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Abstract: This paper presents some aspects concerning the correspondence problem and a 
comparative analysis of some different solutions to it, as part of the spatial reconstruction 
of three-dimensional objects represented by parallel planar sections. The analysis concerns 
comparative performance results of the implementation of two different algorithms on 
practical cases, taken from geography. 
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1 Introduction 

Serial section reconstruction is widely used for visualizing complex three-
dimensional objects. A three-dimensional object is commonly sampled by a set of 
parallel planar sections, in which closed contour loops define the intersection 
between these sections and the object. The main reason for reconstruction of serial 
sections is to enable computer-based three-dimensional visualization that includes 
views of the internal features. The results of the work are useful in geo-scientific 
fields, as geography, geology, paleontology and sedimentlogy. 

Firstly, the main resulted sub-problems are reviewed. Secondly, a detailed 
presentation of two different algorithms for the correspondence problem, and 
finally, some comparative tests are performed and analyzed. 



2 Review of Serial Section Reconstruction 
Techniques 

The process of serial section reconstruction can be broken down into a number of 
sub-problems, as shown in Fig. 1: 

• the correspondence problem is concerned with specifying the connectivity 
between contours in adjacent sections. Given two contours, we must 
determine whether they should be connected by surface or not. A solution 
to this sub-problem can be used to direct the other parts of the 
reconstruction process. 

• the tiling problem consists of finding the best set of triangulated facets to 
define the surface between a pair of connected contours in adjacent 
sections. 

• the multiple branching problem occurs when the numbers of contours on 
a pair of adjacent sections are not equal. This causes problems for 
standard tiling algorithms. One solution is to decompose the problem into 
a one-to-one connection so that the tiling algorithm can be used. The 
surface then needs to be completed with further triangulation. 

Figure 1 
Serial section reconstruction sub-problems 



3 Correspondence Solutions 

A number of graph-based methods have been used to identify the correspondence 
between adjacent contours. These methods have some limitations that restrict their 
use. Most algorithms make connectivity decisions based upon the information 
provided by just a single pair of sections. 

Other algorithms use the superposition of contours. The superposition percentage 
value of two contours could be evaluated by computing the intersection area 
between them (Choi and Park, 1994). But it could be used an approximation of 
this area that requires less computation and is sufficient in most applications, 
although it produces an unnatural result for some examples (Meyers et al., 1992). 
For this approximation, it is defined two rectangles encompassing the contours 
whose sides are parallel to the x and y-axis. The superposition degree of the two 
contours is defined as the intersection area of the two contours. 

3.1 Graph-Based Solutions 

The solution described below consists in three stages: 

1 Preprocessing. A candidate graph is set up and edges are removed from it 
if they are regarded as invalid. 

2 Processing. A minimum spanning tree (MST) algorithm to provide a set 
of suitable edges for the correspondence solution reduces the graph. 

3 Postprocessing. Edges are removed from the MST to divide the graph 
into the individual components that make up the object. 

The advantage of this approach is the use of additional spatial information to 
derive a solution. The correspondence solution uses three forms of spatial 
information: 

1 Relative position. The location of the pair of contours on adjacent sections, i 
and j, given by the contour centroid, (xi, yi) and (xj, yj). 

2 Shape. The major and minor axes provide this information for each of the 
contours Ai and Bi, Aj and Bj. 

3 Topological relations. The relationship between a contour and the other 
contours on the same section is used to validate the existence of possible 
surfaces between contours on neighboring sections. There are three types of 
relation, Inside, Contains and Disjoint that can exist between a pair of 
contours on the same section. Inside and Contains are simply the converse of 
each other. For our application oriented to the reconstruction of the relief, we 
do not use this kind of relations, as they do not exist in this case (we cannot 
have such relations between contours representing the relief). 



3.1.1 Preprocessing 

The first step is to build a candidate undirected graph G = (V, E), where V is the 
set of contours and E is the set of possible surfaces between contours in adjacent 
sections. For each edge e in set E, a weight is determined by the following metric: 

e(i,j) = (xi – xj)2 + (yi – yj)2 +(Ai – Aj)2 +(Bi – Bj)2 (1) 

where (x, y, A, B) are the centroid coordinates and the length of the major and 
minor axes for the pair of contours (i,j) in adjacent section. The metric used 
combines a comparison of both the position and shape information for each pair of 
neighboring contours. For some particular cases, as those concerning the 
reconstruction of the relief, we tried to modify the value of the weight of this edge, 
considering that the calculus can be simplified, thinking that we can use the 
following formula for the weight of the edge: 

e(i,j) = (xi – xj)2 + (yi – yj)2  (2) 

For these cases of reconstruction, this metric gives good results, as we can notice 
that this kind of contours do not usually change their shape in a significant way 
from one section to the following one. 

In the candidate correspondence graph there are no edges between contours in the 
same section. We can find edges only between contours situated on consecutive 
sections. 

3.1.2 Processing – Calculate Minimum Spanning Tree 

The minimum spanning tree of the candidate graph can be computed either by 
using Kruskal’s method or by Prim’s algorithm. This method can be seen as 
global, as it examines edges from all over the model, not just from a local situation 
between a single pair of sections. It constructs the edges that have a greater 
certainty of inclusion in the component first, before trying to add the less likely 
ones. This approach does not concentrate on building one component of the object 
at a time, but processes the edges with the higher weights last, so that the edge that 
completes the MST is the most likely to be removed by the postprocessing stage. 

3.1.3 Postprocessing 

The earlier stage has separated those components that are topologically inside 
other components, or ones that contains other components. For an object with 
more than one component, the MST calculation always makes erroneous 
connections between topologically disjoint components. The postprocessing stage 
presented here isolates each separate component by removing edges from the 
current graph to give a final correspondence graph. 



Figure 2 
Minimum spanning tree (thicker lines) from a candidate correspondence graph 

(a) (b) 

Figure 3 
Removing edges during postprocessing (a) – before postprocessing – examine connections between 
section i and section i+1; (b) – remove edge 2-6, as increase in weight from edge 2-5 is too great. 

To eliminate these edges, the postprocessor checks the edges between each pair of 
sections. If the number of edges is greater than half the number of contours in the 
two adjacent sections, then an edge included in error may exist. The next step is to 
examine each of the edges between the two sections. The edges are sorted in order 
of ascending weight and are examined, starting with the edge with the lowest 
weight. The next edge in the list is compared to the current edge and if the 
difference in weight is greater than a threshold value, then all edges with weights 
greater than the current edge are removed. 



3.2 Solutions Based on the Superposition of the Contours 

We present two different solutions based on the superposition of the contours. The 
first one uses the exact value of the area of the intersection. It is more precise, but 
also more complex. The second one uses an estimation of the superposition degree 
of the two contours, requiring less computation and which usually is sufficient in 
most cases. 

3.2.1 Computing the Intersection Area between Two Contours 

The superposition area of two contours (Ci
 and Cj) can be defined as follows: 

Ai, j = Area (Int(Ci) ∩ Int(Cj)) (3) 

where Int (Contour) is the interior of the contour and Area(P) is the area of the 
polygon P. Using the superposition area, the superposition degree Ii,j can be 
defined as follows: 

Ii,j = Ai, j / 2Ai + Ai, j / 2Aj (4) 

where Ai is the area of Ci and Aj is the area of Cj. This is the normalization of the 
superposition area ranging from 0 to 1. If any two contours in the adjacent slices 
have exactly the same shape, location and orientation, the superposition degree 
becomes 1. If the two contours are separated, it becomes 0. Only when the 
superposition degree of a pair of contour is larger than a proper threshold, the 
contours should be connected. 

3.2.2 Estimation of the Superposition Degree of Two Contours 

The superposition percentage value of two contours Ci and Cj can be evaluated by 
using an approximation of this area that requires less computation and it is 
sufficient in most applications. 

We define xmini, xmaxi, ymini, ymaxi, respectively xminj, xmaxj, yminj, ymaxj, 
the smallest and largest abscissa (respectively, ordinates) of the point belonging to 
Ci and Cj. 



Figure 4 
Estimation of superposition degree of two contours 

This set of coordinates defines two rectangles encompassing the contours, whose 
sides are parallel to the x and y-axis. The superposition degree of the two contours 
will be defined simply from the intersection area: 

Ai, j   =   Inf([xmaxj - xmini], [xmaxi - xminj]) 

xInf([ymaxj - ymini],[ymaxi - yminj])  (5) 

where [u] = u, if u≥0 and 0, if u<0 

The superposition degree can be given by the same formula: 

Ii,j = Ai, j / 2Ai + Ai, j / 2Aj 

For both situations, we assume that the two contours are situated on different but 
adjacent sections. 

4 Experimental Results and Performance 
Comparisons between the Methods of Solving the 
Correspondence Problem 

A set of experiments was made in order to compare the performances of the two 
algorithms. The tests were made on a series of level curves, increasing the number 
of curves given as input. The results were put into tables, following these aspects: 

• For the graph-based algorithm, tests for determining the optimal threshold 
used during the post-processing phase; 



• For the surfaces algorithm, tests for determining the optimal superposition 
threshold 

• Comparisons between the execution times and necessary corrections for 
each algorithm. 

 
Figure 5 

The input of the reconstruction problem 



 
Figure 6 

The output of the reconstruction problem 

Post-processing threshold Number of corrections (190 
level curves) 

0.95 4 
0.96 3 
0.97 3 
0.98 3 
0.99 2 

1 2 
1.01 3 
1.02 3 
1.04 3 
1.05 4 

Figure 7 
Number of user necessary corrections, function of the post-processing threshold 
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Figure 8 
User-corrections graphic, function of the post-processing threshold 

Superposition threshold Number of corrections 
(190 level curves) 

0.85 9 
0.86 5 
0.87 3 
0.88 2 
0.89 2 
0.90 1 
0.91 2 
0.92 3 
0.93 5 
0.94 8 
0.95 10 

Figure 9 
Number of user necessary corrections, function of the superposition threshold 



Number of user necessary corrections function of 
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Figure 10 
User-corrections graphic, function of the superposition threshold 

Nr. of 
curves 

Nr. of 
resulted 3D 
entities 

Execution time (seconds) Număr corecţii utilizator 
necesare  

  Graph-
based 

algorithm 

Superposition 
algorithm  

Graph-
based 

algorithm 

Superposition 
algorithm 

9 1 <0.01 0.01 0 0 

20 1 <0.01 0.03 0 0 

34 2 0.04 0.13 0 0 

54 3 0.06 0.25 0 0 

63 4 0.09 0.26 0 0 

80 5 0.25 0.48 0 0 

116 6 0.83 0.85 0 0 

137 7 2.13 2.26 1 0 

159 8 3.79 4.27 1 0 

190 9 7.49 11.36 2 1 

Figure 11 
Execution times function of the number of curves 
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Figure 12 
Execution times function of the number of curves 

Conclusions 
• For the graph-based algorithm, the threshold chosen during the post-processing 

step must be close to 1 (an edge should not represent more than the double of 
its predecessor) 

• In order to get the best results for the superposition algorithm, the 
superposition threshold must be close to 0.9 

• The execution times are shorter for the graph-based algorithm. The 
geometrical operations with polygons need more execution time. 

• The superposition algorithm needs less user intervention than the graph-based 
one (meaning connected level curves that the program does not detect). 
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