the continuous time control strategy. A tracking 

control algorithm for an industrial six-DOF robot was proposed in [23]. The 

maximum value of time delay was estimated to maintain the desired tracking 

performances. Some of the latest classical and new theoretical results that include 

the control of robots, application, servos, and actuators are presented in [34], [36-

39]. 

In this article, we analyzed the stability of a five-DOF robotic system with time 

delay. An extensive computer simulation was presented for the evaluation of the 

system behavior. In order to be able to perform a high precision contour tracking, 

we modeled the system with latency. Moreover, it was requested that the system 

end-effector should be in the repeatable desired positions in the equidistant time 

interval. Consequently, latency in the mechanical part of the system or in signal 

processing can significantly influence the fulfillment of the desired tasks. 

Due to the specified requirements, the innovative modeling procedure that 

includes the mathematical modeling of both the robotic systems and the actuators 

was derived. The time delay was incorporated in the generalized coordinates. The 
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novel stability conditions were presented to investigate the stability of the robotic 

system. Furthermore, the calculation of the control gains was proposed in the 

article. This method can be used for the stabilization of this class of systems, 

irrespective of the number of joints within the manipulators, as long as they are in 

the open kinematic chain configuration. To evaluate the efficacy of the novel 

controller, we compared it to a classical proportional-integral-derivative (PID) 

controller and investigated the stability with respect to the time delay. 

2 Mathematical Framework 

The second section describes the mathematical modeling procedure for a robotic 

system with time delay, which is used for the simulation. The detailed modeling 

procedure for the system without latency and time delay stability conditions can 

be found in [5, 7]. 

2.1 Preliminaries 

A general representation of the nonlinear control systems with time delay can be 

written as: 

        

   

, , , , 0

, 0

t t t t t t

t t t





  

   

x f x x u

x φ
  (1) 

where x(t) 
n
 is a state-space vector, u(t) 

m
 is a control law vector,   ([-

, 0], 
n
) is an admissible functional of the initial states, =([-, 0], 

n
) is the 

continuous state-space function which maps interval [-, 0] to 
n
, where  is a 

real vector space. Vector function f satisfies the following condition: 

: n n m n   f .  (2) 

Function f is assumed to be smooth to guarantee the existence and uniqueness of 

the solutions on time interval defines as 

 0 0,t t        .  (3) 

Quantity  can be a positive real number or  . The initial state of the function f 

= (t, 0, 0) does not need to be equal to 0, which means that the origin does not 

need to be identical as an equilibrium state. 
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2.2 Mathematical Modeling 

Fig. 1 represents a kinematic structure of the 5 DOF robotic system analyzed in 

this article. As shown in Fig. 1, generalized coordinates (q1, q2, q3, q4, q5) were 

adopted to characterize the motion of the individual joints. A stationary coordinate 

frame was denoted as Oo, and the coordinate frames of the joints were marked as 

Oi, i = 1,, 5. Di, i = 1,, 5, denote distances between the origins Oi. The 

coordinate systems were marked as xiyizi, i = 0, 1,,5. 

With the use of the energy-based Lagrange-Euler approach, the dynamic equation 

of the motion can be written as 

,)()(
1 1

,

1
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n nn

QQqqqqqa 












 

 

  (4) 

where  =1,…,5. a(q) represents the tensor coefficients, ,(q) denotes the 

matrix coefficients, Q
g
 and Q

u
 are the major components of the generalized 

torque. Q
g
 represents the gravitation forces, and Q

u
 corresponds to the generalized 

torque, produced by the actuators. 

A mathematical description of the actuators, Fig. 2, is given as in equation (5). 

N N J F M C N Im n mV M R    ,  (5) 

where  is the rotation angle, M is the output torque of the actuator, equal to the 

sum of Q
g
 and Q

u
. IR is the current of the rotor, LR is the inductance of the actuator, 

and U is the voltage of the actuator. 

 

Figure 1 

Model of the robotic system containing three translational and two rotational joints 
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The coefficient in equation (5) is denoted as follows: NV is the reduction 

coefficient (ratio of the output velocity and input rotational velocity); Nm is the 

torque reduction coefficient (ratio of the input and output torques); JM is the torque 

coefficient; F is the motor friction coefficient; Cn is the mechanical constant of the 

motor; RR is the rotor circuit resistance; and CE is the counter-electromotive force 

coefficient. 

 

Figure 2 

Schema of an actuator. Robotic joints are governed by the presented actuator. 

Without the loss of any precession, it can be assumed that the inductance is LR  0. 

If the state-space vector for the motors is adopted as x=(, ’
, IR)

T
, it can be 

concluded that the order of the mathematical model of the actuators is equal to 

two. Consequently, the state-space equation of each actuator is as follows 

i i i i i i ix A x B u d M                                                                                       (6) 

where Ai, bi, and di are the matrices defined as: 

0 1 0 0

, , 11
1 ( )i i ii MM E

V M mV M RM V M R

A b dF CC C

N J NN J RJ N N R

     
     

  
      
        

 (7) 

The correlation between the robotic system and the actuator is established via 

generalized coordinates and torques in the following way: i = tiqi, where ti is a 

transfer coefficient vector for the individual joint i. The generalized torques on the 

actuators are defined as Mi = geni. A matrix representation of the coefficient is 

T=diag(Ti), Ti=(0 ti). Equation (4) can now be written as follows, 

( ) ( , ) genH q q h q q   .  (8) 

In equation (8), H represents an inertia matrix; h is a matrix that represents both 

the centrifugal and Coriolis effects, as well as the gravity. The relation between 

the state space vector and the generalized coordinates is adopted as 1
dT qx . 

The time delay joint variables are defined as: 
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( ) ( )

( ) ( )

d

d

q t q t

q t q t




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 
,  (9) 

where  is the system latency. When (4), (6) and (9) are combined with (8), the 

nonlinear dynamic equations of the robotic systems governed by the actuators can 

be written as: 

( ) ( )n nA B x x x u ,  (10) 

where x and u are the state-space and control vectors, respectively. x = (q1, q’1 , 

q5, q’5), and u = (U1, , U5), where Ui is the voltage on each actuator. Nonlinear 

matrices An and Bn are calculated as: 

1

1

1

( ) [ ( ( ) ) ( ) ]

( ( ) ) ( )

( ) ( ( ) ) ( )

n n

n

n n
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F I H x TF h
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





   



  

x x x x

x

x x x

,  (11) 

where A= diag (Ai), B= diag (Bi), F= diag (di). Equation (12) can be obtained 

through the derivation of equation (10) in the second order Taylor series around 

the nominal point. For derivation purposes, the deviation of the generalized 

coordinates due to time delay was expressed as qd (t) = q(t) - q(t-). 

0 1( ) ( ) ( ) ( )L L Lt A t A t B t  x x + x u   (12) 

where matrices AL = (AL0  AL1)
T
 and BL have the following form: 

1 1
0

1
0 0

0
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n
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H
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
      



 
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

x x u
x

x u
x x

x

  (13) 

3 Control Synthesis 

In this part, the ability of the robotic system to guarantee the desired trajectory 

tracking within the strictly predefined time interval was investigated. 

Consequently, it was necessary to find the control law which will supply the 

actuator with appropriate control signals to perform the motion of the links 

according to the predefined trajectories within a specified time frame. 

The analyzed latency includes latency in mechanical parts, signal processing 

latency and latency due to the unmeasured disturbances. The overall system 

latency affects the generalized coordinates and consequently, the system states. 
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The proposed control method deals with the latency of any source that can cause 

delay in the system states. 

The objective of the control was to minimize the error q between the real 

generalized coordinates and the generalized coordinates (positions and velocities) 

under the influence of latency. The errors due to time delay can be presented as: 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

d

d

d

q t q t q t

q t q t q t

q t q t q t







   

   

   

.  (14) 

Equation (8) is rewritten as: 

( ) ( , ) ( )H q q V q q q G q    .    (15) 

 

Figure 3 

Control schema of the manipulator with time delay 

Through the introduction of the estimated values of the system parameters, such as 

the estimated inertia matrix ˆ ( )H q , the estimated Coriolis and centrifugal 

matrix ˆ( , )V q q , and the estimated gravitational vector ˆ ( )G q , the generalized form 

of equation (15) can be written as 

ˆˆ ˆ( )[ ] ( , ) ( )v pH q q K q K q V q q q G q        ,  (16) 

where Kv and Kp are the derivative and proportional gain matrices. Including (14), 

the controller equation for the system with time delay can be written as 

ˆˆ ˆ( )[ ] ( , ) ( )d v d p d d d d dH q q K q K q V q q q G q          (17) 

The proposed control methodology guarantees the asymptotic reduction of errors 

introduced by time delay. A block diagram of the proposed approach was 

presented in Fig. 3. 

The control law used in the described case can be expressed as 

-KCu = x ,   (18) 
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where C is the output system matrix and K is the gain matrix, K=diag(Kp Kv). The 

values of the proportional and derivative gains were calculated for each link 

according to the following formula: 

2

1/2

((0.5 ) ( ) ) /0

2( ( ) ) /

K H N N J R N Cp v m mii M R M

K K H N N J R FR N C N Cv p v m m m vii R R M E

 

   

.  (19) 

By recalculating the control law for trajectory tracking with respect to the 

actuators and using equation (6), one can obtain: 

1( ) ( ( ) ( ) ( ))v v gent t A t d t Bi i i   u x x ,   (20) 

where xv denotes the velocity components of the state values, with matrices 

defined as in (6). 

4 Stability Analysis 

In this part, a brief stability analysis for such systems is presented. To evaluate the 

stability of the system described here, we performed an evaluation using a novel 

approach. System (12) in the free working regime was analyzed 

0 1( ) ( ) ( )L Lt A t A t  x x + x ,                                                                               (21) 

with an initial vector function as 

( ) ( ), 0t t t   xx φ .                                                                                  (22) 

While the analyzed class of the systems is kept in mind, the following definitions 

are presented. The theorem presented here was used to evaluate the stability of 

system (21). 

Definition 1: System (21) is stable with respect to  , , , ,|| || ,T   x    if 

for any trajectory ( )tx  condition ||x0||< implies ||x(t)||<, t[-, T], =max, [7]. 

Definition 2: Autonomous system (21) is contractively stable with respect to { , 

, , T, ||x|| },   <  < , if for any trajectory ( )tx  with condition ||x0||<, implies: 

(i) stability with respect to  , , , ,|| || ,T   x  

(ii) there exists  t
*
]0, T [ such that ||x(t)||< , for all t]t

*
, T [, [7]. 

Definition 3: System (21) satisfying initial condition (22) is finite time stable with 

respect to   , ,t   if and only if ( ) ( )x t tφ , implies ||x(t)||<, t, ( )t  

is a scalar function with the property 0 ( ) ,t    –   t  0, where   is a real 

positive number and   + and  >, [7]. 



I. Buzurovic et al. Stability of the Robotic System with Time Delay in Open Kinematic Chain Configuration 

 – 54 – 

Theorem 1: Suppose that the matrix defined as 
0 0 1 1( )T T

L L L LA A A A I      is 

positive definite. Then the autonomous system (21) with initial function (22) is 

finite time stable with respect to  , , ,    , if   , such that the following 

condition holds 

 max(1 ) / ,
t

e t


  
 

    ,                                                                          (23) 

where max is the maximum eigenvalue of the specific matrix, and  is a finite 

time interval. 

Proof: Let us consider the following Lyapunov-like, aggregation function: 

          
t

T T

t

V t t t d


  


  x x x x x ,                                                               (24) 

Denote by   V tx  time derivative of   V tx  along the trajectory of system 

(21), so one can obtain: 

              
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d
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  



 



  

   
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x x x x x x x

x x x x

x x x x

                                             (25) 

Based on the known inequality
1
, and with the particular choice: 

         0,T Tt t t I t t     x x x x x S ,                                                           (26) 

so that: 

       

   

   

0 0 1 1
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t t

t
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 

 

x x x

x x

x x

,                                                              (27) 

under the assumption given in Theorem 1. Moreover, it can be calculated: 

            

            

max max

max max

t

T T

t

t

T T

t

V t t d

t d V t





    

    





   

 
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 





x x x x x

x x x x x

,                           (28) 

since     0

t

T

t

d


  


 x x  and  max 0   . 

                                                           
1
            12 , 0T T Tt t t t t t          u v u u v v  
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Multiplying (28) with 
 max t

e
  

, one can obtain: 

 
   max 0

td
e V t

dt

  
x .                                                                                     (29) 

Integrating (29) from 0 to t, with t , we have: 

    
 max 0

t
V t e V

  
 x .                                                                                   (30) 

From (24), it can be seen: 

             

     
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0 0 0 0 0 0 0
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     





   
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



x x φ φ x x

φ φ

.                                  (31) 

Combining (30) and (31) leads to: 

    
 max1

t
V t e


 

 
  x                                                                                   (32) 

On the other hand: 

                  max1

t
tT T T

t

t t t t d V t e




    
 



     x x x x x x x ,                (33) 

Condition (24) and the above inequality imply: 

       max1 ,
tT t t e t


  

 
     x x ,                                                             (34) 

which was to be proven. 

5 Numerical Example and Simulation 

For the purpose of the simulations of such systems, the desired trajectory in the 

Cartesian space was defined as in Fig. 4. 

 

Figure 4 

Tracking (desired) trajectories in the Cartesian space 



I. Buzurovic et al. Stability of the Robotic System with Time Delay in Open Kinematic Chain Configuration 

 – 56 – 

It was requested that the coordinates of the absolute end-effector should follow the 

predefined trajectories within a time frame of 20 s and should maintain the 

stability in the interval. 

Due to the described task, it is necessary to investigate the finite time stability of 

the time delay system. 

Table 1 

Geometric characteristics of the system and masses 

Value/Joint 1 2 3 4 5 

  m  (kg) 0.2 0.2 0.5 0.1 0.01 

 ( )mii      (-0.2 0 0)T (0  0.18 0)T (0 0 –0.17)T (0  0 –0.165)T (0 0 -0.2)T 

 ( )mi
 (0.1 0 0)T (0  -0.09 0)T (0 0 0.1)T (0  0 0.1)T (0 0 0.1)T 

     
ie
  (1 0 0)T (0  1  0)T (1 0 0)T (0  0 1)T (0 0 1)T 

Table 2 

Numerical values of the parameters of the actuators 

Value/Joint 1 2 3 4 5 

Rr 8.40 8.40 84.30 2.10 16 

J 6.50E-06 6.50E-06 5.40E-07 6.50E-06 9.00E-09 

Nv 473 473 247 994 2100 

Cm 2.02E+04 2.02E+04 74200 9800 2000 

Ce 2.12E-03 2.12E-03 4.04E-04 4.04E-04 3.00E-03 

Nm 115 115 111 111 870 

In relation to Figure 1, the geometric characteristics of the system and the mass of 

the joints are presented in Table 1. 

Table 3 

Elements of the matrices 

Actuator a22 b2 d2 

1 -7.825e+05 7.822e+05 1.610e-02 

2 -7.825e+05 7.822e+05 1.610e-02 

3 -6.593e+04 6.588e+04 1.009e-01 

4 -2.901e+05 7.371e+05 1.612e-02 

5 -4.167e+07 6.614e+06 2.646e+01 

Table 2 represents the numerical values of the parameters described in equation 

(5) and Figure 2. 

The variables described in equation (6) which were used to determine control 

gains (19) are presented in Table 3. The coefficients a22, b2, and d2 are the 

diagonal elements of the matrices (7). 

K is the diagonal matrix and their elements are the position and velocity gains, K = 

diag{Kp Kv}. The gain values for each segment can be calculated using equation 

(19) and the values in Table 2. 
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Table 4 

Gain elements 

Joint Kp Kv 

1 1.306E-02 1.164E+03 

2 1.306E-02 1.164E+03 

3 3.690E-01 7.461E+03 

4 6.999E-03 2.143E+02 

5 1.839E+00 2.488E+03 

The detailed explanations for this procedure can be found in [18]. Using the 

control law (29), (4) and (30), it is possible to calculate the eigenvalues of system 

(5). The control gains are presented in Table 4. 

Fig. 5 represents qi, i=(1,2,,5) trajectories in the joint space. The values on the y 

axis are in mm for joints 1, 2, and 4, and in rad/s for joints 3 and 5. The initial 

condition (22) transformed to the initial generalized coordinates in the joint space 

can be described as q0=[0 -17, 0, 1, 0]
T
, as in Fig. 5. At this point, it is of interest 

to investigate the influence of time delay on the system stability. 

For that purpose, the comparison between the two control strategies applied for 

system (12) was performed. The first one includes the classical approach using a 

PID controller. The second one includes the proposed methodology, as in (18) and 

Fig. 3. The comparison was presented in Fig. 6 and Fig. 7. The figures represent 

the step and sinusoidal responses of the system. 

 

Figure 5 

Generalized trajectories in the joint space 
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Figure 6 

Step responses of the system for both PID and proposed control methodology vs. reference input signal 

It was observed that the time delay had a significant influence on the dynamic 

behavior of system (12) when the PID controller was used. However, the proposed 

methodology in this article solved the latency problem of the system output, as 

shown in Figs. 6-7. 

In the sequel, the stability of the robotic system represented by equation (21) with 

initial vector function (22) graphically presented in Fig. 4 was investigated. For 

the numerical stability analysis, Theorem 1 was used. 

 

Figure 7 

Sinusoidal responses of the system for both PID and proposed control methodology vs. reference input 

signal 
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The numerical values of matrices AL0 and AL1 are as follows, as in (35-36): 

0 1 0 0 0 0 0 0 0 0

0 -3.9 6 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

0 0 0 -3.9 6 8.42 -26.92 -1.5 -4 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 -3.27 2.8 -2 -4.6 -0.24 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 -4.1 -2 0 4.4 -3 -2.9 0 0

0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 -4.2

e

e e

AL e3 e e4

e e e5

e6

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

,  (35) 

0 1 0 0 0 0 0 0 0 0

0 -2.33 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

0 0 0 -2.3 8.42 -4.28 -1.5 -3 0 0 0

0 0 0 0 0 1 0 0 0 0

1 0 0 0 -3.3 0.18 -1 -4.6 -0.32 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 -0.44 -1 0 2.4 -2 -2.3 0 0

0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 -3.2

e5

e3 e

AL e4 e e4

e e e4

e5

 
 
 
 
 
 
 
 
 
 
 
 
 

 




.  (36) 

System matrices AL0 and AL1 were calculated for the system with feedback, as in 

Fig. 3. For this example, the following was adopted:  = 2.5,  = 3, and  = 200 

ms. With the use of equation 0 0 1 1( )T T

L L L LA A A A I     , it was calculated that 

matrix  is a positive definite matrix, i.e.  >0. The eigenvalues of the matrix 

were denoted as () = {1,,10}. 

The eigenvalues of the system were calculated using equation (37) 

     

0

0 1 0 1det det

det( ) ( )
1

L j

s
L L L LA A e CK sE A A CK sE

N
A KC sE K s s

j





      

   
 ,                          (37) 

where  0 1A A AL L L  is a decomposition of matrix A
L
. After calculation, it was 

obtained: () = {8.3, 2.8e5, 7.2e5, 1.2, 6.4e5, 1245, 12,4, 2.4e5, 4234, 4.1e6 }. 

It can be seen that max() = 4.1e7. Now it is possible to calculate condition (23) 

and to estimate Test - time after the system is stable under the influence of control 

feedback. 
 max(1 )

t
e



 

  (1+0.2)e
max()t

 < 1.2. For this specific case, it was 

calculated that system (21) with control feedback (20) would obtain and maintain 

stability after Test  = 3.9e-8. 
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Figure 8 

Trajectory and square norms of the representative state trajectory for the controlled and uncontrolled 

system 

Fig. 8 represents the result graphically. The figure shows the trajectory and norm 

of the trajectory for controlled and uncontrolled systems. The norm of the 

representative state trajectory was presented to depict its convergence to the stable 

zero state during the time interval of interest. 

Conclusions 

In this article, a mathematical modeling procedure of the robotic system with time 

delay was presented. This procedure includes the mathematical model of the 

actuators, and it can be used for any robotic system in the open kinematic 

configuration. The time delay was included in the mathematical model. A time 

delay controller capable of system stabilization under the influence of the time 

delay was developed. The novel stability conditions were derived for the 

investigation of the stability of the system. These conditions were used to evaluate 

the proposed controller under the influence of system latency. The comparative 

results for both the PID and the time delay controller were presented. The 

proposed control methodology resulted in a stable dynamic behavior of the 

system. It was observed that the proposed controller could nullify the latency 

presented in each link. Consequently, the time delay did not influence the overall 

system performances. The performance investigation of the system using novel 

stability conditions showed the full compliance of the system behavior with the 

desired system dynamics. The future work of this study will include further 

rigorous dynamic analyses and the influence of the specific value of time delay on 

the system, and it will also define the stability boundaries for such a system. 
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