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Abstract: The paper deals with the identification of the system parameters in the nonlinear 
dynamic model of fixed wing UAVs. Fixed wings airplanes are popular in long distance 
applications and have to be modelled accurately to guarantee efficient control properties. 
Different methods are suggested to solve the parameter estimation beginning with the 
standard linear regression (LR) and continued with its extension (ELR), the optimization 
using interior point methods and finally using the FireFly technique, which is a metaheuristic 
algorithm. The methods illustrate the convergence and the speed of these approaches.  
The known default parrameter values of a Sekwa UAV were used to demonstrate that the 
elaborated identification methods can also reconstruct the numerical values of the 
dimensionless system parameters embedded into the nonlinear model using the physical 
weighting functions. After the extension of linear regression, MinMax optimization algorithm 
was used to get the best and optimal solution and reconstruct the parameters of the Sekwa 
aircraft. FireFly optimization gives also comparable results with minmax method. Flight 
data was needed for simulation and testing the different approaches. Matlab and toolboxes 
were used as simulation software. The results showed the estimated parameters are more 
accurate than linear regression estimation. Even though it is a small improvment this will 
reflect in all calculations. 

Keywords: Aircraft model identification; linear regression;Min Max optimization; FireFly 
optimization 

1 Introduction 
Analysis and parameter prediction are vital in achieving the control and stability 
properties of a somewhat complicated system like an aircraft. The parameter 
estimation method has been used with great success in the past to predict numerous 
parameters depending of real data of flight. Considering that the rigid body model 
is reliable, parameter estimate using flight data is currently employed often when 
applied to airplanes in the linear flight domain. As a result, the derivation of aircraft 
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model is used to estimate procedure lacks elastic degrees of freedom. High levels 
of flexibility in an aircraft may make it more susceptible to the dynamics of a system 
with too many factors that must be evaluated [1] [2]. 

The identification of an accurate and verified mathematical model of aircraft 
apparatus is known as aircraft system identification. This is a crucial stage in the 
development of flight vehicles due to the generated model is vital for: 

I. Comprehending the cause-and-effect relationship. 
II. Examining the capabilities and characteristics of aircraft. 

III. Verifying aerodynamic databases and upgrading flight control law designs 
are steps in step three. 

IV. Supporting the expansion of the flying envelope. 
V. Attempting to recreate the flight path, which incorporates incidence 

analysis and wind calculation. 
VI. Running adaptive control and fault diagnosis. 

This article is a natural extension of our previous research efforts. Building upon 
our prior work, titled "Comparison of Adaptive Fuzzy EKF and Adaptive Fuzzy 
UKF for State Estimation of UAVs Using Sensor Fusion," in [3] where we focused 
on state estimation techniques, and "Prediction of the Navigation Angles Using 
Random Forest Algorithm And Real Flight Data of UAVs," in [4] which explored 
machine learning-based prediction of navigation angles, this current article delves 
into a new dimension of UAV research. Specifically, it addresses the critical task of 
model parameter identification for Fixed Wing UAVs, utilizing extended linear 
regression and interior point optimization techniques. 

 
Figure 1 

Block diagram of aircraft [5] 
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By citing our previous work, we establish the continuity and progression of our 
research, highlighting how our latest contribution complements and broadens the 
scope of our ongoing efforts in advancing UAV technology. 

The method for identifying an aircraft system is described in Figure 1. 

1.1 State of Art 
The authors in [6] discussed how to use measurable input and output data to estimate 
parameters in aircraft flight dynamic models, like control and stability derivatives. 
In this method, the aircraft control effectors are moved using orthogonal phase-
optimized multisines, frequency responses of MIMO systems are computed using 
Fourier analysis, and noise values of the parameters of model are determined using 
frequency response error (FRE), a maximum likelihood estimator. The T-2 generic 
transport system and the X-56A aeroelastic model are examples of airplanes whose 
flight test results are used to illustrate the technique. By using the maximum 
likelihood estimator, one may easily incorporate prior knowledge and combine data 
from many motions without additional correction while also giving precise 
statistical uncertainties for the expected values. However, the tactic still has several 
shortcomings. Although frequency responses provide physical insight into the 
dynamics, their usage restricts modeling to linear, time-invariant systems, 
necessitating flight test data with low disturbances compared to a reference state. 
While other approaches can benefit from fewer data records, a meaningful 
frequency response estimate requires steady-state data, which take longer to gather. 
If there is environmental disturbance, more loops of steady-state data may be 
needed. The strategy requires the capacity to extend the command path with 
computerized inputs. Uncertainties or uncertain environment can cause many 
problems that need to be solved [7]. 

In [8], Online system identification was covered by the authors; as technology 
advanced, it became a crucial step in the construction of methods for estimating 
aerodynamic parameters. In order to estimate the aerodynamic parameters of fixed-
wing aircraft in unsteady conditions like stalls, this research proposes two online 
system identification (SID) algorithms that are based on Kalman filters.  
The suggested approaches, in contrast to previous SID ones, incorporate 
aerodynamic features associated with the upset state directly into the aircraft 
dynamics, such as modification of aerodynamic derivatives or flow separation 
point. To get the best estimations of the relevant aerodynamic characteristics, the 
standard or unscented Kalman filter is then applied in real-time. To illustrate the 
usefulness of the proposed approaches and their superiority to a previously 
proposed method, real flight data sets from a variety of aircraft are used in testing. 

In [9], authors deal on the issue of fixed-wing UAV modeling and control. For 
control purposes dynamic models for aircraft were given in body, stabilization-axes, 
and wind-axes coordinate systems. It was possible to define and resolve a typical 
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integral backstepping control issue that ensures stability in closed loops. Integral 
parts of the control can aid in reducing parameter changing and disruption impacts. 
The approach ensures that the combined 3D attitude system will remain stable in a 
closed loop even with changing reference signals. For motion portions that can be 
joined and smoothed, primitives for path design were developed. The amount of 
time required for each section can be specified. They worked on Sekwa aircraft. 

The techniques for identification are used specifically for accurate representation of 
system of aircraft. Many studies might use nominal values but this will reflect in 
their works. Some studied attitude estimation using Kalman filter and artificial 
intelligence as in [9] [10] [11] and the results are great but still some errors because 
of not estimation the aircraft parameters. Optimization  also has roles in medicine 
and  communications [12] [13] [14]. 

In this approach, an extension of Linear regression is used to identify Sekwa aircraft 
parameters accurately with new mathematical representations. The goals of this 
search is to implement Linear regression with an extension for aircraft parameters 
estimation for a specific aircraft, the linear regression is implemented with interior 
point optimization algorithms  , but our aim is to extend this to get more accurate 
results. The structure of this paper is as follows. Section 2 deals with the developed 
algorithms including the nonlinear UAV models, the basic regression model the 
interior point optimization, the extended linear regression, and FireFly 
optimization. Section 3 presents and analyses the identification results based on 
standard linear (LR) and extended linear regression (ELR), and FireFlytechnique. 
Since the default parameter values of the Sekwa UAV are available hence the 
identified parameter values are also compared in the parameter domain. The paper 
is finished with the Conclusions, and References. 

2 Developed Algorithm 

2.1 Nonlinear UAV Model 
Fixed wing propeller driven aircrafts are nowadays popular for both long distance 
military and civilian applications. The paper assumes that the reader is familiar with 
the fundamentals of the nonlinear dynamic model and control of fixed wing aircraft. 
There are excellent classical books on this field, specialities regarding UAVs can 
be found in [9] [10]. The paper concentrates on the parameter identification of the 
models, see here only some details based on [16]. It is assumed that registered flight 
data are available obtained by data logging either within teleoperation or online 
control. The identification can be performed using batch-processing or online. 
Bach-processing makes it easy to use special sotwares, state estimation and filtering 
and differentiation of the estimated signals before starting the identification process. 
The notations used are the well spread ones in vehicles and robotics literature.  



Acta Polytechnica Hungarica Vol. 21, No. 6, 2024 

‒ 73 ‒ 

The use of coordinate systems (frames) are preferred, namely Kn, Kb, Ks and Kw 
are the Flat-Earth, body, stability axis and wind axis frames, respectively.  
The parametrisation of the  model can often be performed in the stability axies frame 
or in the wind axis frame. Denote bv and bω the body linear velocity and angular 
velocity, the relative air speed is b n

r b n windv v R v= −  where the wind velocity is 
constant and b

nR  transforms vectors from Kn to Kb, m  is the mass and cJ I=  is 
the inertia matrix, and BF  and bT  are the resulting external force and torque 
satisfying the Newton-Euler equations: 

/ and ( )b b b B b b b Bv v F m J J Tω ω ω ω= − × + = − × +   (1) 

where the force and moment effects are 

( , , ) and ( , , )T T
B x y z BA BT BG B BA BTF F F F F F F T L M N T T= = + + = = +   (2) 

Here the second letters A,T and G in the indexes denote the aeodynamic, trust and 
gravity effects, respectively. The (nongravity) forces and torques depend on the 
wing reference area waS , the free-stream dynamic preassure 21 / 2 Tq vρ= , 
different dimensionless coefficients , , , , ,D L Y l m nC C C C C C  and, in the case of the 

torques, on the wing span b  and the wing mean geometric chord c . The 
dimensionless coefficients depend in first line on the angle of attack α  and  the 
sideslip angle β ,  the control surfaces and the Mach-number: 

 

drag
lift

sideforce
rolling moment

pitching moment
yawing moment

stab wa D

stab wa L

wa Y

wa l

wa m

wa n

D qS C
L qS C
Y qS C
L qS bC

M qS cC
N qS bC

=
=
=
=
=
=

      (3) 

Notice that the lift force LC , the drug force DC , etc. are usually defined in the 
stability frame, not in the wind-axes frame. The relative air-speed can be 
transformed using elementary transformations in the wind-axis frame by 

( , ) ( , )b
r w w wv R v Rot y a Rot z vβ= = −  where (1,0,0)T

w Tv v= . For the stability 
frame 0β = .  The resulting external force in the body frame is 

( , , ) (1,0,0)T T
B wa X Y Z T BF qS C C C F mg= + +   (4) 

where TF  is the thrust force and Bg  is the gravity acceleration in the body frame. 
The drug and lift forces in the stability frame satisfy 
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( , , ) ( , ) ( , , )
( , , ) ( , ) ( , , )

T T T
D Y L X Y Z

T T T
DW Y LW D Y L

C C C Rot y C C C
C C C Rot z C C C

α

β

− − = −

− − = − −
 (5) 

In order to obtain forces and moments in standard SI dimensions (N and Nm) the 
dimensionless components should be multiplied by appropriate weighting 
functions. For example, the angular velocity in the stability frame can appear in the 
model as weighting function where ( , )T

S bRot yω α ω= − . Hence, identifying the 
parameters appearing in the model, the linear parameter estimation is embedded in 
the nonlinear models through the weighting functions. First, the user chooses the 
structure of the model, i.e. the number of parameters, the form of the high-level 
functions and the weighting signals in them: 

1 2 1 2( , , , , , ), { , , , , , }i i i i i i X nC C p p s s i D L Y C C= ∈    (6) 

Where p  denotes parameters and s  denotes weighting signals of  the function. For 

constant weight 1s =  is  allowed. 

On the other hand, the structure of the nonlinear model can contain nonlinear 
relations too, for example the drug may depend on the square of the lift, making the 
parameter estimation nonlinear or constrained linear. Such a situation is typical for 
many aircraft in steady state: 

0
2

2
0 0 1 2

L L L

L
D D D D D

sr Osw

C C C

CC C C C C
A e

αα

α α
π

= +

= + = + +
 (7) 

Where srA  and Oswe  denote the wings aspect ratio and the Oswald efficiency factor, 
respectively.  Taking the square, the introduced new parameters 0 1 2, ,D D DC C C  
make the problem formally similar to linear parameter estimation in these 
parameters but it is evident that they are in relation with 0DC , 0LC  and LC α  
generating constraints amongst them. Such a situation appears for the Sekwa fixed 
wing UAV causing problem in the identification. Neglecting the constraints for the 
parmeters 0 1 2 0 0, , , , ,D D D D L LC C C C C C α  the usual least square parameter 
esttimation is not necessarily convergent in 0 0, ,D L LC C C α to the correct values. 
Notice that this property is in force also for other methods if in them dominate the 
linear character together with some noise extension. Fortunately, the constraints are 
simple and sparse, hence using nonlinear optimization with constraints (see for 
example fmincon with options, starting from LS generated initial values) give an 
extra chance for parameter improvement. Returning back to the linear parameter 
estimation problem, one can assume that from the flight data and state estimation 
the states in the differential equations are available and the differentiation of the 
signals has already been performed. The LS problem can be considered in the form
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( ) ( ) ( )Ty t t e tϕ ϑ= +  where ( )y t  is a vector coming from the differential 
equations and ϑ  is the (full) parameter vector. In case of Sekwa UAV the set of 
weighting functions may be 

2(1, , , , , , , , , , )e a thp q r d rα α β δ δ δ     (8) 

and in case of  0 1 2( , , )D D D DC C C C=  this component can be represented by 

2(1, , , , , , , , , , ) (1,1,1,0, ,0)T
e a thp q r d rα α β δ δ δ ×  

  (9) 

Similar relations can be found for the other components in the differential equations. 
In this way the derivatives of the state equations subtracted by signals not containing 
identifiable parameters in the state equation playes the role of ( )y t  and the right 
side is as above for DC . Then, the components can be collected for every sampling 
time multiple t  and the LS problem can be built up and solved. A similar technique 
can be used for the examined more complex problems in the paper. 

2.2 Problem Statement 
After defining parameters and basic coefficients, the main problem of this research 
is how to estimate and predict these coefficients depending on real data. In regard, 
three main method are illustrated which will be explained in the next sections: 
Linear Regression (LR), Extended Linear Regression (ELR) and Optimized ELR 
by Firefly optimization algorithms. We deal with the solution of the parameter 
identification problem at two levels. 

1) Normally, the results can be tested only to demonstrate that the output signals 
in the flight data can be well matched if the simulated model, inside with the 
identified parameters, is driven with the input (actuator) signals of the flight 
data. This can be checked in open loop or in closed loop under control. Notice 
that integral components in closed loop can reduce the effect of errors while 
matching during open loop testing is more difficult. Here, dominates signal 
comparison. 

2) In rare situations the internal parametrs of the aircraft may also be known and 
we can test whether the default parameters can also be reconstructed using 
identification. Here, dominate parameter comparision, which is more general.  

The studied aircraft was the Sekwa UAV with available known default model 
parameters. The details can be found in [15] [16] [17]. Hence. it was also possible 
that beside the convergence of the parameter identification also the parameter errors 
could have been tested. The comparison can be found later in table. Next section 
will explain the general regression model and Firefly optimization algorithm. 



H. N. Al-sudany et al. Extended Linear Regression and Interior Point Optimization for  
 Identification of Model Parameters of Fixed Wing UAVs 

‒ 76 ‒ 

2.3 Basic Regression Model 
The main idea of our work is re-modelling the mathematical equation of aircraft 
model from a new view, suppose the next model: 

[ ]
1

( ) , 1,
M

j j i j j j
i

f H x b c d j n
=

= + + + ∈∑                                 (10) 

Where: 𝑛𝑛: is the number of all samples. 𝑀𝑀 number of variables to be estimated. 
𝑎𝑎, 𝑏𝑏, 𝑐𝑐 are known values, 𝐻𝐻𝑗𝑗 is nonlinear function in general (it might be linear).       
𝑓𝑓 is the dependent variable that can be measured or observed. 𝑥𝑥𝑖𝑖 are cofficients to 
be estimated (it is vector). As an example, 𝑓𝑓 might be the position and 𝑥𝑥𝑖𝑖 might be 
the velocity and 𝑎𝑎, 𝑏𝑏, 𝑐𝑐 are parameters that are initial values or noise parameters. In 
linear case, they reduce to next (* is the normal multiplication): 

[ ]
1

, 1,
M

j ji i j j j
i

f H x b c d j n
=

= ∗ + + + ∈∑
                                   (11) 

Whereas 𝐻𝐻𝑗𝑗𝑖𝑖  are independent known variables. (H could be represented by vector) 

1

2

1 2
1

* , ,..., * .
.

M

ji i j j jM
i

M

x
x

H x H H H

x

=

 
 
 
  =    
 
  

∑
 

To solve this issue 

( ) [ ]
1

, 1,
M

j j j j ji i
i

f b c d H x j n
=

− + + = ∗ ∈∑                                        (12) 

And it became as a normal regression model; note that iH   might contain old values 
of if ,  as an example 5 1 1 2 3H h x f x= + + . To solve this type of regression 
model, we need to build equation as follows 

( )

( )

1

1

,
M

j j j j ji i
i

Y f b c d A X H x

Y A X

X A Y

=

−

= − + + ⋅ = ∗

= ⋅

= ⋅

∑

                                 (13) 

Where, 𝑨𝑨 is a matrix with n  rows (number of samples) and 𝑀𝑀 columns (number of 
parameters to be estimated. The matrix 𝑨𝑨 is not square. The next equation show 
dimensions 

1 *1n n M M
Y A X
∗ ∗
= ⋅                                                                                            (14) 
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Pseudo inverse matrix is needed here to calculate the vector 𝑋𝑋. The Sekwa model 
equations will be used to find the aircraft coefficients (Force equations, Torque 
equations and Navigation equations). 

 

Figure 2 
Flowchart of Sekwa model parameters estimation 

Linear regression depends on Interior point optimizsation, which will be explained 
next. 

2.3.1 Interior Point Optimization Function 

Interior point algorithms are a certain class of algorithms that solve linear and 
nonlinear convex optimization problems. It enabled solutions of linear 
programming problems that were beyond the capabilities of the simplex method. 
Contrary to the simplex method, it reaches a best solution by traversing the interior 
of the feasible region. The method can be generalized to convex programming based 
on a self-concordant barrier function used to encode the convex set. 

After we get the equation: 

Flight data of UAV Sekwa 
model 

Equations 13,14 

Y=A.X 

Determining pseudo inverse  

of A 

Find (X0) as a start vector 
for optimization techniques 

to converge successfully 

Finding the best X through 
applying an optimization 

algorithm 
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1 *1n n M M
Y A X
∗ ∗
= ⋅                                                                                                      (15) 

We run an optimization function to find best value of X , we need this step since 
we got number of equations larger than number of coefficients. The optimization 
algorithm in [15] is to find minimum of constrained nonlinear multivariable 
function, it is available in Matlab [18]. 

2.4 Extended Linear Regression 
The above representation of equation is accurate for ideal situations and ideal flight 
environment, so new term is added to each equation to get close to accurate 
calculations, but this added term is not for noise. Hence, if we want to simulate 
noise state too, we have to add 𝑛𝑛 term for 𝑛𝑛 sample. For aircraft, each coefficient 
might be dependent from all other ones; so if the number of coefficients is M, 
another M terms will be added to extend the regression as follows: 

( ) [ ]
1 1

( ) , 1,
M M

j j i j j j j i
i i

f H x b c d G eps j n
= =

= + + + + ∈∑ ∑   (16) 

The aim is to estimate 𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑀𝑀 so we add 𝑒𝑒𝑒𝑒𝑠𝑠1, 𝑒𝑒𝑒𝑒𝑠𝑠2, … , 𝑒𝑒𝑒𝑒𝑠𝑠𝑀𝑀 term. Whereas 
𝐺𝐺𝑗𝑗 are independent known variables . To solve this issue in linear case: 

𝐺𝐺𝑗𝑗(𝑒𝑒𝑒𝑒𝑠𝑠𝑖𝑖) = 𝐺𝐺𝑗𝑗𝑖𝑖 . 𝑓𝑓𝑗𝑗 . 𝑒𝑒𝑠𝑠𝑒𝑒𝑖𝑖  

𝑓𝑓𝑗𝑗 − �𝑏𝑏𝑗𝑗 + 𝑐𝑐𝑗𝑗 + 𝑑𝑑𝑗𝑗� = ∑ 𝐻𝐻𝑗𝑗𝑀𝑀
𝑖𝑖=1 ⋅ 𝑥𝑥𝑖𝑖 + ∑ 𝐺𝐺𝑗𝑗𝑖𝑖 . 𝑓𝑓𝑗𝑗. 𝑒𝑒𝑒𝑒𝑠𝑠𝑖𝑖𝑀𝑀

𝑖𝑖=1 , 𝑗𝑗 ∈ [1,𝑛𝑛]  (17) 

Suppose the term 𝑋𝑋� = [𝑥𝑥1, 𝑥𝑥2, . . . 𝑥𝑥𝑀𝑀, 𝑒𝑒𝑒𝑒𝑠𝑠1, 𝑒𝑒𝑒𝑒𝑠𝑠2, . . . 𝑒𝑒𝑒𝑒𝑠𝑠𝑀𝑀] whereas 

1 2 2 *1n n M M
Y A X
∗ ∗
= ⋅    (18) 

This will extend the matrix and will end up with more accurate and reality 
representation of the aircraft model. The 𝐺𝐺𝑗𝑗𝑖𝑖 are zeroes or ones; this according to 
the existence if 𝑥𝑥𝑖𝑖. This means if coefficient with index depends on coefficients with 
index 𝑖𝑖 then 𝐺𝐺𝑗𝑗𝑖𝑖 = 1 and then 𝑒𝑒𝑒𝑒𝑠𝑠𝑖𝑖 should be estimated 

𝐺𝐺𝑗𝑗𝑖𝑖 = �1 𝑖𝑖𝑓𝑓 𝑥𝑥𝑖𝑖   𝑖𝑖𝑠𝑠  𝑒𝑒𝑥𝑥𝑖𝑖𝑠𝑠𝑒𝑒   𝑖𝑖𝑛𝑛    𝑒𝑒𝑒𝑒𝑒𝑒𝑎𝑎𝑒𝑒𝑖𝑖𝑒𝑒𝑛𝑛
0 𝑖𝑖𝑓𝑓 𝑥𝑥𝑖𝑖  𝑖𝑖𝑠𝑠   𝑛𝑛𝑒𝑒𝑒𝑒   𝑖𝑖𝑛𝑛   𝑒𝑒𝑒𝑒𝑒𝑒𝑎𝑎𝑒𝑒𝑖𝑖𝑒𝑒𝑛𝑛   (19) 

The final desired X  might be [ ]1 2, ,... MX x x x= ; this means that the calculated 

𝑒𝑒𝑒𝑒𝑠𝑠𝑖𝑖 compensates noise. Figure below shows these stages: 
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Flowchart of Sekwa model parameters estimation with extended regression 

For ELR, MinMax optimization function is used, this will be explained next. It is a 
ready function in matlab toolbox. 

2.4.1 MinMax Optimization Function 

The optimization function here is “Solve minimax constraint problem”. fminimax 
function searches for the best solution that minimizes the maximum of a set of 
objective functions. The problem includes any type of constraint. The optimization 
function needs an objective function to be minimized or in some cases to maximized 
(minimize loss or error, maximize accuracy) [19] [20] [21]. All optimization 
algorithms need a loss or an objective function to be minimzed during optimization 
phase (searching for optimal solution, this will be explained next). 

Flight data of UAV Sekwa 
model 

Equations 13,14,15 

Y=A.X with extended A 

Determining pseudo inverse  

of A 

Find (X0) as a start vector 
for optimization techniques 

to converge successfully 

Finding the best X through 
applying an optimization 

algorithm 

Update X 
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2.4.2 Objective Function 

For linear problems the tak is to find the solution of linear regression [22] [23] for 
equation (18): 

  
To solve this problem, new objective function can be defined for minimizing: 

( ) ( )2min

2

T

X
T T T T T

fun Y A X Y A X Y A X

X A AX X A Y Y Y

= − ⋅ = − ⋅ − ⋅

= − +
                                 (20)  

X  can be simply determined minimizing fun . In our case, it is an optimization 
problem and need to search for a solution to minimize the objective function. Best 
solution would be when fun=0. Matmatically, (𝑌𝑌 − 𝐴𝐴 ⋅ 𝑋𝑋)𝑇𝑇(𝑌𝑌 − 𝐴𝐴 ⋅ 𝑋𝑋) =
𝑋𝑋𝑇𝑇𝐴𝐴𝑇𝑇𝐴𝐴𝑋𝑋 − 2𝑋𝑋𝑇𝑇𝐴𝐴𝑇𝑇𝑌𝑌 + 𝑌𝑌𝑇𝑇𝑌𝑌 can also be solved, especially in case of constraints, by 
using the preferable wayof numerical optimum seeking. 

Constraints may be the lower and upper bound for 𝑋𝑋 to defined. Then the defined 
values have to be satisfied during the algorithm. 

Next, FireFly mehtod will be discussed to help ELR in searching for the best 
solution. 

2.4.3 FireFly Optimization Algorithm 

One of the newest metaheuristic algorithms for optimization issues is the firefly 
method. The program takes its cues from firefly flashing behavior. The flashlight is 
utilized as a warning system to keep the fireflies from potential predators [24].  
The program will treat randomly produced solutions as firefly, and brightness will 
be allocated based on how well they perform on the objective function. They can 
divide into smaller groups due to their attractiveness, and each group converges 
around the local models [25]. The following three rules are the fundemantals of 
firefly  described as follows [26]: 

1. Fireflies come in both genders. 
2. Attractiveness is proportional directly to their brightness.  
3. The landscape of the objective function controls a firefly's brightness. 

When compared to other algorithms, firefly offers two key advantages: automated 
subdivision and the capacity to handle multimodality. 

The key parameters of the Firefly Algorithm are as follows: 

Population Size (n): The number of fireflies. We used n=150. 

Light Intensity (I): This represents the objective function value or fitness of a 
solution. Fireflies are attracted to brighter fireflies, meaning that solutions with 
higher light intensity values are considered better. 

Y A X= ⋅
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Absorption Coefficient (γ): This parameter represents the light absorption during 
the propagation of light. It's used to reduce the attractiveness of a firefly based on 
the distance between them. If the distance is high, this means that this solution is 
not close, so will decrease attractive parameter. Where Absorption Coefficient 
(γ)=0.99. 

Maximum Generations (MaxGen): The number of iterations or generations the 
algorithm will run before terminating. It controls the stopping criterion for the 
optimization process.  Where Maximum Generations=500. 

Objective Function: The mathematical function that represents the problem to be 
optimized. This represents the function in equation (20). 

Search Space and Bounds: This represents the constraints. It should be mentioned 
the initial values were determined after many experiments. 

The problem is searching for best X that minimizes the function in equation (20). 
Firefly will be adopted to search for this X by its fireflies. Simple flowchart is shown 
below: 

Begin 
   1) Objective function 𝑓𝑓(𝑥𝑥) to be minimized.  As in equation (20) 
   2) Generate an initial population of fireflies (fireflies number must be defined); 
Each firefly will search for the best value of X values in Equation (20), they will 
attract other fireflies when they found minimum values to repopulate the fireflies 
near the minimum zone and search again till they reach minimum value of 
function in Equation (20) 
   3) Formulate light intensity I so that it is associated with 𝑓𝑓(𝑥𝑥)  
    4) Define absorption coefficient 𝛾𝛾 
    while (t < MaxGeneration) 
        for i = 1 : n (all n fireflies) 
            for j = 1 : i (n fireflies) 
                if (𝐼𝐼𝑗𝑗 > 𝐼𝐼𝑖𝑖), 
                    Vary attractiveness with distance 𝑟𝑟 via 𝑒𝑒−𝛾𝛾𝛾𝛾  ; 
                    move firefly i towards j;                 
                    Evaluate new solutions and update light intensity; (the new solution 
here is the vector X) 
                end if  
            end for j 
        end for i 
        Rank fireflies and find the current best loss function that in equation (20); 
    end while 
end 

This algorithm is applied after extended regression is done. After implementing 
FireFly, the initial input for this algorithm is  
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0 (1 )elr erlmx x xα α= ∗ + − ∗   (21) 

Where 𝑥𝑥𝑒𝑒𝑒𝑒𝛾𝛾𝑒𝑒 is the modified extended linear regression output by using the 
extended parameters, 𝑥𝑥𝑒𝑒𝑒𝑒𝛾𝛾  is a vector with 52 parameters (first 26 parameters are the 
basic parameters and the other 26 parameters are the extended parameters).  

[ ],elr erlmx x x=  

If we consider that the type of the 𝑥𝑥𝑒𝑒𝛾𝛾𝑒𝑒𝑒𝑒  is not additive; the equation will be the 
following: 

0 (1 )elr elr erlmx x x xα α= ∗ + − ∗ ∗    (22) 

This is known as multiplicative error. Then, Y is recalculated according to the initial 
values: 

1 2 2 *1n n M M
Y A X
∗ ∗
= ⋅    (23) 

The algorithm stops when it reaches max generation. The algorithm saves   the  best 
solution each iteration, the solution contains the values of X and the value of 
function in Equation (20). The next section will illustrate the results of the 
developed algorithm. The X in Equation (20) is known for the aircraft, the 
developed algorithm will result also new X values, then there is a comparison to 
evaluate the developed algorithm to be used with another aircraft. 

3 Identification Results 

3.1 Flight Data 
The used flight data is sampled by 0.01 seconds, it contains a real data of trip with 
all controls, and it contains all sensors data: accelerometers, gyroscopes and angular 
velocities, position data, velocity data and quaternion data. 

3.2 Parameters Reconstruction 
The code will result in a vector of length M ; it contains all target parameters that 
are explained in Table 1. These parameters used exist in [9, 10]. The flowchart in 
Figures 2 and 3 illustrated estimation of Sekwa model parameters. 

3.3 Extended Linear Regression Results 
To check the quality of the algorithm for later unknown airplanes, the X in Equation 
(20) was assumed here to be known (it has 26 parameters). The developed algorithm 
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will result also new 𝑋𝑋� values that are solutions of the optimization algorithm. 
Comparing them, the quality of the method can be judged for later use if the correct 
parameters are unknown. The real values of Sekwa UAV parameters are from [15]. 
LR and ELR were implemented with interior point optimizations. The figures below 
show the results of  LR and ELR regression. The y axis in next plots refers to true 
values of coffiecients that was explained in the introduction. 

 

Figure 4 
LR with interior point results 

 

Figure 5 
Extended LR with Min Max results 

               

Figure 6 
Compare results of LR and Extended LR                                                   

The formula for calculating the improvement ratio is used to minimize the relative 
error of two methods. It refers to the absolute value of the difference of the errors 
of (LR&Extended LR) divided by the error of LR. 
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𝑖𝑖𝑖𝑖𝑒𝑒𝑟𝑟𝑒𝑒𝑖𝑖𝑒𝑒 𝑟𝑟𝑎𝑎𝑒𝑒𝑖𝑖𝑒𝑒 =
𝑎𝑎𝑏𝑏𝑠𝑠(0.10647 − 0.094863)

0.10647
= 10.9% 

3.4 FireFly Results 
The estimation is shown below, where the figure contains our developed method 
Firefly ELR, linear regression and Firefly without the regression. 

         

Figure 7 
FireFly results 

 
Figure 8 

All methods results 
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Figure 9 

FireFly Cost function  

3.5 Comparison of Parameter Estimation Results 
The table below shows the comparison between our approach, Basic LR, only 
FireFly and FireFly ELR comparing to the true values. 

Table 1 
Results comparison 

True value FireFly LR (Interior 
point) 

Firefly ELR 
(Min Max) name 

0.0633 0.0633 0.0629 0.0625 𝐶𝐶𝐿𝐿0 
4.0543 4.0324 2.9675 3.2533 𝐶𝐶𝐿𝐿𝐿𝐿 
1.6524 1.6529 1.5611 1.5732 𝐶𝐶𝐿𝐿𝐿𝐿𝑒𝑒 

4.3 4.3006 4.2918 4.2882 𝐶𝐶𝐿𝐿𝐿𝐿 
-0.2114 -0.2021 -0.0236 -0.0244 𝐶𝐶𝑌𝑌𝑌𝑌 
0.2409 0.2345 0.0977 0.1096 𝐶𝐶𝑌𝑌𝛾𝛾 
-0.094 -0.0879 0.0284 0.0272 𝐶𝐶𝑌𝑌𝐿𝐿𝑌𝑌 
-0.0478 -0.0516 -0.1231 -0.1251 𝐶𝐶𝑌𝑌𝐿𝐿𝛾𝛾 
-0.5401 -0.5342 -0.4216 -0.419 𝐶𝐶𝑌𝑌𝑌𝑌 
-0.4848 -0.4934 -0.6578 -0.6578 𝐶𝐶𝑒𝑒𝑌𝑌 
0.1704 0.1715 0.1933 0.193 𝐶𝐶𝑒𝑒𝛾𝛾 
-0.352 -0.3584 -0.4787 -0.4787 𝐶𝐶𝑒𝑒𝐿𝐿𝑌𝑌 
0.1056 0.1075 0.1443 0.1443 𝐶𝐶𝑒𝑒𝐿𝐿𝛾𝛾 
-0.2381 -0.2426 -0.3282 -0.3282 𝐶𝐶𝑒𝑒𝑌𝑌 

0 0 0 0 𝐶𝐶𝑒𝑒0 
-1.6945 -0.7247 -2.0426 -2.0426 𝐶𝐶𝑒𝑒𝐿𝐿 
-0.4583 -0.3731 -0.5528 -0.5528 𝐶𝐶𝑒𝑒𝐿𝐿𝑒𝑒 
-0.1288 -0.1238 -0.1552 -0.1552 𝐶𝐶𝑒𝑒𝐿𝐿 
-0.0021 -0.0021 -0.0029 -0.0029 𝐶𝐶𝑛𝑛𝑌𝑌 
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-0.0354 -0.0351 -0.0296 -0.0299 𝐶𝐶𝑛𝑛𝛾𝛾 
0.0018 0.0018 0.0016 0.0016 𝐶𝐶𝑛𝑛𝐿𝐿𝑌𝑌 
-0.0478 -0.0478 -0.0489 -0.0489 𝐶𝐶𝑛𝑛𝐿𝐿𝛾𝛾 
0.0658 0.0659 0.0679 0.0679 𝐶𝐶𝑛𝑛𝑌𝑌 

0.0001* 
[185,275,934.4] 

0.0001* 
[185,275, 934.2] 

0.0001* 
[185,273,930.9] 

0.0001* 
[185,271,929.3] 𝐶𝐶𝐷𝐷 

The results clearly show that our approach is accurate and the plots above present 
also the improvement ratio. The final results demonostrate that the order of the 
improvement in the parameter estimation results is 10.9% of the parameters and the 
error between real and estimated parameter values decreased around 6.3%. 

Conclusions 

This work showed the importance of the mathematical representation of extended 
linear regression algorithm for aircraft system model. The idea is to represent the 
equation from another view to get the model to more accurately represent reality. 
The estimation of parameters is improved, this can be used later in aircarft with 
unkown parameters to use them in other topics of aircraft applications.  
The improvement ratio declared that the Extended Linear Regression with FireFly 
method is better than normal Linear Regression and this can be used in many 
problems of model analysis in different fields of applications. 
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