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1 Introduction

In paper [2] we defined the following branch and bound method to find the global
minimum of the problem

f (z)→min
l ≤ z≤ u,

where f : Rn→ R is sufficiently smooth and l,u ∈ Rn. Assume that

zout put = alg min( f ,zinput)

is a local minimization algorithm that satisfies f (zout put)≤ f (zinput), for any zinput .
Similarly, assume that

[zsol , i f lag] = equation solve( f ,c)
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denotes a solution algorithm of the single multivariate equation f (z) = c such that
i f lag = 1, if a true solution zsol exists (that is f (zsol) = c), and i f lag = −1, other-
wise.

Let fmin denote the global minimum of f , and let Blower ∈ R is a lower bound of
f such that fmin ≥ Blower. Let z0 ∈ D f be any initial approximation to the global
minimum point ( f (z0) ≥ Blower). The suggested algorithm of [2] then takes the
form:

Algorithm 1

z1 = alg min( f ,z0)

a1 = f (z1), b1 = Blower, i = 1

while ai−bi > tol

ci = (ai +bi)/2

[ξ , i f lag] = equation solve( f ,ci)

if i f lag = 1

zi+1 = alg min( f ,ξ ), ai+1 = f (zi+1), bi+1 = bi

else

zi+1 = zi, ai+1 = ai, bi+1 = ci

end

i = i+1

end

Using the idea of Algorithm 1 we can also determine a lower bound of f , if such
a bound is not known a priori (for details, see [2]). Algorithm 1 shows conceptual
similarities with other multidimensional bisection type algorithms such as those of
Shary [34] and Wood [50], [52].

Theorem 1. Assume that f : Rn → R is continuous and bounded from below by
Blow. Then Algorithm 1 is globally convergent in the sense that f (zi)→ fmin.

Proof. At the start we have z1 and the lower bound b1 such that f (z1)≥ fmin ≥ b1.
Then we take the midpoint of this interval, i.e. c1 = ( f (z1)+b1)/2. If a solution
ξ exists such that f (ξ ) = c1 (i f lag = 1), then c1 ≥ fmin holds. For the output z2
of the local minimizer, the inequality c1 ≥ f (z2) ≥ fmin ≥ b1 holds by the initial
assumptions. If there is no solution of f (ξ ) = c1 (i.e. i f lag =−1), then c1 < fmin.
By continuing this way we always halve the inclusion interval (bi, f (zi)) at the worst
case. So the method is convergent in the sense that f (zi)→ fmin. Note that sequence
{zi} is not necessarily convergent.
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The practical implementation of Algorithm 1 clearly depends on the local mini-
mizer, the equation solver and also on f . Since we have several local minimiz-
ers satisfying the above requirements we must concentrate on the equation solvers.
There are essentially two questions to be dealt with. Namely, the existence of the
solution and the very existence of methods that are always convergent in the sense
that either they give a solution when exists or give a warning sign if no solution
exists.

The existence of solution follows from the Weierstrass theorem, if fmin ≤ c≤ f (z0).
As for the solvers we may observe that for n> 1, our equation is an underdetermined
nonlinear equation of the form

g(z) = f (z)− c = 0 (g : Rn→ R) . (1)

There are several locally convergent methods for such equations (see, e.g. [25], [3],
[45], [26], [27], [28], [47], [48], [12], [13], [14]). In paper [2] we tested Algorithm 1
with a nonlinear Kaczmarz projection algorithm [45], [26], [27], [25], which showed
fast convergence in most of the test cases, but also showed numerical instability in
some cases, when ∇ f (zk) was close to zero.

There also exist always convergent methods for equation (1) (see, e.g. [37], [9], [20],
[22], [21], [43], [44], [1], [31], [46]). For the multivariate case, most methods are
related to subdivision and seem to be quite slow. For univariate equations, however,
the always convergent methods of Szabó [43], [44], Abaffy and Forgó [1], Pietrus
[31] and Várterész [46] are using other principles than subdivision and they are quite
fast.

Here we study Algorithm 1 for one-dimensional real Lipschitz functions. The global
minimization of real Lipschitz functions has a rich literature with many interesting
and useful algorithms. For these, we refer to Hansen, Jaumard, Lu [15], [17], [18]
and Pintér [32].

The outline of paper is the following. We develop and analyze the equation solver
in Section 2. In Section 3 we develop a modified implementation of Algorithm 1
called Algorithm 2 that use this equation solver and double bisection. The final
section contains the principles and results of numerical testing. The comparative
numerical testing indicates that Algorithm 2 can be a very efficient minimizer in
practice.

2 An always convergent solver for real equations

Consider the real equation

g(t) = 0 (g : R→ R, t ∈ [α,β ]) (2)

An iterative solution method of the form xn+1 = F (g;xn) is said to be always con-
vergent, if for any x0 ∈ [α,β ] (g(x0) 6= 0)

(i) the sequence {xn} is monotone,
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(ii) {xn} converges to the zero in [α,β ] that is nearest to x0, if such zero exists,

(iii) if no such zero exists, then {xn} exits the interval [α,β ].

Assuming high order differentiability, Szabó [43], [44] and Várterész [46] devel-
oped some high order always convergent iterative methods. Assuming only contin-
uous differentiability Abaffy and Forgó [1] developed a linearly convergent method,
which was generalized to Lipschitz functions by Pietrus [31] using generalized gra-
dient in the sense of Clarke.

Since we assume only the Lipschitz continuity of g, we select and analyze an always
convergent modification of the Newton method. This method was first investigated
by Szabó [43], [44]) under the condition that g is differentiable and bounded in the
interval [α,β ]. We only assume that g satisfies the Lipschitz condition.

Theorem 2. (a) Assume that |g(t)−g(s)| ≤ M |t− s| holds for all t,s ∈ [α,β ]. If
x0 ∈ (α,β ] and g(x0) 6= 0, then the iteration

xn+1 = xn−
|g(xn)|

M
(n = 0,1, . . .) (3)

either converges to the zero of g that is nearest left to x0 or the sequence {xn} exits
the interval [α,β ]. (b) If y0 ∈ [α,β ) and g(y0) 6= 0, then the iteration

yn+1 = yn +
|g(yn)|

M
(n = 0,1, . . .) (4)

either converges to the zero of g that is nearest right to y0 or the sequence {yn} exits
the interval [α,β ].

Proof. We prove only part (a). The proof of part (b) is similar. It is clear that
xn+1 ≤ xn. If a number γ exists such that α ≤ γ ≤ x0 and xn → γ , then g(γ) = 0.
Otherwise there exists an index j such that x j < α . Assume now that α ≤ γ < x0 is
the nearest zero of g to x0. Also assume that γ ≤ xn (n≥ 1). We can write

xn+1− γ = xn− γ− |g(xn)−g(γ)|
M

=

(
1− ξn

M

)
(xn− γ) (ξn ∈ [0,M]) . (5)

Since 0 ≤ 1− ξn
M ≤ 1, we obtain that γ ≤ xn+1 and xn+1− γ ≤ xn− γ . Hence the

method, if converges, then converges to the nearest zero to x0. Assume that no zero
exists in the interval [α,x0] and let |g|min = minα≤t≤x0 |g(t)|. Then

xn+1 = xn−
|g(xn)|

M
≤ xn−

|g|min
M
≤ x0− (n+1)

|g|min
M

,

and algorithm (3) leaves the interval in at most M(x0−α)
|g|min

steps. A similar claim holds
for algorithm (4).
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The convergence speed is linear in a sense. Assume that α ≤ γ < x0 is the nearest
zero to x0 and ε > 0 is the requested precision of the approximate zero. Also as-
sume that a number mε > 0 exists such that mε |t− γ| ≤ |g(t)| ≤ M |t− γ| holds
for all γ + ε ≤ t ≤ x0. If g is continuously differentiable in [α,β ], then mε =
mint∈[γ+ε,x0] |g

′ (t)|. Having such a number mε we can write (5) in the form

xn− γ ≤
(

1− mε

M

)n
(x0− γ)≤

(
1− mε

M

)n
(β −α) .

This indicates a linear speed achieved in at most
⌈

log ε

β−α

log(1−mε
M )

⌉
steps. We can as-

sume that mε > ε , which gives the bound
⌈

log ε

β−α

log(1− ε
M )

⌉
. Relation log(1+ ε) ≈ ε

yields the approximate expression M
∣∣∣log ε

β−α

∣∣∣ε−1 for the number of required iter-
ations.

For the optimum step number of algorithms in the class of Lipschitz functions, see
Sukharev [42] and Sikorski [35].

Assume now that L > 0 is the smallest Lipschitz constant of g on [α,β ] and M =
L+ c with a positive c. It then follows from (5) that

xn+1− γ ≥
(

1− L
L+ c

)
(xn− γ) =

(
c

L+ c

)n+1

(x0− γ) .

This indicates a linear decrease of the approximation error. Note that the method
can be very slow, if c/(L+ c) is close to 1 (if M significantly overestimates L) and
it can be fast, if c/(L+ c) is close to 0 (if M is close to L). Equation (5) also shows
that M can be replaced in the algorithms (3)-(4) by an appropriate Mn that satisfies
the condition 0 ≤ ξn

Mn
≤ 1. For differentiable g, Mn might be close to |g′ (xn)| in

order to increase the speed (case of small c).

A simple geometric interpretation shows that the two algorithms are essentially the
same. The Lipschitz condition implies that ||g(t)|− |g(s)|| ≤M |t− s| (t,s∈ [α,β ])
also holds. The resulting inequality

|g(x)|−M |x− t| ≤ |g(t)| ≤ |g(x)|+M |x− t|

gives two linear bounding functions for |g(t)|, namely |g(x)|+ M (x− t) and
|g(x)|+ M (t− x) for a fixed x. If the zero γ is less than xn, then for t ≤ xn,
the linear function |g(xn)|+M (t− xn) will be under |g(t)|. Its zero xn+1 = xn−
|g(xn)|

M ≤ xn is the next approximation to γ and xn+1 ≥ γ clearly holds. Similarly, if
yn < γ , then |g(yn)|+M (yn− t) will be under |g(t)| and for its zero, yn ≤ yn+1 =

yn +
|g(yn)|

M ≤ γ clearly holds. The next figure shows both situations with respect to
an enclosed unique zero γ .
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It also follows that if g(x0)> 0 (g(x0)< 0) then g(t)> 0 (g(t)< 0) for γ < t ≤ x0,
if such a zero γ exists. If not, g(t) keeps the sign of g(x0) in the whole interval
[α,x0]. An analogue result holds for algorithm (4).

Consider the following general situation with arbitrary points u,v ∈ [α,β ] (u <
v).

g(t)


g(v
)+M(v
-t)


g(v
)+M(t-v
)


g(u
)+M(t-u
)


g(u
)+M(u
-t)


t
v


u


A


B


(v,g(v))


(u,g(u))

M(v-u)


The points (u,g(u)) and (v,g(v)) and the related linear bounding functions define a
parallelogram that contains function g over the interval [u,v] with the bounds

g(u)+g(v)
2

+M
u− v

2
≤ g(t)≤ g(u)+g(v)

2
+M

v−u
2

(u≤ t ≤ v) .
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This property is the basis of Piyavskii’s minimization algorithm and related methods
(see, e.g. [17], [32]). It is also exploited in Sukharev’s modified bisection method
[41], [42].

Function g(t) may have a zero in [u,v] only if

g(u)+g(v)+M (u− v)≤ 0≤ g(u)+g(v)+M (v−u) ,

that is if

|g(u)+g(v)| ≤M (v−u) . (6)

If g(t) has a zero γ ∈ (u,v), then by the proof of Theorem 2.

u+
|g(u)|

M
≤ γ ≤ v− |g(v)|

M
(7)

holds and (6) is clearly satisfied. If u and v are close enough and (u,v) does not
contain a zero of g(t), then (6) does not hold. This happens, if u ≥ v− |g(v)|M and
g(u) 6= 0 or v≤ u+ |g(u)|M and g(v) 6= 0.

Note that iterations (3)-(4) satisfy the bounds

g(xn+1)+g(xn)−|g(xn)|
2

≤ g(t)≤ g(xn+1)+g(xn)+ |g(xn)|
2

(8)

for xn+1 ≤ t ≤ xn, and the bounds

g(yn+1)+g(yn)−|g(yn)|
2

≤ g(t)≤ g(yn+1)+g(yn)+ |g(yn)|
2

(9)

for yn ≤ t ≤ yn+1.

Note also that if u and v are distant enough (in a relative sense), then condition (6)
may hold without having a zero in (u,v).

Using the above geometric characterization we can develop practical exit condi-
tions for the nonlinear solver (3)-(4). The most widely used exit conditions are
|xn+1− xn| < ε and |g(xn)| < ε , which are not fail safe neither individually nor in
the combined form max{|xn+1− xn| , |g(xn)|} < ε . For a thorough analysis of the
matter, see Delahaye [8], Sikorski and Wozniakowski [36] and Sikorski [35]. An-
other problem arises in the floating precision arithmetic that requires stopping, if ei-
ther |xn+1− xn|< εmachine or |g(xn)|< εmachine holds. Since |xn+1− xn|= |g(xn)|

M , the
tolerance precision ε is viable, if max{1,M}εmachine < ε . By the same argument the
tol parameter of Algorithm 1 must satisfy the lower bound tol ≥ 2εmachine.

If g(t) has a zero γ ∈ [α,x0), the monotone convergence of {xn} implies the relation
|xn+1− xn| ≤ |xn− γ|. Hence |xn+1− xn| is a lower estimate of the approximation
error.

There are some possibilities to increase the reliability of the combined exit condi-
tion. The first one uses algorithm (4) in the following form. If interval (xn− ε,xn)
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is suspect to have a zero of g(t) (and g(xn− ε) ,g(xn) 6= 0), then we can apply
condition (6) with u = xn− ε and v = xn in the form

Mε ≥ |g(xn− ε)+g(xn)| . (10)

If Mε < |g(xn− ε)+g(xn)|, then there is no zero in [xn− ε,xn] and we have to
continue the iterations. Even if Mε ≥ |g(xn− ε)+g(xn)| holds, it is not a guarantee
for the existence of a zero in the interval [xn− ε,xn].

In the latter case we can apply algorithm (4) with y0 = xn−ε . If there really exists a
zero γ ∈ (xn− ε,xn), then the sequence {yn} converges to γ and remains less than xn.
If no zero exists in the interval, then m = mint∈[xn−ε,xn] |g(t)|> 0 and the iterations
{yn} satisfy yn ≥ y0 +n m

M . Hence the sequence {yn} exceeds xn in a finite number
of steps. The same happens at the point xn− ε , if we just continue the iterations
{xn}.

The two sequences {yn} and {xn} exhibit a two-sided approximation to the zero (if
exists) and x j− yk is an upper estimate for the error. This error control procedure is
fail safe, but it may be expensive. We can make it cheaper by fixing the maximum
number of extra iterations at the price of losing absolute certainty. For example, if
we use the first extra iteration xn+1 (xn− ε < xn+1) and set v = xn+1, then condition
(6) changes to

Mε ≥ |g(xn− ε)+g(xn+1)|+ |g(xn)| . (11)

Similar expressions can be easily developed for higher number of iterations as
well.

A second possibility for improving the exit conditions arises if a number m > 0
exists such that m |t− γ| ≤ |g(t)| ≤M |t− γ| holds for all t ∈ [α,β ]. Then |xn− γ| ≤
1
m |g(xn)| is an upper bound for the error. Similarly, we have

|xn− γ| ≤ δ +
1
m
|g(xn−δ )|

and by selecting δ = xn− xn+1 we arrive at the bound

|xn− γ| ≤ xn− xn+1 +
1
m
|g(xn+1)| .

This type of a posteriori estimate depends however on the existence and value of
m.

3 The one-dimensional optimization algorithm

We now use algorithms (3)-(4) to implement an Algorithm 1 type method for the
one-dimensional global extremum problem

f (t)→min (l ≤ t ≤ u, f : R→ R, l,u ∈ R) (12)
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under the assumption that | f (t)− f (s)| ≤ L |t− s| holds for all t,s ∈ [l,u]. Here the
solution of equation f (t) = c is sought on the interval [l,u].

It first seems handy to apply Algorithm 1 directly with solver (3) or (4). It may hap-
pen that equation f (t) = ci has no solution for some i, and this situation is repeated
ad infinitum. Since for min f > ci, the number of iterations is O

(
1

min f−ci

)
, this may

cause severe problems for ci↗min f . Assume that ak = ak+` >min f > ck+` > bk+`

for ` ≥ 0. Then ak+`− bk+` = ak − bk+` =
ak−bk

2` → 0, which is contradiction to
ak > min f > bk+` (` ≥ 0). Hence the situation can occur infinitely many times, if
by chance ak = f (zk) = min f . However preliminary numerical testing indicated a
very significant increase of computational time in cases, when ci just approached
min f from below with a small enough error. This unexpected phenomenon is due
to the always convergent property of solver, that we want to keep. Since the itera-
tion numbers also depend on the length of computational interval (see the proof of
Theorem 2) we modify Algorithm 1 so that in case ci < min f and ci ≈ min f the
computational interval should decrease.

The basic element of the modified algorithm is the solution of equation g(x) =
f (x)− c = 0 on any subinterval [α,β ] ⊂ [l,u]. Assume that the upper and lower
bounds

a = f (xa)≥ min
x∈[α,β ]

f (x)> b (xa ∈ [α,β ])

are given and c ∈ (a,b). If equation f (x) = c has a solution in [α,β ], then

min
x∈[α,β ]

f (x)≤ c < a,

otherwise

min
x∈[α,β ]

f (x)> c > b.

If f (β ) 6= c, then we compute iterations ξ0 = β and

ξi+1 = ξi−
| f (ξi)− c|

M
(i≥ 0) . (13)

There are two cases:

(i) There exists x∗ ∈ [α,β ) such that f (x∗) = c.

(ii) There exists a number k such that ξk = α or ξk < α < ξk−1.

In case (i) the sequence {ξk} is monotone decreasing and converges to xc ∈ [α,β ),
which is the nearest zero of f (t) = c to β . It is an essential property that

sign( f (t)− c) = sign( f (β )− c) (t ∈ (xc,β )). (14)

The new upper estimate of the global minimum on [α,β ] is a′ := c, xa′ := xc (b
unchanged). If f (β ) > c, the inclusion interval [α,β ] of the global minimum can
be restricted to the interval [α,xc], because f (t)> c (xc < t ≤ β ). If f (β )< c, the
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inclusion interval remains [α,β ] but the new upper bound a′ = f (β ), xa′ = β , (b
unchanged) is better than c. In such a case we do not solve the equation (and save
computational time).

In case (ii) we have the iterations ξk < ξk−1 < · · ·< ξ1 < ξ0 such that either ξk = α

or ξk < α < ξk−1 holds. If ξk < α , or ξk = α and f (ξk) 6= c, we have no solution
and sign( f (t)− c) =sign( f (β )− c) (t ∈ [α,β )). If f (β ) > c, the new upper
estimate of the global minimum is a′ := aest = min

{
f (α) ,minξi>α f (ξi)

}
, xaest

( f (xaest ) = aest ). In case f (β )< c the best new upper bound is

a := min
{

f (α) ,min
ξi>α

f (ξi)

}
, xa = argmin

{
f (α) ,min

ξi>α

f (ξi)

}
,

if the iterations are computed. If f (β ) < c, we set the new upper bound as a′ =
f (β ), xa′ = β and do not solve the equation.

A few of the possible situations are shown on the next figure.

 
  


a


b


c


x
a


Assume that alg1d is an implementation of algorithm (3) such that[
α
′,β ′,a′,xa′ ,b

′, i f lag
]
= alg1d (α,β ,a,xa,b;c)

denotes its application to equation f (t) = c with the initial value x0 = β . If f (β ) =
c, then it returns the solution xc = β , immediately. If f (β )> c it computes iteration
(13) and sets the output values according to cases (i) or (ii). If f (β ) < c, then it
returns a′ = f (β ) and xa′ = β . We may also require that

a≥ a′ = f (xa′)≥ min
x∈[α,β ]

f (x)> b′ ≥ b ∧ xa′ ∈ [α,β ] .

The i f lag variable be defined by

i f lag =

 1, if f (β )≥ c∧∃xc ∈ [α,β ] : f (xc) = c
0, if f (β )> c∧@xc ∈ [α,β ] : f (xc) = c
−1, if f (β )< c
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Hence the output parameters are the following:

(
α
′,β ′,a′,xa′ ,b

′)=
 (α,xc,c,xc,b) , i f lag = 1

(α,β ,aest ,xaest ,c) , i f lag = 0
(α,β , f (β ) ,β ,b) , i f lag =−1

Instead of aest = min
{

f (α) ,minξi>α f (ξi)
}

we can take aest = f (β ), f (α) or any
function value at a randomly taken point of [α,β ]. Note that α never changes, a
and xa have no roles in the computations (except for the selection of c), the output
a′ and xa′ are extracted from the computed function values f (ξi).

Next we investigate the case, when we halve the interval [α,β ] and apply alg1d to
both subintervals [α,γ] and [γ,β ] (we assume that γ = (α +β )/2). Consider the
possible situations (for simplicity, we assume that xa ∈ [γ,β ]):

x ∈ [α,γ] x ∈ [γ,β ]
minx∈[α,γ] f (x)> a minx∈[γ,β ] f (x)≥ a

c < minx∈[α,γ] f (x)≤ a c < minx∈[γ,β ] f (x)≤ a
minx∈[α,γ] f (x) = c minx∈[γ,β ] f (x) = c
minx∈[α,γ] f (x)< c minx∈[γ,β ] f (x)< c

There are altogether 16 possible cases. Some possible situations are shown in the
next figure for c = (a+b)/2.

a bg=(a+b)/2

a

b

c=(a+b)/2

a=f(g)

c'

xa

Assume now that (α,β ,a,xa,b) is given (or popped from a stack) and we have an
upper estimate aest (and xaest ) of minx∈[l,u] f (x). Estimate aest is assumed to be the
smallest among the upper estimates contained in the stack.

If aest ≤ b, then we can delete (α,β ,a,xa,b) from the stack. Otherwise b < aest ≤ a
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holds. Then we halve the interval [α,β ] and apply alg1d to both subintervals as
follows.

Algorithm 2

1. Set the estimates aest = f (u) (xaest = u), b, and push (l,u, f (u) ,u,b) onto the
(empty) stack.

2. While stack is nonempty

pop (a,β ,a,xa,b) from the stack

if aest ≤ b delete (a,β ,a,xa,b) from the stack[
α,γ ′,a′l ,xa′l

,b′l , i f lag
]
=alg1d

(
α, α+β

2 ,a,xa,b;cl

)
if a′l < aest then aest = a

′
l , xaest = xa′l

push
(

α,γ ′,a′l ,xa′l
,b′l
)

onto the stack.[
α+β

2 ,β ′,a′r,xa′r ,b
′
r, i f lag

]
=alg1d

(
α+β

2 ,β ,a,xa,b;cr

)
if a′r < aest then aest = a

′
r, xaest = xa′r

push
(

α+β

2 ,β ′,a′r,xa′r ,b
′
r

)
onto the stack.

endwhile

In the practical implementation of Algorithm 2 we used an additional condition (β−
α < tol and a−b < tol) for dropping a stack element. There are many possibilities
for choosing cl and cr. For simplicity, we selected cl =

(
f
(

α+β

2

)
+b
)
/2 and

cr = ( f (β )+b)/2 in the numerical testing.

Molinaro, Sergeyev [30], Sergeyev [33] and Kvasov, Sergeyev [24] investigated the
following problem. One must check if a point x∗ exists such that

g(x∗) = 0, g(x)> 0, x ∈ [a,x∗)∪ (x∗,b] . (15)

These authors suggested the use of Piyavskii type global minimization algorithms
to solve the problem in case of Lipschitz functions. However a direct application of
algorithms (3)-(4) may also give a satisfactory answer to the problem.

1. Apply algorithm (3) with x0 = b.

2. If a zero ξ of g is found in (a,b), then apply algorithm (4) with y0 = a.

3. If the first zero ζ found by (4) is equal to ξ then the problem is solved. If ζ < ξ ,
the answer is negative.
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4 Numerical experiments

The performance of global Lipschitz optimization clearly depends on the estima-
tion of the unknown Lipschitz constant. Estimates of the Lipschitz constant were
suggested and/or analyzed by Strongin [39], [40] Hansen, Jaumard, Lu [16], Wood,
Zhang [51] and many others (see, e.g. [29], [24]). Preliminary testing indicated that
none of the suggested algorithms performed well, probably due to the local char-
acter of the applied equation solver. Instead we used the following although more
expensive estimate

L≈ Lest
n = k max

i<n

{
| f (xi +h)− f (xi−h)|

2h

}
+d (h≈

√
εmachine)

with the values K = 8 and d = 1. Here | f (xi+h)− f (xi−h)|
2h is a second order estimate of

the first derivative at the point xi, if f is differentiable three times and it is optimal
in the presence of round-off error.

We used the test problem set of Hansen, Jaumard, Lu [18] numbered as 1–20, four
additional functions numbered as 21–24, namely,

f (x) = e−x sin(1/x)
(

x ∈
[
10−5,1

])
,

f (x) = sinx (x ∈ [0,1000]) ,

the Shekel function ([53])

f (x) =−
10

∑
i=1

1

(ki (x−ai))
2 + ci

(x ∈ [0,10])

with parameters

i 1 2 3 4 5 6 7 8 9 10
ai 4 1 8 6 7 9 3 1.5 2 3.6
ci 0.1 0.2 0.1 0.4 0.4 0.6 0.3 0.7 0.5 0.5

and the Griewank function

f (x) = 1+
1

4000
x2− cosx (x ∈ [−600,600]) .

In addition, we took 22 test problems of Famularo, Sergeyev, Pugliese [10] without
the constraints. This test problems were numbered as 25–46.

All programs were written and tested in Matlab version R2010a (64 bit) on an Intel
Core I5 PC with 64 bit Windows. We measured the achieved precision and the
computational time for three different exit tolerances (10−3, 10−5, 10−7). Algorithm
2 was compared with a Matlab implementation of the GLOBAL method of Csendes
[6], Csendes, Pál, Sendı́n, Banga [7]. The GLOBAL method is a well-established
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and maintained stochastic algorithm for multivariable functions that is based on the
ideas of Boender etal [5]. The GLOBAL program can be downloaded from the web
site

http : //www.inf.u−szeged.hu/˜csendes/index en.html

The following table contains the averages of output errors for different exit or input
tolerances.

Algorithm 2 GLOBAL
1e−3 8.2343e−007 0.0088247
1e−5 3.2244e−008 0.0039257
1e−7 2.8846e−008 0.0020635

The average execution times in [sec] are given in the next table:

Algorithm 2 GLOBAL
1e−3 0.42863 0.0093795
1e−5 2.027 0.010489
1e−7 16.6617 0.020512

It is clear that Algorithm 2 has better precision, while GLOBAL is definitely faster.
The exit tolerance 1e−7 does not give essentially better precision, while the com-
putational time significantly increased in the case of both algorithms.

The following two figures show particular details of the achieved precision and com-
putational time.
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Absolute errors
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The plots are semi-logarithmic. Hence the missing values of the first figure indicate
zero output errors for both algorithms. Considering the obtained precision per CPU
time we obtain the following plot.
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The latter plot indicates that Algorithm 2 has a better precision rate per time unit in
spite of the fact, that GLOBAL is definitely faster. Upon the basis of the presented
numerical testing we conclude that Algorithm 2 might be competitive in univariate
global optimization.
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