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Abstract: In this paper we develop rational discrete-time approximations (IIR filters) to 
continuous fractional-order integrators and differentiators of type sα, α ∈ ℜ. For that, it is 
proposed the adoption of the techniques of Padé, Prony and Shanks usually applied in the 
signal modelling of deterministic signals. These methods yield suboptimal solutions to the 
problem which only requires finding the solution of a set of linear equations. The results 
reveal that this approach gives similar or superior approximations in comparison with 
other widely used methods. Their effectiveness is illustrated, both in the time and frequency 
domains, through several examples. 

Keywords: IIR filters, rational approximations, digital differentiators, digital integrators, 
filter design, least-squares, discretization. 

1 Introduction 

The area of fractional calculus (FC) emerged at the same time as the classical 
differential calculus and deals with derivatives and integrals to an arbitrary order 
(real or even complex order) ([1], [2], [3], [4]). However, its inherent complexity 
postponed the application of the associated concepts. Nowadays, the FC theory is 
applied in almost all the areas of science and engineering being recognized its 
ability to yield a superior modelling and control in many dynamical systems ([1], 
[4], [5], [6], [7], [25]). 

In the literature we can find several different definitions for the fractional 
integration and differentiation of arbitrary order ([1], [2], [4]). One of the most 
well-known definitions is given by the Grünwald-Letnikov approach (α ∈ ℜ): 
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where f(t) is the applied function, Γ(x) is the Gamma function, h is the time 
increment and [x] means the integer part of x. An important property revealed by 
equation (1) is that while integer-order operators imply finite series, the fractional-
order counterparts are defined by infinite series. This means that integer operators 
are local operators in opposition with the fractional operators that have, implicitly, 
a ‘memory’ of all past events. 

From a control and signal processing perspective, the Grünwald-Letnikov 
approach seems to be the most useful and intuitive, particularly for a discrete-time 
implementation ([4], [8]). Moreover, in the analysis and design of control systems 
we usually adopt the Laplace transform (L) method. The definition of the 
fractional-order operator (1) in the Laplace s-domain, under null initial conditions, 
is given by the relation (α ∈ ℜ): 

( )[ ]{ } ( )sFstfDL ta
αα =  (3) 

where F(s)=L{f(t)}. Note that expression (3) is a direct generalization of the 
classical integer-order scheme with the multiplication of the signal transform F(s) 
by the Laplace s-variable raised to a noninteger value α. 

Presently, there are several fractional-order control (FOC) strategies where the 
fractional-order differentiator and/or integrator, sα (α ∈ ℜ), represents its 
fundamental element. For example, the CRONE1 controller ([6], [7]) and the 
fractional PID (PIλDμ) controller ([4], [12]) possess a superior performance 
comparatively with the classical PID controller, particularly when used for the 
control of fractional-order systems. In general, we may say that the FOC strategies 
are more flexible and give the possibility of adjusting more carefully the 
dynamical properties of a control system. 

In this paper, we apply the techniques of Padé, Prony and Shanks for obtaining 
digital rational approximations (IIR filters) to continuous fractional-order 
integrators and differentiators of type sα (α ∈ ℜ). The resulting approximations 
are suitable for a digital implementation of a FOC system. The determination 
process can be synthesized in the following steps: 

1 Discretize the fractional-order operator sα using a suitable generating 
function Hα(z−1); 

2 Obtain the impulse response sequence hα(k), of the fractional discrete 
equivalent, by performing a power series expansion (PSE) (or Taylor 
series) over Hα(z−1); 

                                                           
1  French abbreviation for Commande Robuste d'Ordre Non Entier. 
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3 Apply the signal modeling techniques of Padé, Prony or Shanks to hα(k) 
in order to get the desired IIR filter approximation. 

The proposed method represents an alternative choice to other existing 
approaches, namely the widely used continued fraction expansion (CFE) method. 

Bearing these ideas in mind, the paper is organized as follows. Section 2 presents 
some discretization schemes for continuous fractional-order integrators and 
differentiators, while section 3 derives their impulse response sequences. Section 
4 develops the signal modeling techniques of Padé, Prony and Shanks for the 
design of IIR filters approximations to continuous fractional-order operators. 
Section 5 presents several illustrative examples showing the effectiveness of the 
new technique. Finally, the main conclusions are drawn. 

2 Discretization of Continuous Integrators and 
Differentiators of Fractional-Order 

In general, the discretization of the continuous fractional-order operator sα 

(α ∈ ℜ) can be expressed by the so-called generating function s = ω(z−1) ([9], 
[10]). In these s→z conversion schemes (also called analog to digital open-loop 
design methods) the most often used are the Euler (or first backward difference), 
the Tustin (or bilinear) and the Simpson schemes (see [8]). Recently, new 
discretization formulae appeared that are weighted interpolations between the 
Euler-Tustin ([13], [14]) or the Tustin-Simpson ([15], [16]) schemes. For 
example, the interpolation of 3/4 of the Euler operator with 1/4 of the Tustin 
operator yields the Al-Alaoui operator (see [14]). This scheme exhibits a much 
better magnitude fit than the Tustin operator in high frequency range. Table 1 lists 
the Euler, Tustin and Al-Alaoui operators that will be used in this study. 

As can be seen in Table 1, the fractional-order conversion schemes lead to  
non-rational z-formulae. Therefore, in order to get rational expressions we may get 
its power series expansion (PSE) (Taylor series) and obtain the final 
approximation as a truncated z-polynomial function (FIR filter) ([8], [9]). For 
example, using the Euler operator, H(z−1) = (1–z−1)/T, and performing a PSE of  
[(1–z−1)/T]α, it yields the discretization formula corresponding to the  
Grünwald-Letnikov definition (1). Another possible way is to obtain a discrete 
transfer function in the form of rational function (i.e., as the ratio of two 
polynomials) (IIR filter) through the application of the continued fraction 
expansion (CFE) method ([9], [10], [11]). 

It is well known that rational approximations frequently converge faster than 
polynomial approximations and have a wider domain of convergence in the 
complex domain. Hence, in the work that follows, we develop only IIR-type 
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approximations of continuous fractional-order integrators and differentiators, 
which make them suited for z-transform analysis and digital implementation. For 
that, we propose the use of the least-squares (LS) based methods usually applied in 
the modeling of deterministic signals (see section 4). 

3 Impulse Response of Discretized Integrators and 
Differentiators of Fractional-Order 

This section derives the impulse response sequences hα(k) of the discretization 
schemes listed in Table 1. It is assumed that hα(k) = 0 for k < 0, corresponding to a 
causal system. 

Expanding the Euler operator Hα
E(z−1) into a power series in z−1, we have: 
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Table 1 
Discretization schemes 

Method s→z conversion 
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where the impulse response sequence hαE(k) is then given by: 
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By taking the power series expansion (PSE) of the Tustin and Al-Alaoui 
operators, Hα

T(z−1) and Hα
A(z−1), respectively, it yields: 
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The impulse responses sequences, hαT(k) and hαA(k), are correspondingly given as 
(k ≥ 0): 
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Note that the PSE method leads to impulse response sequences of infinite length. 
For a practically realizable form these sequences must be truncated yielding 
approximations in the form of FIR (finite impulse response) filters. The s→z 
conversion schemes just described (Euler, Tustin and Al-Alaoui) are special cases 
of a more general discretization formula called T-integrator (see [21]). 
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4 Design of IIR Filters based on LS Method 

Consider that the impulse response sequence hα(k) is specified for k ≥ 0. The IIR 
filter H(z−1), to be designed, has the form:  
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where h(k) is its impulse response and m ≤ n. 

The IIR filter approximation (10) has m+n+1 parameters, namely the coefficients 
ak (k = 1, 2, …, n) and bk (k = 0, 1,…, m), which can be selected to minimize some 
error criterion. Usually, we adopt the least-squares (LS) method in order to 
minimize the error eLS(k) = hα(k)−h(k), as shown in Figure 1: 
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where N denotes the number of samples used in the summation. However, the LS 
approach leads to a nonlinear problem for the model parameters (ak, bk), which 
requires the solution of a set of nonlinear equations and, for that reason, it is often 
avoided. 

If we rewrite (10) as H(z)A(z) = B(z), and assuming that hα(k) is given 
approximately by the impulse response of H(z), one can write the corresponding 
time-domain equation as (note that the left-hand sided corresponds to a 
convolution): 
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This gives a set of linear equations, which can be used in different ways to solve 
for the coefficients ak and bk ([17], [18], [19], [20], [21]). Our objective is to use 
simple (indirect) methods that can handle more easily the determination of the IIR 
filter parameters. In this perspective, this study considers the application of three 
linear suboptimal solutions: the Padé approximation, the Prony's method and the 
Shanks' method [18]. 
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Figure 1 

Least-squares method 
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4.1 Padé Approximation 

The Padé approximation yields an IIR filter that fits exactly hα(k) during the first 
m+n+1 values of k. Then, equation (12) becomes: 
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where hα(k) = 0 for k < 0. 

A two-step approach is used to solve for the coefficients ak and bk. In the first step, 
solving for the coefficients ak, we use the last n equations of system (13), which 
after simple manipulations, may be written in matrix form as: 

212 haH −=  (14) 
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where H2∈ℜn×n is an n×n nonsymmetric Toeplitz matrix (see [22]). If H2 is 
nonsingular, the coefficients ak (k = 1, 2, ..., n) are uniquely determined by: 

21
1

2 hHa −−=  (15) 

In the second step, the coefficients bk are found using the first m+1 equations of 
system (13), which may be written in matrix form as: 

baH =1  (16) 

where 
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In this way, we obtain a perfect match between h(k) and the desired impulse 
response sequence hα(k) for the first m+n+1 values of k. The success of this 
method depends strongly on the number of selected model coefficients. Since the 
design method matches hα(k) only up to the number of model parameters, the 
more complex the model, the better is the approximation to hα(k) for 0 ≤ k ≤ m+n. 
However, in practical applications, this introduces a major limitation of the Padé 
method because the resulting approximation must contain a large number of poles 
and zeros (see [23]). 

It can be shown that the approximations obtained by the CFE method are identical 
to those resulting by application of the Padé approximation to power series 
expansion (m = n) (see [24]). Nevertheless, the CFE approach is computationally 
less expensive than the Padé technique. 

4.2 Prony's Method 

Prony's method differs from the Padé approximation in the scheme of finding the 
denominator coefficients ak (k = 1, 2, ..., n) (see Figure 2). These coefficients are 
determined by LS minimization of the error eP(k) = ak*hα(k)−bk  (where the 
symbol * denotes convolution): 

( ) ( ) ( ) 1...,,1,
1

−+=−+= ∑
=

Nmklkhakhke
n

l
lP

αα  (17) 

Setting the error eP(k) = 0 in system (17) and writing these equations in matrix 
form: 

212 haH −=  (18) 
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Figure 2 

Prony’s method 
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It is obvious that in this case system (18) cannot be solved exactly. Therefore, we 
find the LS solution by solving the set of normal equations: 

( ) 21222 hHaHH TT −=  (19) 

If (H2
TH2) ∈ ℜn×n is nonsingular, a unique solution of (19) exists and the 

coefficients ak are determined by: 
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−+ =  is the pseudoinverse of H2. 

With ak given, the coefficients bk are found using the Padé method of forcing 
h(k) = hα(k) for k = 0, 1, …, m (see previous subsection 4.1): 
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4.3 Shanks’ Method 

Shanks' method provides an alternative to Prony's method of finding the 
numerator coefficients bk (k = 0, 1,…, m) (see Figure 3). Thus, instead of forcing 
an exact fit for the first m+1 values of the impulse response sequence, it performs 
a LS minimization of the error ( ) ( ) ( )khkhkeS

ˆ−= α  over the interval [0, N−1]: 
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Figure 3 

Shanks’ method 

Firstly, the coefficients ak are determined in the same way as in Prony's method, 
that is, by a LS fit over the interval [m+1, N−1] (see previous subsection 4.2). 
With ak given, the coefficients bk are determined following the sequence 
illustrated in Figure 3: 

1 Compute the impulse response sequence g(k) of the filter 1/A(z) using, 
for example, the recursion: 
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with g(k) = 0 for k < 0. 

2 Solve for the coefficients bk by setting the error eS(k) = 0 in system (22) 
and writing these equations in matrix form: 
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The LS solution is found by solving the linear equations: 

( ) hGbGG TT =  (25) 

If the matrix (GTG) ∈ ℜ(m+1)×(m+1) is nonsingular, the coefficients ak can be 
uniquely determined by: 

( ) hGhGGGb +−
== TT 1

 (26) 
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where G+ = (GTG)−1GT is the pseudoinverse of G. 

Note that the Prony and the Shanks methods should yield superior approximations 
than those obtained by the Padé technique, since h(k) approximates hα(k), in a 
least-squares sense, for values of k > m+n. Therefore, it will be expected a good 
match even outside the interval [0, m+n]. Also notice that the algorithms just 
described can be easily evaluated using one of the LS solvers available. 

5 Illustrative Examples 

In this section we use the techniques proposed previously to develop IIR filters 
approximations of half-differentiators (s1/2) and half-integrators (s−1/2), sampled at 
T = 0.01 s. For comparison purposes, in the figures that follows, we also plot the 
IIR filter approximation obtained by the Padé (or the CFE) method for m = n = 5. 

Figures 4 and 5 depict the Bode diagrams of Prony's approximations to the Tustin 
and Al-Alaoui operators for s−1/2, with m = n = 5 and different impulse response 
lengths of N = {11; 100; 200; 500; 1000}, respectively. Figures 6 and 7 show the 
same approximations considering now distinct orders of the IIR filters, namely of 
m = n = 1; 3; …; 9 with N = 1000. Clearly, the higher the order m = n (or the 
impulse response length N), of the IIR filter, the better the fitting, in a least-
squares sense, to the ideal half-integrator s−1/2 (dashed-dotted lines). Note that the 
Al-Alaoui scheme improves the high frequency magnitude response 
comparatively to the Tustin scheme. We also verify that the LS approach increases 
the performance in the low frequency range (corresponding to the steady-state 
time response) by increasing the order (or the number of impulse values used), 
resulting in better approximations than those given by the Padé (or the CFE) 
method. In Figures 8 and 9 are presented the impulse response sequences of the 
approximations revealing, again, its effectiveness in fitting the discretization 
schemes of the Tustin and Al-Alaoui operators. 

Figures 10 and 11 depict the distribution of poles and zeros of Prony's 
approximations to the Tustin and Al-Alaoui operators for s−1/2, N = 1000 and 
m = n = {1; 5; 7; 9}. It can be observed that the approximations fulfill the two 
desired properties: (i) all the poles and zeros lie inside the unit circle, and (ii) the 
poles and zeros are interlaced along the segment of the real axis corresponding to 
z ∈ (−1, 1). Therefore, the resulting approximations are causal, stable and 
minimum phase, suitable for a digital implementation. 

To further illustrate the effectiveness of the proposed techniques, the IIR filters 
approximations are used to calculate the half-integral and/or the half-derivative of 
the square and sawtooth functions, as shown in Figures 12 and 13, respectively. 
Once more, they highlight the effectiveness of the approximations in fitting the 
ideal curves (dashed-dotted lines). 
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Figure 4 

Bode diagrams of Prony's approximations to Tustin operator of s−1/2, m = n = 5, T = 0.01 s and 
N = {11; 100; 200; 500; 1000} 
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Figure 5 

Bode diagrams of Prony's approximations to Al-Alaoui operator of s−1/2, m = n = 5, T = 0.01 s and 
N = {11; 100; 200; 500; 1000} 
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Figure 6 

Bode diagrams of Prony's approximations to Tustin operator of s−1/2, N = 1000, T = 0.01 s and 
m = n = 1; 3; …; 9 
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Figure 7 

Bode diagrams of Prony's approximations to Al-Alaoui operator of s−1/2, N = 1000, T = 0.01 s and 
m = n = 1; 3; …; 9 
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Figure 8 

Impulse response sequences of Prony's approximations to Tustin operator of s−1/2, N = 1000, T = 0.01 s 
and m = n = 1; 3; …; 9 
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Impulse response sequences of Prony's approximations to Al-Alaoui operator of s−1/2, N = 1000, 
T = 0.01 s and m = n = 1; 3; …; 9 
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Figure 10 

Pole-zero maps of Prony's approximations to Tustin operator of s−1/2, N = 1000, T = 0.01 s and 
m = n = {1; 5; 7; 9} 
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Figure 11 

Pole-zero maps of Prony's approximations to Al-Alaoui operator of s−1/2, N = 1000, T = 0.01 s and 
m = n = {1; 5; 7; 9} 
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Figure 12 

Half-integral/derivative of the square wave function with Shanks' approximation to Euler operator for 
N = 1000, T = 0.01 s and m = n = 7 
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Figure 13 

Half-integral/derivative of the sawtooth wave function with Prony's approximation to Euler operator 
for N = 1000, T = 0.01 s and m = n = 7 
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Conclusions 

In this paper we have described the application of the techniques of Padé, Prony, 
and Shanks for the design of IIR filters approximations of continuous 
fractional-order integrators and differentiators of type sα, α ∈ ℜ. The illustrated 
techniques only require finding the solution of a set of linear equations, yielding 
good approximations both in the time and the frequency domains. Moreover, it 
can produce superior approximations than other existent methods, namely the 
widely used CFE method. Also, the obtained approximations are causal, stable 
and minimum-phase, suitable for a digital implementation. Some examples are 
given that demonstrate the effectiveness of the proposed techniques. The results 
indicate that the least-squares based methods are adequate techniques for 
obtaining digital approximations of continuous fractional-order operators and, 
consequently, for the practical realization of fractional-order controllers. 
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