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Abstract: Metagenomics allows researchers to sequence genomes of many microorganisms 

directly from a natural environment, without the need to isolate them. The results of this 

type of sequencing are a huge set of DNA fragments of different organisms. These results 

pose a new computational challenge to identify the groups of DNA sequences that belong to 

the same organism. Even when there are big databases of known species genomes and 

some similarity-based supervised algorithms, they only have a very small representation of 

existing microorganisms and the process to identify a set of short fragments is very time 

consuming. For all those reasons, the reconstruction and identification process in a set of 

metagenomics fragments has a binning process, as a preprocess step, in order to join 

fragments into groups of the same taxonomic levels. In this paper, we propose a clustering 

algorithm based on k-means iterative and a consensus of clusters using different distance 

functions.  The results achieved by the proposed method are divided using different lengths 

of sequences and different combinations of distances. The proposed method outperforms 

the simple and iterative k-means. 

Keywords: Metagenomics; consensus clustering; sequences binning; k-means; distances 

function 

1 Introduction 

The study of microorganisms gives us a better understanding of global cycles that 

keep the biosphere in balance. Furthermore, it is important to know their functions 

in order to develop antimicrobial therapies and provide solutions to the 

environmental challenges of today. 
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A few years ago, the study of microorganisms consisted of isolating them in a 

laboratory under artificial culture conditions. After this step, suitable for a minor 

fraction of them, microbes can be studied to understand its biochemical and 

molecular properties. All its genetic information, the genome, was studied 

sequencing millions of partial fragments of its chromosome using sequencing 

machines. This short sequenced fragments are generally called reads and require 

an assembly process, which consists of reconstructing the entire chromosome 

DNA sequence. The most difficult part of the assembly process is combining the 

pieces of the puzzle because the fragments vary in size and some can be very 

similar, albeit they come from different regions in the genome [1]. 

Previous efforts have focused on methods developed to isolate and cultivate more 

microorganisms. The problem with this strategy is that only a small percentage of 

microorganisms can be isolated and cultivated in a laboratory setting [1, 2]. 

The development of more advanced sequencing technologies has led to the 

emergence of the metagenomics field, which made the dream of sequencing of 

samples directly from their natural habitats a reality. This new field has made it 

possible to study communities of microorganisms from different environments 

such as land, sea, or even the human gut, without the need to culture them [3-5]. 

Metagenomics does have limitations and arises new problems: now we can obtain 

DNA genomic sequences without the need to isolate and cultivate the organisms 

in a laboratory, but with this method we cannot obtain the entire genome of an 

organism, we can only obtain DNA fragments [2]. The presence of a variety of 

organisms increases the difficulty of reconstructing the DNA sequence. 

Metagenomics provides scientists with a set of DNA fragments from a variety of 

organisms that need to be sorted for processing, this process is called binning, and 

it consists of identifying which groups of DNA fragments belong to a single 

organism, a single chromosome. In order to improve the results of binning, is 

common to make a partial assembly to obtain largest fragments called contigs. 

Research of the binning process have focused on two methodologies: 

composition-based and similarity-based methods [6].  Similarity-based binning is 

a supervised method, which uses similarity techniques such as alignment, 

comparing the metagenomic sequences with known genes or proteins in available 

databases, such as BLAST [7]. 

Composition-based binning is based on representing the sequences with 

characteristics that allow them to be separated into taxonomical groups. The most 

common features used to describe the sequences are GC content, codon usage or 

oligonucleotide frequencies. Composition-based methods can be implemented as 

either supervised or unsupervised depending on the use of a reference training set. 

NBC [8], TACOA [9] and Phymm [10] are some examples of supervised 

implementations. 
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Although supervised methods are more accurate than unsupervised methods, the 

availability of enough reference training sets are small which leads to the use of 

unsupervised methods or the combination of both methods. 

There have been some research on unsupervised binning methods, which use 

different clustering algorithms, distance measures and features to characterize the 

DNA fragments. One of the first reported was TETRA [11], which uses the k-mers 

feature, with k=4 also known as tetranucleotide frequencies. MetaCAA [12] is 

another program which also uses k-mers as feature representation. In [13] a Self-

Organizing Maps (SOM) method was used to efficiently cluster complex data 

using the oligonucleotide frequencies calculation, while in [14] growing self-

organizing maps was used. In [15] the authors used a fuzzy k-means algorithm 

based on GC percentage and oligonucleotides frequencies. MetaCluster is another 

method that employs a k-median algorithm and k-mers to represent the features 

[16, 17]. Other researchers have used clustering methods based on expectation 

maximization (EM) [18] [19]. 

Also, some authors have presented hybrid algorithms that combine the 

composition-based methodology along with alignment-based methods such as 

PhymmBL [10] and new versions of MetaCluster [17]. The alignment-based 

methods are limited when dealing with large-scale sequence data due to their 

computational complexity and are time-consuming. Taking into account that, we 

focused on composition-based methodologies. 

There are some issues that can arise from a binning process such as: the databases 

are large and heterogeneous, the number of species in a sample is unknown, 

fragments vary in size and the number of fragments from each species is different, 

which results in an unbalanced database. These problems increase the difficulty 

for unsupervised binning, and require better attributes to represent the DNA 

fragments to be determined and improved algorithms that can handle large 

amounts of complex data. 

In this paper we propose a clustering method based on k-means++ and the mixture 

of different distance functions. We use k-mers frequencies as representation of 

features. The results of our new method were compared with the results from a 

simple clustering algorithm by comparing the purity of the groups created using 

each method. 

The remainder of this paper is structured as follows. Section 2 describes the data 

used to create the metagenomic database, the features selected to describe the 

sequences and the k-means++ clustering method. Section 3 introduces our 

proposed method based on k-means ++ iterative. Section 4 discusses the results 

obtained. The paper ends with the conclusions. 
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2 Methods and Data 

The aim of this section is to introduce the data and methods used in our 

experiments. We describe the composition of our database with regard to size of 

metagenomic sequences and the diversity of the organisms.  

We present the composition-based feature used to represent metagenomic 

sequences. We also introduce the k-means++ clustering method because it is the 

base of our proposed algorithm. In addition, we present the distance functions 

used in the algorithm and the quality measures used to compare the results. 

2.1 Data 

Assembled genomic sequences at contig level of different organisms including 

viruses, bacteria and eukaryotes were downloaded from the FTP site of the Sanger 

institute (ftp://ftp.sanger.ac.uk). In order to have representations of different 

groups of domains, but also a variety within each group, the database consists of 9 

eukaryotes, 2 bacteria and 5 viruses.  

Table 1. Organisms in the database 

Organism Domain Contigs Min Length Max Length 

Ascaris suum Eukaryote 137650 50 30000 

Aspergillus fumigatus Eukaryote 295 1001 29660 

Bacteroides dorei Bacteria 1928 500 29906 

Bifidobacterium longum Bacteria 18 540 26797 

Bos taurus Eukaryote 315841 101 5000 

Candida parasilopsis Eukaryote 1540 1003 29956 

Chikungunya Virus 1 11826 11826 

Dengue Virus 64 10392 10785 

Ebola Virus 1 18957 18957 

Glossina morsitans Eukaryote 20334 101 29996 

HIV Virus 1 9181 9181 

Influenza Virus 8 853 2309 

Malus domestica Eukaryote 66739 102 5000 

Manihot esculenta Eukaryote 7192 1998 4998 

Pantholops hodgsonii Eukaryote 159729 50 5000 

Zea mays Eukaryote 161235 102 5000 

  872576 50 30000 

ftp://ftp.sanger.ac.uk/
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Selected viral sequences include HIV, Chikungunya, Ebola, Influenza and Dengue 

virus genomes. Bacterial sequences come from Bacteroides dorei and 

Bifidobacterium longum. Eukaryotes include 9 species: Ascaris suum (parasitic 

nematode), Aspergillus fumigatus (Filamentous fungi), Bos taurus (Cow), 

Candida parasilopsis (Yeast fungi), Glossina morsitans (Insect), Malus domestica 

(Apple tree), Manihot esculenta (Cassava), Pantholops hodgsonii (Tibetan 

antelope) and Zea mays (Corn plant). 

Table 1 shows the description of each species included in the database, and 

provides the number of contigs for each species and the range of lengths for each 

(minimum and maximum). The table shows how heterogeneous the database is. 

The variation in the number of contigs for each organism as well as the size of the 

contigs is very large. For example, Ascaris suum is an eukaryote has 137650 

contigs that range between 50 and 30000 bases, while HIV only has a single 

contig with 9181 bases. 

2.2 Features 

The database consists of 872576 contigs in total which vary in size between 50 

and 30000 nucleotides bases, we used a composition-based feature to represent the 

DNA fragments.  

Taking into account some previous results [20], we select k-mer (k=4) as the 

features to represent the contigs.  

A tetranucleotide is a 4-combination of the nucleotides that means, there are 256 

possible tetranucleotides. For each tetranucleotide t a 4-mer feature define 

follows, resulting in 256 features. 

4-mert (contig i): number of each tetranucleotide (t) and normalized with the total 

of tetranucleotides in the contig. 

This feature was represented as the percent of each tetranucleotide in the 

fragment, because it was normalized with the total of tetranucleotides in the 

contig. 

2.3 Clustering Method 

K-means is one of the most popular clustering methods [21]. K-means++ is a 

variant of k-means, which improves the selection of centroids for the clusters [22]. 

This algorithm finds a set of k centroids based on a weighted probability 

distribution where a point x is chosen with a probability proportional to a distance 

function. This selection ensures that the centroids are distant from one another. 

After the centroids are chosen, the algorithm proceeds as the standard k-means 

clustering. 
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We test different clustering algorithms as SOM, EM and k-means, but only the k-

means++ method results are included because they provided the best results.  

Some of the most used distance functions in this problem are Euclidean (1), 

Cosine (2) and Jaccard distance (3). 
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where X and Y are the instance to compare, with dimension n (features number), 

and xi and yi denote the i-th feature of X and Y respectively.  

To assess the final quality of clustering methods we use a labeled database, intra 

and inter-cluster, and purity measure (4) [20]. 
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where nj is the number of organisms in cluster j (Cj) and nij is the number of 

organisms of class i in cluster j. 

For the implementation of the clustering methods, we used Weka 3.9 [23], which 

is a free machine learning package that has implemented k-means++. Furthermore, 

it has the advantage that it is easy to add a new clustering method. 

3 Clustering Method based on Combine Different 

Distances 

We have proposed a clustering method based on iterative clustering [20] with k-

mean++ as the base method. The main idea behind this proposal is the usage of 

multiple distances, in order to make different divisions of space input. 
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The proposal is a general clustering method, which is easily adaptable to any 

clustering problem. The principal parameters to adjust as in k-means method are 

the value of k and the distance function. Now we need to select not only one 

distance function, but two or more. We can suggest a distance function, because 

the best distance functions may be different depending on the problem. 

Nevertheless, for metagenomics we can make a suggestion based on the results 

obtained in that experiment. 

We use Euclidean (1), Cosine (2) and Jaccard (3) distance in order to test our 

method in the metagenomic database. 

 

Figure 1. Steps of Proposed Clustering Method 
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The distance functions used to compare the length of the contigs was the 

Euclidean and Cosine. The second step of the method joins some clusters using 

the Jaccard distance. 

Figure 1 represents the process of our proposed clustering method, which is based 

on the following steps: 

Step 1:   The fasta file containing metagenomic sequence data is converted into a 

composition-based file using k-mer features. In that case we use an .arff file 

representation with Weka.  

To clarify the algorithm, the following steps are depicted in the following 

example. 

Step 2: The given sample of data points (figure 2a), are intentionally distributed in 

five clearly separable groups. We expect that a clustering algorithm selects the 

centroids in such a way that each one are in different visible groups, but we don’t 

know the number of clusters that will be created. For example using k=3 you can 

obtain the result displayed in 2b, here it’s obvious that the cluster on the far right 

is not compact, and it can be divided again. This is where the iterative method 

begins by applying k-means++ while there is at least one non-compact cluster.  

To measure the compactness of the clusters an internal evaluation based on the 

intra-cluster distance is used. The method seeks clusters with high intra-cluster 

distance and uses data that belongs to them as the input for the next clustering. In 

the example the cluster on the right side of figure 2c was selected and the k-

means++ was applied again with k=2, which resulted in the partition displayed in 

2d. It is clear that the cluster at top right of figure 2e is still non-compact, so the k-

means++ is applied again, now with k=4. Figure 2f represents the final partition 

results. 

The threshold used to evaluate the compactness of clusters is based on the intra-

cluster distance and the standard deviation as shown in equation 5.  

)()( 11 i
n
ii

n
i distance clusterintraStddistance clusterintraMeanThreshold  

 (5) 

where n is the number of clusters, and the intra-cluster distance for a given cluster 

is calculated as the average of distances between each instance that are contained 

in the cluster and the centroid of the cluster. 

The application of iterative clustering methods generally provides more clusters 

than necessary, but this is the intention of this step. We want to obtain an over-

estimated number of clusters. Indeed, the intention is to define double the number 

of clusters provided by the expert, in an attempt to define clusters with members 

of a single species, even when the species are divided in different groups. 

Step 3: After the application of the iterative clustering method, we have a large 

number of clusters, some of which can be close to each other. The final step is to 

decrease the number of clusters. The new number of clusters is approximated 
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using an inter-cluster measure.  Once again, k-means++ is used, but this time with 

the final centroids obtained in the previous step as the input (figure 3a and 3b). 

Additionally, in order to partition the data space in a different way, a different 

distance measure was used (we suggest Jaccard distance). The results of this final 

clustering are shown in figure 3c, and the total number of clusters is smaller. 

The previous example is an extremely simple case which was only intended to 

clarify the application of our proposed method. In metagenomics applications a 

greater number of clusters will be created than the real number of groups present 

in the sample, but we manage to decrease the number of clusters generated 

keeping the pure, and belonging to a single species by using our method. This was 

corroborated by using the purity measure to compare the results obtained.  

It is important to remember that high purity is easy to achieve when the number of 

clusters is large [20]. This method provided positive results generating less 

clusters that are equally pure.  

4 Results and Discussion 

A metagenomic database built from 16 different organisms is used to evaluate the 

method. K-mers with k=4 are some of the characteristics selected to describe the 

metagenomic sequences. Euclidean and Cosine distances were used for the 

iterative k-means++ algorithms, while Jaccard distance was used in the last step of 

the algorithm to calculate the intra-cluster distances. Multiple tests to train the 

clustering method were performed, beginning with k of 15 and increasing until it 

was equal to 40. K was increased in the second clustering process by a factor of 2 

to 10 times.  

With the objective of comparing species in the same domain, we divide the 

database into three datasets: Bacteria, Virus and Eukaryotes. We also test the 

algorithm with the complete database. 

The results obtained with the species divided in domain were very good for all the 

domains. Viruses, which are normally the most difficult to separate from the rest 

of organisms obtained the best results when they were analyzed alone. 

Figure 2 illustrates the best results obtained using the proposed method with the 

dataset of Virus. The results shown on the left side of the drawing are based on an 

iterative method with cosine distance of two phases of k-means++ with k=10 for 

first phase and k=25 for second phase resulting 26 clusters. The last step of the 

method applying k-means++ with Jaccard distance and k=14 is shown at the top 

right of figure.  
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Figure 2. Results using proposed method with dataset of Virus. 

Even when we obtain 14 clusters for 5 species, these clusters are 100% pure.  

Analyzing the results of iterative clustering described in step 2 (left side) it can be 

seen that Chikungunya, Ebola and HIV, which have one contig, could be 

separated in one cluster of each one.  On the other hand, Dengue and Influenza are 

divided into 16 and 7 clusters respectively. The last clustering in the centroids 

corresponding to step 3 (top right), demonstrated that clusters of Chikungunya, 

Ebola and HIV remain the same and Dengue and Influenza are reduce to 4 

(clusters 0, 2, 7 and 12) and 7 (clusters 3, 4, 5, 8, 9, 10 and 13) clusters.  

The best results for Bacteria were obtained with k1=10 and k2=20. The second 

phase was using k=4 obtaining 97.5% of purity. Even when we have only two 

bacteria, Bifidobacterium longum was difficult to separate. Viruses have more 

number of species than the Bacteria, but Bacteria have more contigs and are 

bigger than Viruses. Bacteria have 1946 contigs ranging between 500 and 29906 

bases, whereas Viruses present only 75 contigs in a range between 92 and 8748. 

On the other hand Eukaryote which are the biggest in both number of species and 

contigs, achieved 99.7% of purity. The results were obtained with k1=25 and 

k2=30 in iterative process and k=4 for the last part. Candida parasilopsis and 

Aspergillus fumigatus are scatted across many clusters and could not be separated 

from the rest.  
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Figure 3. Results of proposed clustering methods with all domain of species, divided according the 

length of contigs. 

Figure 3 shows the results of the whole database, now divided according to length 

of contigs. Left side of drawing illustrates the outcomes of proposed clustering 

method with length of contigs inferior to 10000 and using k1=15, k2=2500 for the 

iterative process resulting 2483 clusters. Right side of figure shows results also 

about the performance of iterative phase, but with contigs length greater than or 

equal to 10000 and using k1=15 and k2=230. And this time 232 clusters were 

obtained. 

Although the organisms are very scattered we obtain a high purity and we can 

separate the virus in independent clusters. Using lengths larger than 10000, the 

algorithm achieves 100% of purity for all clusters, and 98.11% when the lengths 

are shorter than 10000. 

In order to reduce the number of clusters we join the results obtained before 

having now 2715 centroids and apply the last phase of the algorithm. The number 

of clusters was reduced from 2715 to 125 yielding a 99% of purity. Figure 4 

displays the number of clusters by organism which oscillate into 1 to 37. Even 

when at least a cluster was obtained for each organism, three species cannot be 

totally separated from the rest: Bifidobacterium longum, Influenza and 

Aspergillus fumigatus. Some of their contigs are distributed in different clusters 

with other organisms. 
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Fig. 4. Final result by the application of step 3 with k=125 

Summarizing, the proposed method based on two process of clustering one 

iterative and another with the centroids resulting for the first improves the results 

of binning in metagenomics. The key of the method is to use different distances 

for iterative clustering and centroids clustering. The combination of different 

distances can generate a significant change in the separation of the space. Here we 

use Cosine and Jaccard distances in the first and in the last clustering process 

respectively. 

Additionally, it is important to take into account the lengths of the sequences. In 

order to minimize error we can divide the problem and create models that are 

focused on the short sequences and models that are based on the large sequences.  

Conclusions 

In this paper we proposed a clustering method based on k-means++ with two 

training phases. The first phase is an iterative clustering process, training a 

consecutive set of k-means++ with different inputs, decreasing in each one 

depending on the compact clusters determined in the previous run of clustering. 

The second phase is another clustering but using the set of centroids obtained from 

the first phase. Each phase is trained with a different distance function.  

The proposed method is applied to a metagenomic database that composed of 16 

different organisms from three different domains: Bacteria, Virus and Eukaryote.  

We obtained the best result using Cosine and Jaccard distance for the first and 

second phase respectively. The results obtained, based on the purity of clusters, 

outperforms results obtained with a simple k-means++ and also compared with an 

iterative k-means++. 
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We can conclude that longer DNA fragments can improve performance in a 

binning process. Although, the number of clusters is higher than the number of 

organisms, the proposed method provided pure clusters for organisms, achieving 

100% of purity in all clusters when the lengths of contigs is greater than 10000, 

and 99%  for all possible lengths. 

The results shown have only been applied to one database, but the method is a 

promising development for clustering larger sequences or as a prior step in the 

taxonomy assigned process. 
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