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1 Introduction

Riemannian geometry is concerned with the (higher dimensional theory of) metric
geometry of Euclidean surfaces and in particular the length-minimizing curves on
these surfaces. Sub-Riemannian geometry may be interpreted as a generalization
of Riemannian geometry. The fundamental difference is that for a sub-Riemannian
manifold motion is restricted to certain admissible (or horizontal) directions. Due
to such constraints it may not be possible, in general, to connect any two points by a
(horizontal) curve. Sub-Riemannian geometry has been a full research domain since
the 1980’s; it has motivations and ramifications in several areas of pure and applied
mathematics. Moreover, there is a substantial overlap between sub-Riemannian ge-
ometry ([7, 16]), geometric optimal control ([2, 12, 18]) and nonholonomic mechan-
ics ([5, 8]).
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Among the sub-Riemannian manifolds, the Carnot groups are the most fundamental.
In the words of Montgomery [16] “Carnot groups are to sub-Riemannian geometry
as Euclidean spaces are to Riemannian geometry.” The Heisenberg groups are the
simplest, non-Euclidean Carnot groups. Structures on the Heisenberg groups (and
their generalizations) have been extensively studied in the last few decades (see,
e.g., [4, 9, 14, 15, 19]).

In this paper we shall classify, under isometric Lie group automorphisms, the left-
invariant bracket-generating sub-Riemannian (and Riemannian) structures on the
(2n+1)-dimensional (polarized) Heisenberg group

Hn =





1 x1 x2 · · · xn z
0 1 0 0 y1
0 0 1 0 y2
...

. . .
...

0 · · · 1 yn
0 · · · 0 1


: xi,yi,z ∈ R


.

Hn is a simply-connected two-step nilpotent Lie group with one-dimensional center;
its Lie algebra

hn =





0 x1 x2 · · · xn z
0 0 0 0 y1
0 0 0 0 y2
...

. . .
...

0 · · · 0 yn
0 · · · 0 0


= zZ +

n

∑
i=1

(xiXi + yiYi) : xi,yi,z ∈ R


has non-zero commutators [Xi,Yj] = δi jZ. Moreover, any simply-connected two-
step nilpotent Lie group with one-dimensional center is isomorphic to Hn.

Let us fix a sub-Riemannian structure on Hn. A standard computation yields the
automorphism group of Hn, a subgroup of which is a symplectic group. By use
of the automorphisms, we normalize the distributions on Hn. Equivalence class
representatives are then constructed by successively applying automorphisms, that
preserve the normalized distribution, to the metric. (The Riemannian case is treated
similarly.) Central to our argument is Williamson’s theorem, which states that any
positive definite symmetric matrix can be diagonalized, in a certain way, by sym-
plectic matrices. Furthermore, we shall characterize (in coordinate-free form) when
two sub-Riemannian (resp. Riemannian) structures on Hn are equivalent. (This
characterization is based on decomposing hn, as a vector space, into the product of
a symplectic vector space and R.)

To every invariant sub-Riemannian (resp. Riemannian) structure we can naturally
associate an invariant optimal control problem (cf. [18]). Accordingly, a classi-
fication of sub-Riemannian and Riemannian structures may induce a classification
of invariant optimal control problems (or rather, cost-extended systems). In the
last section, we exhibit the corresponding classification of invariant optimal control
problems on Hn.
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1.1 Left-Invariant Sub-Riemannian Structures

By a left-invariant sub-Riemannian manifold, we mean a triplet (G,D ,g), where
G is a (real, finite dimensional) connected Lie group with unit element 1, D is a
smooth left-invariant distribution on G, and g is a left-invariant Riemannian metric
on D . More precisely, D(1) is a linear subspace of the Lie algebra g of G which
is left-translated to the tangent bundle TG via

D(g) = gD(1) for g ∈ G.

The metric g1 is a positive definite symmetric bilinear from on g which is extended
to TG by left translation:

gg(gA,gB) = g1(A,B) for A,B ∈ g, g ∈ G.

Here, by the product gA we mean T1Lg ·A, where Lg : h 7→ gh is a left-translation.
We recover a left-invariant Riemannian manifold if D = TG, i.e., D(1) = g.

Remark. Right-invariant sub-Riemannian structures are defined similarly. Such
structures are isometric to left-invariant ones (via Lie group anti-isomorphisms).

An absolutely continuous curve g(·) : [0,T ]→ G is called a horizontal curve if
ġ(t)∈D(g(t)) for almost all t ∈ [0,T ]. We shall assume that D satisfies the bracket
generating condition, i.e., D(1) generates g; this condition is necessary and suffi-
cient for any two points in G to be connected by a horizontal curve. The length of a
horizontal curve g(·) is given by

`(g(·)) =
∫ T

0

√
g(ġ(t), ġ(t))dt.

A sub-Riemannian manifold (G,D ,g) is endowed with a natural metric space struc-
ture, namely the Carnot-Carathéodory distance:

d(g,h) = inf{`(g(·)) : g(·) is a horizontal curve joining g and h}.

A horizontal curve g(·) that realizes the Carnot-Carathéodory distance between two
points is called a minimising geodesic; these geodesics are fundamental objects of
interest in the investigation of sub-Riemannian manifolds. Minimising geodesics
exist between any two points if and only if the metric space (G,d) associated with
Carnot-Carathéodory distance is complete ([16]).

By an isometry between two left-invariant sub-Riemannian (or Riemannian) mani-
folds (G,D ,g) and (G′,D ′,g′) we mean a diffeomorphism φ :G→G′ such that

φ∗D = D ′ and g = φ
∗g′.

Any such isometry preserves the Carnot-Carathéodory distance in the sense that
d(g,h) = d′(φ(g),φ(h)). Isometries establish a one-to-one correspondence between
the minimizing geodesics of (G,D ,g) and (G′,D ′,g′).
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2 Automorphisms

The automorphisms of hn are exactly those linear isomorphisms that preserve the
center z of hn and for which the induced map on hn/z preserves an appropriate
symplectic structure (cf. [11]). More precisely, let Ω be the skew-symmetric bilin-
ear form on hn specified by

[A,B] = Ω(A,B)Z, A,B ∈ hn.

Note that Ω(Xi,Yj) = δi j and that Ω is zero on the remaining pairs of basis vectors.
Accordingly, we get the following characterization of automorphisms.

Lemma 1. A linear isomorphism ψ : hn→ hn is a Lie algebra automorphism if and
only if

ψ ·Z = cZ and Ω(ψ ·A,ψ ·B) = cΩ(A,B)

for some c 6= 0.

Proof. Suppose ψ is an automorphism. It preserves the center of hn and therefore
ψ ·Z = cZ for some c 6= 0. For A,B ∈ hn, we have

Ω(ψ ·A,ψ ·B)Z = ψ ·Ω(A,B)Z and so Ω(ψ ·A,ψ ·B) = cΩ(A,B).

Conversely, suppose ψ is a linear isomorphism such that the given conditions hold.
For A,B ∈ hn, we have

[ψ ·A,ψ ·B] = Ω(ψ ·A,ψ ·B)Z = cΩ(A,B)Z = ψ ·Ω(A,B)Z = ψ · [A,B].

Next, we give a matrix representation for the group of automorphisms. We shall
make use of the ordered basis

(Z,X1,X2, . . . ,Xn,Y1,Y2, . . . ,Yn).

The bilinear form Ω takes the form

Ω =

[
0 0
0 J

]
, where J =

[
0 In
−In 0

]
.

We denote by ρ the involution

ρ =

−1 0 0
0 0 In
0 In 0


which is clearly an automorphism.

Proposition 1 (cf. [17]). The group of automorphisms Aut(hn) is given by{[
r2 v
0 rg

]
, ρ

[
r2 v
0 rg

]
: r > 0, v ∈ R2n, g ∈ Sp(n,R)

}
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where

Sp(n,R) =
{

g ∈ R2n×2n : g>Jg = J
}

is the n(2n+1)-dimensional symplectic group over R.

Proof. It is easy to show (by use of the lemma) that the given maps are automor-
phisms. Suppose ψ is an automorphism. Then ψ · Z = cZ for some c 6= 0. We
assume c > 0. (If c < 0, then ρψ is of the required form.) Thus

ψ =

[
r2 v
0 M

]
for some r > 0, v ∈ R2n and M ∈ GL(2n,R). It then follows that M>JM = r2J.
For g = 1

r M, we get g> J g = J. Thus

ψ =

[
r2 v
0 rg

]
for some r > 0, v ∈ R2n and g ∈ Sp(n,R).

Remark. Each automorphism decomposes as a (semidirect) product of

• a translation or inner automorphism
[

1 v
0 I2n

]
, v ∈ R2n

• a dilation
[

r2 0
0 rI2n

]
, r > 0

• a symplectic transformation
[

1 0
0 g

]
, g ∈ Sp(n,R)

• and possibly the involution ρ .

Indeed, we have the following decomposition as semidirect products:

Aut(hn)∼= R2n oRoSp(n,R)o{1,ρ}.

3 Classification

Diffeomorphisms that are compatible with the Lie group structure (in the sense that
they preserve left-invariant vector fields) are automorphisms. For the purposes of
this paper, we consider only those isometries that are also Lie group automorphisms.
We shall refer to such isometries as L-isometries. For a given left-invariant sub-
Riemannian manifold (G,D ,g) on a Carnot group G, it turns out that the group of
isometries φ : (G,D ,g)→ (G,D ,g) decomposes as a semidirect product of the left
translations (normal) and the L-isometries ([14]). We say that two left-invariant
sub-Riemannian (resp. Riemannian) structures are L-isometric if there exists a
L-isometry between them. We classify, under this equivalence relation, the left-
invariant sub-Riemannian and Riemannian manifolds on Hn. By left invariance, we
have the following simple characterization for L-isometries.
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Proposition 2. Suppose G and G′ are simply connected. (G,D ,g) and (G′,D ′,g′)
are L-isometric if and only if there exists a Lie algebra isomorphism ψ : g→ g′

such that ψ ·D(1) = D ′(1) and g1(A,B) = g′1(ψ ·A,ψ ·B).

We consider the sub-Riemannian case first; we start by normalizing the distribu-
tion.

Lemma 2. For any (bracket-generating) left-invariant distribution D there exists
an inner automorphism φ ∈ Aut(Hn) such that φ∗D = D̄ , where D̄ is the left-
invariant distribution specified by D̄(1) = span(X1, . . . ,Xn,Y1, . . . ,Yn).

Proof. It suffices to show that there exists a inner automorphism ψ ∈ Aut(hn)
such that ψ ·D(1) = D̄(1). For any subspace s⊆ hn, we have Lie(s)≤ span(s,Z).
Therefore, if Lie(s) = hn and s 6= hn, then s has codimension one and takes the
form

s= span(X1 + v1Z, . . . ,Xn + vnZ,Y1 + vn+1Z, . . . ,Yn + v2nZ).

Accordingly,

ψ =

[
1 −v
0 I2n

]
, v =

[
v1 v2 · · · v2n

]
is an inner automorphism such that ψ · s= span(X1, . . . ,Xn,Y1, . . . ,Yn).

We now proceed to normalise the sub-Riemannian metric and so obtain a classifica-
tion of the sub-Riemannian structures. We shall make use of Williamson’s theorem,
which states that positive definite matrices are diagonalizable by symplectic ma-
trices (see [10], Chapter 8.3: “Symplectic Spectrum and Williamson’s Theorem”).
More precisely,

Lemma 3. If M is a positive definite 2n×2n matrix, then there exists S∈ Sp(n,R)
such that

S>M S =

[
Λ 0
0 Λ

]
, Λ = diag(λ1,λ2, . . . ,λn)

where λ1 ≥ λ2 ≥ ·· · ≥ λn > 0.

The array Spec(M) = (λ1, . . . ,λn) is called the symplectic spectrum of M. (The
matrix JM has eigenvalues values ±iλ j.) Spec(M) is a symplectic invariant, i.e.,
Spec(S>M S) = Spec(M) for S ∈ Sp(n,R).

Theorem 1. Any left-invariant sub-Riemannian structure (D ,g) on Hn is L-iso-
metric to exactly one of the structures (D̄ , ḡλ ) specified by

D̄(1) = span(X1, . . . ,Xn,Y1, . . . ,Yn)

ḡλ
1 =

[
Λ 0
0 Λ

]
, Λ = diag(λ1,λ2, . . . ,λn).

(1)

Here 1 = λ1 ≥ λ2 ≥ ·· · ≥ λn > 0 parametrize a family of (non-equivalent) class
representatives.
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Proof. By lemma 2, (D ,g) is L-isometric to (D̄ ,g′) for some left-invariant metric
g′. The automorphisms[

r2 0
0 rI2n

]
, r > 0 and

[
1 0
0 g

]
, g ∈ Sp(n,R)

preserve the subspace D̄(1), in the sense that ψ ·D̄(1) = D̄(1). Let Q be the matrix
of the inner product g′1 on span(X1, . . . ,Xn,Y1, . . . ,Yn). There exists g ∈ Sp(n,R)
such that

g>Qg =

[
Λ 0
0 Λ

]
where Λ = diag(λ1, . . . ,λn) and (λ1, . . . ,λn) = Spec(Q). Hence

( 1√
λ1

g)>Q( 1√
λ1

g) =
[

Λ′ 0
0 Λ′

]
where Λ′ = diag(1, λ2

λ1
, . . . , λn

λ1
). Therefore

ψ =

[
1 0
0 g

][ 1
λ1

0
0 1√

λ1
I2n

]
is an automorphism such that g′′1(A,B) = g′1(ψ · A,ψ · B), where g′′1 has matrix[

Λ′ 0
0 Λ′

]
. Consequently (relabelling λi

λ1
as λi), the result follows by proposition 2.

It remains to be shown that no two class representatives are equivalent. Suppose
(D̄ , ḡλ ) and (D̄ , ḡλ ′) are L-isometric, i.e., there exists an automorphism

ψ =

[
r2 v
0 rg

]
or ψ = ρ

[
r2 v
0 rg

]
such that ψ · D̄(1) = D̄(1) and ḡλ

1 (A,B) = ḡλ ′
1 (ψ ·A,ψ ·B). The former condition

implies v = 0 and so the latter implies Λ = r2g>Λ′g, where Λ = diag(λ1, . . . ,λn)
and Λ′ = diag(λ ′1, . . . ,λ

′
n). Thus, by symplectic invariance, we have Spec(Λ) =

r2 Spec(Λ′). However for both Spec(Λ) and Spec(Λ′), the dominant value is one;
so r = 1. Consequently Λ = Λ′. That is to say, (D̄ , ḡλ ) and (D̄ , ḡλ ′) are L-
isometric only if λ = λ ′.

Corollary. Any left-invariant sub-Riemannian structure (D ,g) on Hn is L-isometric
to a structure with

(ν1X1, ν2X2, . . . , νnXn, ν1Y1, ν2Y2, . . . , νnYn)

as orthonormal basis. Here 1 = ν1 ≤ ν2 ≤ . . . ≤ νn parametrize a family of (non-
equivalent) class representatives.

We have the following coordinate-free version of Williamson’s theorem. Let µ

and µ ′ be scalar products on a symplectic vector space (R2n,ω). The symplectic
spectrum of µ (resp. µ ′) is the set of moduli of eigenvalues of the unique linear
transformation κ defined by ω(x,κ · y) = µ(x,y). A symplectic transformation is
a linear isomorphism σ such that ω(σ ·x,σ ·y) = ω(x,y).
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Lemma 4. There exists a symplectic transformation σ such that

µ(x,y) = µ
′(σ ·x,σ ·y)

if and only if the symplectic spectra of µ and µ ′ are identical.

Proof. There exists a basis for R2n such that ω has matrix J. (A linear map σ is
then a symplectic transformation if and only if its matrix is a symplectic matrix.) Let
K and M be the matrices of κ and µ , respectively. We have K =−JM. Hence the
symplectic spectrum of µ is the same as the symplectic spectrum of M (only, every
value for M is repeated twice for µ). If µ(x,y) = µ ′(σ ·x,σ ·y), then M = S>M′S
(here S ∈ Sp(n,R) is the matrix of σ ) and so the symplectic spectra of M and M′

(resp. µ and µ ′ ) match. Conversely, if µ and µ ′ have identical symplectic spectra,
then there exists symplectic matrices S,S′ ∈ Sp(n,R) such that S>MS = S′>M′S′.
Consequently, M = (S′S−1)>M′(S′S−1) and so µ(x,y) = µ ′(σ · x,σ · y) where σ

is the unique symplectic transformation with matrix S′S−1.

The Lie algebra hn (as a vector space) can be decomposed as the direct sum of a
symplectic vector space (R2n,ω) and R; the Lie bracket of two elements is given
by

[(v,z),(v,z)] = (0,ω(v,v′)) for (v,z),(v′,z) ∈ R2n⊕R.

By lemma 2, any sub-Riemannian structure (D ,g) is L-isometric to one for which
D(1) = R2n. Hence the metric g1 is a scalar product on R2n. The normalized
symplectic spectrum of a scalar product is the symplectic spectrum normalized by
the dominant value: {1, λ2

λ1
, λ3

λ1
, . . . , λn

λ1
}. Accordingly, by the foregoing considera-

tions, we get the following coordinate-free characterization of the sub-Riemannian
structures.

Theorem 2. Suppose (D ,g) and (D ′,g′) are two left-invariant sub-Riemannian
structures on Hn such that D(1) = D ′(1) = R2n. Then (D ,g) and (D ′,g′) are L-
isometric if and only if the normalized symplectic spectra of g1 and g′1 are identical.

Next, we consider the Riemannian case; the classification result is similar to the
sub-Riemannian case.

Theorem 3. Any left-invariant Riemannian structure g on Hn is L-isometric to
exactly one of the structures

ḡλ
1 =

1 0 0
0 Λ 0
0 0 Λ

 , Λ = diag(λ1,λ2, . . . ,λn). (2)

Here λ1 ≥ λ2 ≥ ·· · ≥ λn > 0 parametrize a family of (non-equivalent) class repre-
sentatives.

Proof. Let R be the matrix of the inner product g1 on hn. We have

R =

[ 1
r4 v
v> Q

]
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for some r > 0, v ∈ R2n and Q ∈ R2n×2n. Hence we get

ψ =

[
r2 −r5v
0 rI2n

]
∈ Aut(hn) and ψ

>Rψ =

[
1 0
0 Q′

]
for some positive definite matrix Q′. Accordingly, there exists an automorphism

ψ ′ =

[
1 0
0 g

]
, g ∈ Sp(n,R) such that

(ψ ◦ψ
′)>R(ψ ◦ψ

′) =

1 0 0
0 Λ 0
0 0 Λ


where Λ = diag(λ1, . . . ,λn) and (λ1, . . . ,λn) = Spec(Q′). Consequently, the result
follows by proposition 2. As in the sub-Riemannian case, it is a simple matter to
show that none of these structures are L-isometric.

Corollary. Any left-invariant Riemannian structure g on Hn is L-isometric to a
structure with

(Z, ν1X1, ν2X2, . . . , νnXn, ν1Y1, ν2Y2, . . . , νnYn)

as orthonormal basis. Here 0 < ν1 ≤ ν2 ≤ ·· · ≤ νn parametrize a family of (non-
equivalent) class representatives.

Any Riemannian structure on Hn is L-isometric to one for which the scalar product
g1 on (R2n⊕R) decomposes as

g1((v,z),(v′,z′)) = µg(v,v′)+ zz′

where µg is a scalar product on R2n. Accordingly, we have the following coordinate-
free characterization the Riemannian structures.

Theorem 4. Suppose g and g′ define two left-invariant Riemannian structures on
Hn such that

g1((v,z),(v′,z′)) = µg(v,v′)+ zz′ and g1((v,z),(v′,z′)) = µg′(v,v′)+ zz′.

Then g and g′ are L-isometric if and only if the symplectic spectra of µg and µg′

are identical.

4 Invariant Optimal Control

Invariant control systems on Lie groups were first considered in 1972 by Brockett
[6] and by Jurdjevic and Sussmann [13]. A left-invariant control affine system on a
(real, finite-dimensional) Lie group G is a collection of left-invariant vector fields
Ξ(·,u) on G, affinely parametrized by controls. In classical notation, a drift-free
system Σ = (G,Ξ) is written as

ġ = gΞ(1,u) = g(u1B1 + · · ·+u`B`) , g ∈ G, u ∈ R`.

– 49 –



R. Biggs et al. A Classification of Sub-Riemannian Structures on the Heisenberg Groups

Here the parametrization map Ξ(1, ·) : R` → g is an injective affine map (i.e.,
B1, . . . ,B` are linearly independent). The “product” gΞ(1,u) is given by gΞ(1,u)=
T1Lg ·Ξ(1,u), where Lg : G→ G, h 7→ gh is the left translation by g. The dynam-
ics Ξ : G×R`→ TG are invariant under left translations, i.e., Ξ(g,u) = gΞ(1,u).
An admissible control is a piecewise continuous map u(·) : [0,T ]→ R`. A trajec-
tory corresponding to an admissible control u(·) is a absolutely continuous curve
g(·) : [0,T ]→G such that ġ(t) = Ξ(g(t),u(t)) almost everywhere. A system is said
to be controllable if any two states can be joined by a trajectory. For more details
about invariant control systems see, e.g., [13, 18, 2, 12].

An invariant optimal control problem is defined by the specification of (i) a left-
invariant control system, (ii) a positive definite quadratic cost function L : R` →
R and (iii) boundary data, consisting of an initial state g0 ∈ G, a terminal state
g1 ∈ G and a (fixed) terminal time T > 0. Explicitly, we wish to minimize the
functional J =

∫ T
0 L(u(t))dt over trajectory-control pairs, subject to the boundary

data g(0) = g0, g(T ) = g1. We associate to such a problem, the cost-extended
system (Σ,L) consisting of a controllable system Σ and a cost function L. Two
cost-extended systems (Σ = (G,Ξ),L) and (Σ′ = (G′,Ξ′),L′) are cost-equivalent
([3]) if there exist a Lie group isomorphism φ : G→ G′ and a linear isomorphism
ϕ : R`→ R` such that

Tgφ ·Ξ(g,u) = Ξ
′(φ(g),ϕ(u)) and rL = L′ ◦ϕ

for some r > 0. The automorphism φ establishes a one-to-one correspondence be-
tween the optimal trajectories (or corresponding minimising geodesics) of (Σ,L)
and (Σ′,L′). By left invariance, we have that (Σ,L) and (Σ′,L′) are cost-equivalent
if and only if there exist a Lie group isomorphism φ : G→ G′ and an affine isomor-
phism ϕ : R`→R`′ such that T1φ ·Ξ(1,u) = Ξ′(1′,ϕ(u)) and L′ ◦ϕ = rL for some
r > 0.

Analogous to theorems 1 and 3, we get the following classification of cost-extended
systems on Hn.

Theorem 5. Any cost-extended system on Hn is cost-equivalent to exactly one of
the following cost-extended systems:

(Σ2n,L2n
λ
) :


Ξ

2n(1,u) =
n

∑
i=1

(uXiXi +uYiYi)

L2n
λ
(u) =

n

∑
i=1

λi
(
u2

Xi
+u2

Yi

)

(Σ2n+1,L2n+1
λ

) :


Ξ

2n+1(1,u) = uZZ +
n

∑
i=1

(uXiXi +uYiYi)

L2n+1
λ

(u) = u2
Z +

n

∑
i=1

λi
(
u2

Xi
+u2

Yi

)
.

Here 1 = λ1 ≥ λ2 ≥ ·· · ≥ λn > 0 parametrize families of (non-equivalent) class
representatives.
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Remark. The associated optimal control problems are:

ġ = g
n

∑
i=1

(uXiXi +uYiYi) , g ∈ Hn,(uX1 , . . . ,uYn) ∈ R2n

g(0) = g0 g(T ) = g1∫ T

0

n

∑
i=1

λi
(
uXi(t)

2 +uYi(t)
2) dt −→min



ġ = g
(

uZZ +
n

∑
i=1

(uXiXi +uYiYi)
)
, g ∈ Hn,(uZ ,uX1 , . . . ,uYn) ∈ R2n+1

g(0) = g0 g(T ) = g1∫ T

0

(
uZ(t)2 +

n

∑
i=1

λi
(
uXi(t)

2 +uYi(t)
2))dt −→min .

Solutions of these optimal control problems are minimising geodesics for the corre-
sponding sub-Riemannian (resp. Riemannian) structures.

Conclusions
We have obtained an explicit classification of the sub-Riemannian (and Rieman-
nian) structures on Hn; an analogous classification of cost-extended control sys-
tems was also exhibited. In particular, we found that the Riemannian structures
on Hn can be parametrized (up to an L-isometry) by n parameters, whereas the
sub-Riemannian structures can be parametrized by n−1 parameters. Agrachev and
Barilari [1] classified the invariant sub-Riemannian structures on three-dimensional
Lie groups; in particular, they show that all left-invariant sub-Riemannian structures
on H1 are locally isometric. We have shown that all left-invariant sub-Riemannian
structures on H1 are in fact (globally) isometric. Topics for future research include
the calculation of the isometry groups and geodesics as well as extensions to Finsler
structures.
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