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Abstract: This paper presents an efficient approach, that is centered on a chaotic symbiotic 

organism search (CSOS) algorithm, for solving the energy management optimization (EMO) 

problem in Micro-grids (MG) containing diverse distributed generation resources (DGR) 

besides energy storage systems. The proposed approach is equipped with a chaotic map to 

guarantee a wider coverage of the search space and rapid time for convergence when 

searching solutions for the EMO problem under the various exploiting constraints. The 

CSOS approach is examined on a practical microgrid linked to public services. The 

effectiveness of CSOS is proven through a comparison of the obtained solutions, in terms of 

operating costs, with those of other scalable algorithms, such as, GA and PSO. 

Keywords: Micro Grids; Energy Management Optimization; Distributed Generation 

Resources, Chaotic Symbiotic Organism search algorithm 

1 Introduction 

Over the past two decades, the electric power sector suffered from rapidly rising 

fossil fuel prices and global climate change, and researchers had to help in adopting 

an accepted response to save this industry from vanishing. This trend pushed the 

concept of clusters in this field; hence, the "Micro-grid" can be viewed as a cluster 

of distributed energy resources, energy storage, and local loads, managed by a smart 

energy management system [1] [2]. 

The Micro-grids (MGs) offer much superiority over traditional distribution systems, 

in terms of reducing energy losses due to the proximity between DGs and loads, 

improving reliability, it offers the ability to work in the island, to combat system 
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failures by dividing the horizon, and added value appears as relief of transmission 

and distribution lines, the latter is achieved by the said energy management to 

reduce or by completely import the energy from the healthy grids. Whereas these 

benefits come with extra cost, the heavy integration of DGs will manifest as 

complex challenges for the MG’s operation control. Therefore, for the energy 

management optimization (EMO) problem there is a strong need for adequate 

planning and location of energy sources and energy storage devices in MGs while 

observing satisfaction of all objectives and constraints [2]. 

The problem themselves is usually highly nonlinear, involving continuous and 

discrete variables under complex constraints, which cannot be solved by classical 

methods. The drawbacks from existing classical methods have shown the 

importance to rely on more advanced algorithms which are more adequate. Hence, 

the evolutionary algorithms come in terms of the solution for the drawbacks found 

on existing classical methods. 

Recently, many evolutionary algorithms attracted intense consideration from the 

scientific community and formed interesting tools for solving many optimizations 

problem in different areas of science and industry. The main motivations towards 

these algorithms are due to their inherent nonlinear mapping, implementation 

simplicity, and powerful search capabilities [3-9]. 

The EMO problem in MGs consists of finding the optimal (or near-optimal) unit 

commitment and dispatch of available energy sources and storage devices so that 

certain selected criteria are met [10] [11] For this purpose, a growing number of 

scientific works have been developed by researchers to address and solve the 

problems attributed to EMO in the deterministic and probabilistic formulations.  

In the deterministic formulation of the EMO, it is assumed that the output variables 

of the DG ressource, the loads, and the market prices, are equal to their predicted 

values [12]. However, the uncertainty of these variables leads to a probabilistic 

formulation of the problem [13]. 

To solve the optimal power dispatch problem of interconnected MGs, while 

maintaining a minimum operating cost, and considering load uncertainties and 

generated power, Nikmehr and Ravadanegh used a PSO solution [12].  

A probabilistic approach to the EOM of renewable microgrids under undefined 

environments is proposed in reference [13]. Hatziargyriou et al. [14] investigated 

the outcome of using a Microgrid Central Controller (MGCC) to ensure the 

coordinated operation of various DG units, storage devices, and controllable loads 

to avoid power losses within the local network and present the potential economic 

benefits. A smart energy management system, based on the matrix real-coded 

genetic algorithm (GA), to optimize the operation of the MG is presented in [15]. 

An improved PSO algorithm combined with Monte Carlo simulation is used to 

solve the dynamic economic dispatch of an MG system with both renewable and 

nonrenewable energy sources, this work has been presented in [16]. 
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Mohan and al. in [17] proposed a stochastic weight trade-off PSO-based backward–

forward sweep OPF method to obtain the online optimal schedules of DGs in MG 

considering renewable energy, grid power trade, and demand-side response. 

Chakraborty, Weiss, and Simoes proposed a linear programming algorithm to 

optimize the operating cost of the MG and the states of charge of the battery [18]. 

Tsikalakis and Hatziargyriou used centralized control of multiple MGs combined 

with optimizing the production of the local DGs versus power exchanges with the 

main distribution grid [19]. A method based on an optimal power flow and a PSO 

algorithm is suggested by Sortome et al to study two MGs [20]. In the paper of 

Mohamed et al [21], an adaptive direct mesh search algorithm is employed to 

minimize the cost function of MG, taking into account the cost of emissions. 

An expert multi-objective Adaptive Modified Particle Swarm Optimization 

algorithm (AMPSO) is developed and implemented in the work of Moghaddam et 

al [22] to optimize the operation of a typical micro-grid with renewable energy 

sources accompanied by backup hybrid power sources, in this paper the problem is 

formulated as a multi-objective optimization problem with nonlinear constraints to 

simultaneously minimize the total operating cost and the net gas emission. 

Mohamed and Koivo [23] applied GA for solving the EMO problem which is 

modeled as a nonlinear constrained multi-objective optimization, where the fitness 

function includes the costs of the emissions added to the start-up costs, as well as 

all incurring operation and maintenance costs. In the publication of Tomoiaga et al., 

a new heuristic approach is proposed for the energy management on stand-alone 

microgrids, which avoids the waste of the existing renewable potential at each time 

interval [24]. Nikmehr and Ravadanegh used an imperialist competitive algorithm 

(ICA) to solve the optimal power dispatch problem of interconnected MGs with 

minimum operating cost considering load uncertainties and limits of the generated 

power [25]. 

Radosavljevic´ et al. [26] presented an efficient algorithm based on PSO to tackle 

the EMO in an MG including different DG units and energy storage devices. Liu et 

al. developed an economic scheduling model of MG in grid-connected mode with 

the consideration of the storage battery lifetime [27]. 

A day-ahead optimal energy management strategy for the economic operation of 

industrial microgrids with high-penetration renewables under both isolated and 

grid-connected operation modes is well studied in the work of Han et al. [28].  

The non-dominated sorting GA II is employed for optimal EMO of a grid-connected 

MG in the paper authored by Karuppasamypandiyan et al. [29]. To schedule power 

in a microgrid, the dual decomposition method was utilized in Zhang et al. [30]. 

The above gives a state of the art of this research field. We noticed that most of the 

developed approaches, by the scientific community, are based on more or less 

complex metaheuristics in terms of internal control parameters and random 

initialization. Therefore, this usually leads these approaches to a premature 

convergence or to get stuck in local optima. 
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To tackle these drawbacks, we propose a chaotic symbiotic organism search-based 

approach to solve the EMO problem in this paper. the performances of this approach 

will be evaluated and compared with some other well-known evolutionary 

algorithms described previously by multiple researchers [13] [ 22] [26]. 

The remainder of this paper is structured as follows: in Section 2, the constrained 

energy management optimization (EMO) problem is formulated. Then, the chaotic 

SOS (CSOS) is presented in Section 3. The case study, simulation results, and 

comparisons are shown in Section 4. Finally, the conclusions and future work are 

presented in Section 5. 

2 Mathematical Formulation of the Energy 

Management Optimization Problem 

For a practical low-voltage (LV) grid-connected MG (as shown in Figure 1) the 

optimization procedure depends strongly on the market policy adopted in the MG 

operation. In this paper, we have considered that the EMO problem is defined 

according to the first market policy presented in the references [14] [19] [26]. 

Therefore, in a typical MG, the EMO problem aims to minimize the total operating 

cost of the microgrid through optimal adjustment of the DG’s power generation 

while satisfying various system operating constraints. 
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Figure 1 

A typical low voltage microgrid [20] 
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2.1 Formulation of the EMO Objective Function 

The total cost of operating the micro-grid includes the DG's offers and market prices 

for the exchange of electricity between the micro-grids and utilities. So, the 

mathematical model of such a problem concerns the minimization of the total 

operating cost as an objective function which can be expressed as follows: 

𝑀𝑖𝑛 𝐹(𝑃) = 𝑀𝑖𝑛(∑ 𝑐𝑜𝑠𝑡𝑡𝑁𝑇
𝑡=1 ) = Min (∑ ∑ 〈𝐵𝐺𝑖(𝑃𝐺𝑖

𝑡 ) + 𝑀𝑃𝑡 . 𝑃𝐺𝑟𝑖𝑑
𝑡 〉

𝑁𝑔

𝑖=1
𝑁𝑇
𝑡=1 ) (1) 

Where, 

 𝐹(𝑃) is the objective function; 

 𝑃 = [𝑃1 𝑃2 … 𝑃𝑡 … 𝑃𝑁𝑇] is a vector of  candidate solution and 𝑃𝑡 are variable-state 

scalar vectors including the active power of the generation and storage units within 

the MG, and can be described as follows: 

𝑃𝑡 = [𝑃𝐺1
𝑡  𝑃𝐺2

𝑡 … 𝑃𝐺𝑁𝑔
𝑡 ] (2) 

Where, 

𝑁𝑇  and is the total number of hours; 

𝑁𝑔 is the total number of DG including storage units; 

𝑃𝐺𝑖
𝑡  is the real power outputs of the 𝑖𝑡ℎDG; 

𝐵𝐺𝑖(𝑃𝐺𝑖
𝑡 )is the bid of the 𝑖𝑡ℎ DG unit as a function of its active power at time 𝑡; 

𝑃𝐺𝑟𝑖𝑑
𝑡  is the active power which is bought (sold) from (to) the utility at time 𝑡, and 

𝑀𝑃𝑡 is the market price of power exchange between the microgrid and the utility at 

time 𝑡. 

2.2 Formulation of Microgrid and Unit Constraint Functions 

The objective (or fitness) function formulated above is subject to the constraints due 

to the limits of its components: the grid power transfer limits, energy storage units’ 

capacity and operational limits, dispatchable DGs’ power limit, and all other micro-

grid technical limitations and requirements. 

2.2.1 Power Balance 

Grid balance is guaranteed through the following considerations: for each time 

interval 𝑡 , the combined output power of the energy storage devices of the DGs and 

the utility has to meet the total load demand in the micro-grid without any loss of 

power. Hence, the constraint of the power balance can be written as follows: 

∑ 𝑃𝐺𝑖
𝑡 + 𝑃𝐺𝑟𝑖𝑑

𝑡𝑁𝑔

𝑖=1
= ∑ 𝑃𝐿𝐷

𝑡𝑁𝐷
𝐷=1  (3) 
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Where 𝑃𝐿𝐷
  is the amount of the 𝐷𝑡ℎload level, and 𝑁𝐷 is the total number of load 

levels. 

2.2.2 Real Power Generation Capacity 

The real power output of each unit in the microgrid, including the utility, will ensure 

stable operation if it is restricted by minimum and maximum power limits as 

follows: 

𝑃𝐺𝑖𝑀𝑖𝑛
𝑡 ≤ 𝑃𝐺𝑖

𝑡 ≤ 𝑃𝐺𝑖𝑀𝑎𝑥
𝑡  (4) 

𝑃𝐺𝑟𝑖𝑑𝑀𝑖𝑛
𝑡 ≤ 𝑃𝐺𝑟𝑖𝑑

𝑡 ≤ 𝑃𝐺𝑟𝑖𝑑𝑀𝑎𝑥
𝑡  (5) 

Where,  𝑃𝐺𝑖𝑀𝑖𝑛
𝑡  and 𝑃𝐺𝑟𝑖𝑑𝑀𝑖𝑛

𝑡    are the minimum active power of the 𝑖𝑡ℎ DG, and the 

utility at time 𝑡; 

𝑃𝐺𝑖𝑀𝑎𝑥
𝑡  and 𝑃𝐺𝑟𝑖𝑑𝑀𝑎𝑥

𝑡 are the maximum active powers of the 𝑖𝑡ℎ DG, and the utility 

at time 𝑡; 

2.2.3 Spinning Reserve 

The detected power fluctuations of renewables and load fluctuations will degrade 

the reliability of the system, consequently, it is necessary to adopt the spinning 

reserve to increase the system’s reliability. The spinning reserve is met if the 

following inequality condition is satisfied [16] [26]: 

∑ 𝑃𝐺𝑖𝑀𝑎𝑥
𝑡 + 𝑃𝐺𝑟𝑖𝑑𝑀𝑎𝑥

𝑡𝑁𝑔

𝑖=1
≥ ∑ 𝑃𝐿𝐷

𝑡 +
𝑁𝐷
𝐷=1 𝑃SSR

𝑡  (6) 

Where 𝑃SSR
𝑡  is the scheduled spinning reserve at time 𝑡. In a microgrid, the spinning 

reserve constraint is considered by adding an extra value to the total power demand, 

which should be supplied by the DG units. 

2.2.4 Energy Storage Limits 

Since there are some limitations on charge and discharge rates of storage devices 

during each time interval, the following equation of constraints can be expressed 

for a typical battery as follows [22] [26]: 

𝑊𝑒𝑠𝑠,𝑡 = 𝑊𝑒𝑠𝑠,𝑡−1 + 𝜂𝑐ℎ𝑎𝑟𝑔𝑒 . 𝑃𝑐ℎ𝑎𝑟𝑔𝑒 . Δ𝑡 −
1

𝜂𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒
. 𝑃𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 . Δ𝑡 (7) 

{
𝑊𝑒𝑠𝑠,𝑚𝑖𝑛 ≤ 𝑊𝑒𝑠𝑠,𝑡 ≤ 𝑊𝑒𝑠𝑠,𝑚𝑎𝑥

𝑃𝑐ℎ𝑎𝑟𝑔𝑒,𝑡 ≤ 𝑃𝑐ℎ𝑎𝑟𝑔𝑒,𝑚𝑎𝑥;   𝑃𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒,𝑡 ≤ 𝑃𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒,𝑚𝑎𝑥
 (8) 

Where 

𝑊𝑒𝑠𝑠,𝑡 and 𝑊𝑒𝑠𝑠,𝑡−1 are the amount of energy storage inside the battery at hour 𝑡  and 

(𝑡 − 1), respectively, 

 𝑃𝑐ℎ𝑎𝑟𝑔𝑒(𝑃𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒) is the permitted rate of charge (discharge) during a definite 

period of time (𝑡), 
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 𝜂𝑐ℎ𝑎𝑟𝑔𝑒(𝜂𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒) is the efficiency of the battery during the charge/discharge 

process and 𝑊𝑒𝑠𝑠,𝑚𝑖𝑛 and 𝑊𝑒𝑠𝑠,𝑚𝑎𝑥 are the lower and upper limits on the amount of 

energy storage inside the battery, respectively, and 𝑃𝑐ℎ𝑎𝑟𝑔𝑒,𝑚𝑎𝑥(𝑃𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒,𝑚𝑎𝑥) is the 

maximum rate of battery charge (discharge) during each time interval (𝛥𝑡). 

2.2.5 Calculation of the Active Power from (to) the Utility 

Considering the active power from (to) the utility as a dependent variable will 

consequently reinforce the active power balance constraint depicted in Equation (3). 

Hence the value of grid power is evaluated using the following equation: 

{𝑃𝐺𝑟𝑖𝑑
𝑡 = ∑ 𝑃𝐿𝐷

𝑡𝑁𝐷
𝐷=1 − ∑ 𝑃𝐺𝑖

𝑡𝑁𝑔

𝑖=1
 (9) 

The obtained 𝑃𝐺𝑟𝑖𝑑
𝑡  either satisfies the restriction defined in Equation (10) or not. 

Therefore, the variable 𝑃𝐺𝑟𝑖𝑑,𝑙𝑖𝑚
𝑡  is calculated depending on 𝑃𝐺𝑟𝑖𝑑

𝑡 : 

𝑃𝐺𝑟𝑖𝑑,𝑙𝑖𝑚
𝑡 = {

𝑃𝐺𝑟𝑖𝑑,𝑚𝑖𝑛
𝑡  𝑖𝑓 𝑃𝐺𝑟𝑖𝑑

𝑡 < 𝑃𝐺𝑟𝑖𝑑,𝑚𝑖𝑛
𝑡  

𝑃𝐺𝑟𝑖𝑑,𝑚𝑎𝑥
𝑡  𝑖𝑓 𝑃𝐺𝑟𝑖𝑑

𝑡 > 𝑃𝐺𝑟𝑖𝑑,𝑚𝑎𝑥
𝑡

𝑃𝐺𝑟𝑖𝑑
𝑡  𝑖𝑓 𝑃𝐺𝑟𝑖𝑑,𝑚𝑖𝑛

𝑡 ≤ 𝑃𝐺𝑟𝑖𝑑
𝑡 ≤ 𝑃𝐺𝑟𝑖𝑑,𝑚𝑎𝑥

𝑡

 (10) 

The control variables are said to be self-constrained, whereas the dependent variable 

𝑃𝐺𝑟𝑖𝑑
𝑡 , is a relevant term in the objective function, it is considered as a quadratic 

penalty term. This is evaluated as a penalty factor multiplied by the square of the 

difference between the actual value and the limiting value of the dependent variable, 

which must be included in the objective function, then, all unfeasible solutions 

obtained during the optimization process are ignored [21]. The new extended 

objective function to be minimized develops to: 

𝑀𝑖𝑛 𝐹𝜌(𝑃) = 𝑀𝑖𝑛 (∑ ∑ 〈𝐵𝐺𝑖(𝑃𝐺𝑖
𝑡 ) + 𝑀𝑃𝑡 . 𝑃𝐺𝑟𝑖𝑑

𝑡 〉
𝑁𝑔

𝑖=1
𝑁𝑇
𝑡=1 + ∑ 𝛼𝑝(𝑃𝐺𝑟𝑖𝑑

𝑡 −𝑁𝑇
𝑡=1

𝑃𝐺𝑟𝑖𝑑,𝑙𝑖𝑚
𝑡 )

2
) (11) 

Where, 𝛼𝑝 is the penalty factor. 

In the above equation, the DG bids (𝐵𝐺𝑖) are considered quadratic to the cost 

function of the units [21] [34]. They can be determined utilizing the following: 

𝐵𝐺𝑖 = 𝑎𝑖(𝑃𝐺𝑖
𝑡 )2 + 𝑏𝑖𝑃𝐺𝑖

𝑡 + 𝑐𝑖                                                (12) 

3 The Chaotic SOS Algorithm (CSOS) 

The SOS algorithm is one of the most powerful optimization techniques mimicking 

the biological interactions between two life forms in the ecosystem, to establish a 

new solution for practical optimization problems. The SOS algorithm is based on 

three idealized phases, namely; mutualism, commensalism, and parasitism as is 
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illustrated in Figure 2. To solve any optimization problem, the SOS iteratively uses 

a population of candidate solutions to explore and exploit the promising areas of the 

search space as presented in reference [31]. 
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Figure 2 

Schematic flowchart of SOS algorithm 

1. Define input variables, objective function, and searching boundaries 

% Organism size (orgsize), maximum iterations (maxiter), variables upper bound and lower bound. 

2. Initialize population of organisms using the logistic map given by equation (13) 

3. Identify the best organism in the initial population (Xbest) 

while iter<maxiter  
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      for i=1:orgsize 

4. Mutualism Phase 

Select organisms Xi and Xj (Xi ≠ Xj) 

Calculate Beneficial Factor (BF1 & BF2) using  

BF1 = 1 +round(rand(0,1)) 

BF2 = 1 +round(rand(0,1)) 

Calculate Mutual Vector (MV) using: MV= ( Xi + Xj)/2 

Generate new organisms (Xinew, Xjnew) using equations: 

Xinew = Xi +rand(0,1)×(Xbest −MV ×BF1)  

Xjnew = Xj +rand(0,1)×(Xbest −MV ×BF2)  

Check constraints using equations (3-10) 

Evaluate fitness value and replace predecessor if the fitness of the new organism is better 

5. Commensalism Phase 

Select organism Xj randomly (Xi ≠ Xj) 

Generate new organism Xinew using 

Xinew = Xi +rand(−1,1)×(Xbest −Xj)  

Check constraints using equations (3-10) 

Evaluate fitness value and replace predecessor if the fitness of the new organism is better 

6. Parasitism Phase 

Select organism Xj randomly (Xi ≠ Xj) 

Generate Parasite Vector (PV) by modifying Xi and  

Check constraints using equations (3-10) 

Evaluate fitness value and replace Xj with PV if the fitness of PV is better  

    end for 

7. Update best organism (Xbest) of the current population 

end while 

8. Print the best organism (Xbest) and the Best cost 

Figure 3 

Pseudo-code of CSOS algorithm 

Unfortunately, the standard SOS uses a random initial population of the organism, 

which yields a negative impact on the efficiency of the calculation and the results. 

The disadvantages of this approach are its slow convergence and its tendency to be 

trapped in local optima due to the low diversity of the starting organism. 

To improve the diversity of the initial population, many chaotic maps have been 

developed for the existing evolutionary algorithms [32]. In the present work, we 

have adopted the logistic map as an initialization strategy. This later is one of the 
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simplest chaotic maps. Moreover, it provides initial populations that are more 

diversity than the random selection which ensures smarter coverage of the search 

space hence, it offers a lower probability of premature convergence [32] [35]. This 

map is given by the following equation: 

𝑋𝑖+1 =  𝜂𝑋𝑖(1 − 𝑋𝑖), 0 ≤ 𝑋0 ≤ 1 (13) 

Where, 𝑋𝑖    is the logistic chaotic value for the ith organism; 

 𝑋0  is used for generating the initial population of CSOS,  𝑋0 ∈ (0,1) and  𝜂 is set 

to 4 

The pseudo-code of the proposed CSOS algorithm is presented in Figure 3 

4 Case Study 

In this part of the work we implemented and examined the above described CSOS 

to find optimal global (or near-optimal) solutions of the deterministic EMO problem 

defined by the augmented objective function (11) and the constraints functions (3-

10). 

4.1 Microgrid Dataset 

The system used for the case study, as shown in Figure 1, is a typical microgrid 

consisting of a DG unit. These DG’s are a microturbine (MT), fuel cell (FC), wind 

turbine (WT), photovoltaic PV, and energy storage device (NiMH battery). 

We assume that all DG sources deliver active power with a unity power factor. 

Additionally, there is a tie between the utility and the microgrid to trade energy 

during a day. This link will ensure power exchange as described before. For a 

typical day, the load demand in the microgrid consists of: a primarily residential 

area, an industrial feeder serving a small workshop, and a feeder for light 

commercial shops, with the total energy demand of 1695 kWh is the requirement 

for this typical day [22][26]. 

The test system data in terms of the supply coefficients and operating power limits 

of each DG unit is given in Table 1. In addition, the forecasted daily energy prices, 

load curve, WT, and PV power generation are presented in Figure 4 

Table 1 

The power limits and coefficients of bid functions of the installed DG units 

Type 
Min 

(kW) 

Max 

(kW) 
𝑎𝑖 (€ct/kW h2) 𝑏𝑖 (€ct/kW h) 𝑐𝑖(€ct/ h) 

Star/Shut 

Cost (€ct) 

MT 6 30 0 0.457 0 0.96 

FC 3 30 0 0.294 0 1.65 
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PV 0 25 0 2.584 0 0 

WT 0 15 0 1.073 0 0 

Battery -30 30 0 0.38 0 0 

Utility -30 30 - - - - 

 

Figure 4 

Daily energy market price(a), load curve(b), WT(c) and PV(d) power outputs 

4.2 Simulation Results and Comparisons 

To test the performance CSOS for solving EMO, initially, we have examined it for 

three possible operating scenarios of the considered microgrid (MG). 

Then, we have conducted a comparison study of the proposed CSOS with some 

scalable algorithms existing in the literature. For simulations It must be noted that 

the developed code of CSOS for EMO is run 20 times using MATLAB R2014a 

software on Core i5@ 2.20 GHz, 4 GB RAM machine. Moreover, the maximum 

number of iterations is set at 200 with a population size of 30, and the best results 

are reported for each considered operating scenario. 

 Scenario S1: In this scenario, we assume that both renewable energy sources 

(WT and PV) act at their available maximum power outputs during each hour 

of the day, while the remaining DGs, including MT, FC, battery, and the 

distribution grid (utility), operate just at their power limits yet satisfying the set 

constraints. All DGs above produce the electricity needed by the microgrid, 

however, the extra energy inside the grid is exchanged with the utility.                

The obtained results are presented in Figure 5.1 and Figure 5.2 
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Figure 5.1 

Best obtained EMO solutions using CSOS for Scenario S1 

 

Figure 5.2 

Microgrid operating cost for Scenario S1 

The results of Figure 5.1 and Figure 5.2, clearly show a large part of the load is 

mainly supplied by the FC and the utility during the periods (1 a.m. to 8 a.m. and 

from 11 p.m. to midnight); obviously, this is justified by the supremacy of these 2 

unites’ offers compared to those of other units during the same period examined. 

We also notice that the excess energy is exported from the MG to the utility during 

the period where the prices market are much higher (from 9 a.m. to 5 p.m. and from 

9 p.m. to 10 p.m.). However, the battery is charged only during the hours of the day 

when market prices are low. 

 Scenario S2: In this scenario, we assume all the DGs and the utility operating 

just at their power limits yet satisfying the set constraints. The obtained results 

are presented in Figure 6.1 and Figure 6.2  
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Figure 6.1 

 Best obtained EMO solutions using CSOS for Scenario S2 

 

Figure 6.2 

Microgrid operating cost for Scenario S2 

In the second scenario, Figure 6.1 and Figure 6.2 show that the operating cost of the 

microgrid decreases considerably (153.98507 [€ct/day]) compared to the first 

scenario (268.44724 [€ct/day]). This is largely due to the significantly lower 

participation of WT and PV (they have much higher bids than the other DGs).  

The output power of FC has a maximum value throughout the day, while the MT 

offers change depending on the market prices. The battery charging still happens 

during periods of low market prices, and the extra energy is exchanged from the 

utility to the microgrid during the same periods. 

 Scenario S3: In this scenario, we suppose that the utility behaves as an 

unconstrained unit and exchanges energy with the microgrid without any 

limitations, while the rest of the DGs act as described in the second scenario 

(S2). The found solutions are presented in Figure 7.1 and Figure 7.2 
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Figure 7.1 

Best obtained EMO solutions using CSOS for Scenario S3 

 

Figure 7.2 

Microgrid operating cost for Scenario S3 

In this scenario, the PV and the WT will start offering when a shortage of electricity 

production occurs inside the microgrid or when it is necessary to export more 

energy to the utility. Similarly, the FC, MT, and battery adjust their generation 

levels according to the load levels at each hour of the day. 

In this situation of unlimited electricity exchange, the obtained results show a clear 

reduction of the microgrid operating costs (59.69627 €ct/day) compared to the first 

and second scenarios. 

The convergent characteristics for all the scenarios considered are presented in 

Figure 8. So, this figure allows us to state that the CSOS exhibits a characteristic of 

rapid convergence and it can reach the minimum cost after a few iterations. 
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Figure 8 

Convergence characteristics of CSOS for the operation scenarios 

4.3 CSOS Comparisons with other Evolutionary Algorithms 

While using the same test system, control variable limits, and constraints, the 

obtained results for EMO after deploying the proposed CSOS approach are 

compared to some other well-known evolutionary algorithms deployment results 

briefly described in the introduction with their corresponding references.  

The comparison results are presented in Table 2. 

The comparison of results when sorted from best and worst cost, clearly shows that 

the suggested approach reveals a better performance with the other considered 

evolutionary algorithm and the standard SOS for all considered scenarios. 

Concerning the execution speed, the total execution time of the CSOS is 44.02 

seconds. Although it is very hard to compare execution time with other research in 

literature without enough information about their execution times, it can still be 

noticed that CSOS may be a successful candidate when it comes to execution speed 

as it only used 120 iterations to achieve better results in comparison with 1500 

iterations for PSO, AMPSO-L, GSA, and GSA as indicated in [13] [22]. Moreover, 

the standard deviation confirms well another advantage of the CSOS in the 

optimization process. Hence, we are taking the number of iterations as a measure to 

say that this a better candidate. 

Table 2 

Best obtained solutions for EMO using CSOS over other metaheuristics 

Scenarios Method Study reference STD Best cost Worst cost 

S1 

GA [22] 13.4421 277.7444 304.5889 

PSO [22] 10.1821 277.3237 303.3791 

AMPSO-T [22] 0.321 274.5507 275.0905 

AMPSO-L [22] 0.0921 274.4317 274.7318 
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GSA [13] 2.9283 275.5369 282.1743 

SGSA [13] 0 269.76 269.76 

PSO [26] 0 269.75999 269.75999 

SOS  0 269.75977 269.75977 

 CSOS  0 268.44724 268.44724 

S2 

GA [22] 24.5125 162.9469 198.5314 

PSO [22] 12.6034 162.0038 180.2282 

AMPSO-T [22] 0.3427 159.9244 160.4091 

AMPSO-L [22] 0.0963 159.3628 159.6813 

PSO [26] 0 155.01333 155.01333 

SOS  0 155.01324 155.01324 

 CSOS  0 153.98507 153.98507 

S3 

GA [22] 13.4005 91.3293 127.7625 

PSO [22] 10.8689 90.7629 112.8628 

AMPSO-T [22] 0.4457 89.9917 90.6221 

AMPSO-L [22] 0.0921 89.972 90.0431 

PSO [26] 0 68.17626 68.17626 

SOS  0 68.17626 68.17626 

 CSOS  0 59.69627 59.69627 

Conclusions 

This paper introduces a chaotic symbiotic search algorithm, for solving energy 

optimization management problems, under different operational conditions, for 

microgrids. In this regard, the suggested CSOS approach includes a chaotic map to 

improve the approach's search capabilities and ensure better convergence in terms 

of finding the optimal results and time for convergence. 

The effectiveness of the suggested approach was examined under three different 

operating conditions (scenarios) and compared with other well-known population-

based evolutionary algorithms, that were described previously, by other researchers. 

The results achieved using the CSOS are very interesting, in terms of performance 

and rapid convergence. Furthermore, the recommended approach doesn’t require 

any internal control parameter. This study was limited to the deterministic case of 

EMO, thus, we plan to extend it, to the probabilistic case, when the outputs of DGs 

and the load demand, are both variable over time and difficult to predict. 
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