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Abstract: The componentwise (exponential) asymptotic stability, abbreviated as CW(E)AS, 
is a special type of asymptotic stability which ensures the individual monitoring of each 
state-space variable of a dynamical system. Our paper provides sufficient conditions for the 
CW(E)AS analysis of Bidirectional Associative Memory (BAM) neural networks with 
uncertainties both in the parameters and in the activation functions. These conditions are 
formulated in terms of Hurwitz stability of a test matrix built from the information available 
about the uncertainties affecting the dynamics of the considered BAMs. Some interesting 
results are derived as particular cases, which allow comparisons with several other works 
addressing the stability of Hopfield neural networks. 
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1 Introduction 

Consider the bidirectional associative memory (BAM) neural network without 
delay described by 
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where { }1 1 1 1
1 2diag , , , ma a a=A K , { }2 2 2 2

1 1diag , , , na a a=A K , 1 1
jiw =  W , 2 2

ijw =  W  

are matrices of appropriate sizes, 1 1 1 1
1 2, , , mx x x

τ
 =  x K , 2 2 2 2

1 2, , , nx x x
τ

 =  x K  are the 



state vectors and 1 1 1 1
1 2, , , mI I I

τ
 =  I K , 2 2 2 2

1 2, , , nI I I
τ

 =  I K  are the input vectors (τ  

denoting the vector transposition). 

All the components of the activation functions ,:1 mmf ℜ→ℜ  
1 1 1 1 1 1 1 1

1 1 2 2( ) ( ), ( ), , ( )m mf x f x f x
τ

 = f x K , and ,:2 nnf ℜ→ℜ  

2 2 2 2 2 2 2 2
1 1 2 2( ) ( ), ( ), , ( )n nf x f x f x

τ
 = f x K  are nondecreasing and globally Lipschitz 

continuous, i.e. for all 1,i m= , 1,j n= , there exist 1 2, 0i jL L >  so that 

2 21 1
1 2( ) ( )( ) ( )0 , 0 j ji i
i j

f r f sf r f s L L
r s r s

−−
≤ ≤ ≤ ≤

− −
, (2) 

for all .,, srsr ≠ℜ∈  Obviously, these hypotheses on 1f  and 2f  ensure that 

the Cauchy problem (1) has a unique solution 1 1 1 2
0 0 0( ) ( ; , , )t t t=x x x x , 

2 2 1 2
0 0 0( ) ( ; , , )t t t=x x x x , which is defined for all 0 0t t≥ ≥ . Moreover, (2) implies 

that if f  is continuously differentiable on ,ℜ  then its derivative satisfies 
0 ( ) /df s ds L≤ ≤  for all .ℜ∈s  

Recent papers, such as [1] – [4], provide sufficient conditions, formulated in 
algebraic terms, for the global (exponential) asymptotic stability of BAMs. These 
results are presented in the broader context of delayed states, but they are also 
applicable to BAM (1). 

For many problems encountered in practice it is important to consider that the 
entries of the matrices kA , kW , 1,2k = , defining the dynamics of BAM (1), are 
uncertain, in the sense of the matrix componentwise inequalities: 
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Consequently, let us introduce the following classes of matrices: 

A1 { },1111 AAAA mxm ≤≤ℜ∈=  

A2 { },2222 AAAA nxn ≤≤ℜ∈=  (4) 



W 1 { },,
1111 WWWW nxm ≤≤ℜ∈=  

W 2 { }.2222 WWWW mxn ≤≤ℜ∈=  

When discussing the uncertainties that can affect the dynamics of BAM (1), it is 
also natural to take into consideration the classes of activation functions 1F  and 

2F  defined by positive vectors 1 1 1 1
1 2, , , m

τ
λ λ λ = > K 0λ  and 

2 2 2 2
1 2, , , n

τ
λ λ λ = > K 0λ  as follows: 
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for 1,i m= , 1,j n= , ensuring desired bounds for the slope of each component of 

the vector functions kf , 1,2k = . 

This paper proves that the stability of a single test matrix guarantees a stronger 
stability property of BAM (1), called componentwise stability, for all k k∈A A , 

k k∈W W , k k∈f F , 1,2k = . Unlike the standard concepts of stability, that 
give global information on the state-space vector, expressed in terms of arbitrary 
norms, the componentwise stability allows an individual monitoring of each state-
space variable. This type of stability was first studied by Voicu in [5] who applied 
the theory of flow-invariant time-dependent rectangular sets to define and 
characterize the componentwise asymptotic stability (CWAS) and the 
componentwise exponential asymptotic stability (CWEAS) for continuous-time 
linear systems. Further works extended the analysis of componentwise stability to 
continuous-time delay linear systems [6], 1-D and 2-D discrete-time linear 
systems [7], interval matrix systems [8] and a class of Persidskii systems with 
uncertainties [9]. Despite the existence of these results, the componentwise 
stability of recurrent neural networks remained almost unexplored, except for a 
reduced number of recent papers [10]–[13]. 

Our paper develops a robustness analysis for CWAS/CWEAS of BAM (1) with 
respect to both the parameters (in the sense that k k∈A A , k k∈W W , 1,2k = ) 

and the activation functions k k∈f F , 1,2k = . The concepts employed by our 
work are rigorously defined in Section II. Section III provides the main results, 
consisting in sufficient criteria for the CWAS/CWEAS of BAMs with 



uncertainties. Section IV creates a deeper insight into some frequently encountered 
particular cases and allows comparisons with other papers. A few final remarks 
are formulated in Section V. All over the text, the vector (matrix) inequalities have 
componentwise meaning. 

2 Preliminaries 

Assume that BAM (1) has a finite number of equilibrium points and let 
1 2

e e e
ττ τ =  x x x  be one of these, i.e. ( )1 1 2 2 2 1

e e+ + =A x W f x I 0  and 

( )2 2 1 1 1 2
e e+ + =A x W f x I 0 . 

Definition 1. (a) Let 1p  and 2p  be two vector functions ,:1 mp ℜ→ℜ+  

,:2 np ℜ→ℜ+  continuously differentiable, with positive components 
1( ) 0ip t > , 1,i m= , 2( ) 0jp t > , 1,j n= , meeting 

lim ( ) , 1,2k

t
t k

→∞
= =p 0 . (6) 

If for any +ℜ∈0t  and any initial condition 1 2
0 0 0

ττ τ =  x x x , mx ℜ∈1
0 , 

nx ℜ∈2
0 , satisfying 0 0( )k k k

e t− ≤x x p , 1,2k = , the corresponding solution to (1), 

1 2( ) ( ) ( )t t t
ττ τ =  x x x , 0 0( ) ( ; , )k kt t t=x x x , 1,2k = , meets the inequality 

( ) ( )k k k
et t− ≤x x p , +ℜ∈∀t , 0t t≥ , 1,2k = , then we say that the equilibrium 

point ex  of BAM (1) is componentwise asymptotically stable with respect to 1p  

and 2p , abbreviated as CWAS( 1 2,p p ). 

(b) The equilibrium point ex  of BAM (1) is globally CWAS( 1 2,p p ), or 

CWAS( 1 2,p p ) in the large, abbreviated as GCWAS( 1 2,p p ), if ex  is 

CWAS( 1 2,c cp p ) for any scalar 0c > . 

(c) BAM (1) is said to be CWAS( 1 2,p p ) if it has an equilibrium point ex  that is 

GCWAS( 1 2,p p ). ■ 

Remark 1. It can be proved that (a) if an equilibrium point 1 2
e e e

ττ τ =  x x x  of 

BAM (1) is CWAS( 1 2,p p ), then it is also uniformly asymptotically stable in the 
sense of the standard definition (e.g. [14], pp. 107); (b) if an equilibrium point 



1 2
e e e

ττ τ =  x x x  of BAM (1) is GCWAS( 1 2,p p ), then it is also uniformly 

asymptotically stable in the large in the sense of the standard definition (e.g. [14], 
pp. 108). ■ 

Until this point of our presentation the time-dependence of the vector functions 
( )k tp , 1,2k = , was considered arbitrary. If the CWAS property exists for the 

particular form of the vector functions 
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then we refer to a special type of stability property called componentwise 
exponential asymptotic stability, abbreviated as CWEAS, and Definition 1 yields 
the following: 

Definition 2. If the hypotheses of Definition 1(a, b, c) are fulfilled with ( )k tp , 

1,2k = , given by (7), then we say that: (a) the equilibrium point ex  is 

CWEAS( 1 2, ,σ α α ); (b) the equilibrium point ex  is globally CWEAS( 1 2, ,σ α α ), 

abbreviated as GCWEAS( 1 2, ,σ α α ); (c) BAM (1) is CWEAS( 1 2, ,σ α α ). ■ 

Remark 2. It can be proved that (a) if an equilibrium point 1 2
e e e

ττ τ =  x x x  of 

BAM (1) is CWEAS( 1 2, ,σ α α ), then it is also exponentially asymptotically stable 
in the classical sense (e.g. [14], pp. 107); (b) if an equilibrium point 

1 2
e e e

ττ τ =  x x x  of BAM (1) is GCWEAS( 1 2, ,σ α α ), then it is also globally 

exponentially asymptotically stable in the classical sense (e.g. [14], pp. 108). ■ 

3 Main Results 

3.1 CWAS of BAMs with Uncertainties 

Theorem 1. BAM (1) is CWAS( 1 2,p p ) for arbitrary k k∈A A , k k∈W W , 
k k∈f F , 1,2k = , if the following inequalities hold 

1 1 1 2 2 2

2 2 2 1 1 1

ˆ( ) ( ) ( ),
ˆ( ) ( ) ( ),

t t t
t t t
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Λ

≥ +
≥ +

p A p W p
p A p W p
&

&
  +ℜ∈∀t , (8) 

where matrices ˆ kW , kΛ , 1,2k = , are defined by 
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Proof: Given arbitrary k k∈A A , k k∈W W , k k∈f F , 1,2k = , the dynamical 
behavior of the state-space trajectories of BAM (1) in a vicinity of the equilibrium 
point 1 2

e e e
ττ τ =  x x x  may be analyzed by means of the deviations k k k

e= −y x x , 

1,2k = , that satisfy 
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1 1 1 2 2 2 1 1 1
0 0

2 2 2 1 1 1 2 2 2
0 0

( ) ( ) ( ) , ( ) ,
( ) ( ) ( ) , ( ) ,

e

e

t t t t
t t t t
= + = −
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y A y W g y y x x
y A y W g y y x x
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 (10) 

where 
1 1 1 1 1 1 1

2 2 2 2 2 2 2
( ) ( ) ( ),
( ) ( ) ( ).

e e

e e

= + −
= + −

g y f y x f x
g y f y x f x

 (11) 

Obviously, ex  is CWAS( 1 2,p p ) for (1) if and only if e =y 0  is CWAS( 1 2,p p ) 

for (10). The components 1
ig , 1,i m= , and 2

jg , 1,j n= , of the activation functions 
1g  and, respectively, 2g , are continuous, nondecreasing and satisfy the sector 

conditions derived from (2): 
21

1 2( )( )0 , 0 ji
i j

g rg r L L
r r

≤ ≤ ≤ ≤ , (12) 

for all 0, ≠ℜ∈ rr . 

For any 0c > , using equations (10) corresponding to a generic equilibrium point 
ex  of (1) and taking (12) into account, we get 
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and, analogously, 
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for all 0t ≥  and all 1 1 1( ), ( )i i iy cp t cp t ∈ −  , 1,i m= , 2 2 2( ), ( )j j jy cp t cp t ∈ −  , 1,j n= . If 

(8) is satisfied, it follows that 
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for all 0t ≥ , and all 1 1 1( ), ( )i i iy cp t cp t ∈ −  , 1,i m= , 2 2 2( ), ( )j j jy cp t cp t ∈ −  , 1,j n= , 

which, according to [15] (Lemma 4.2, pp. 74) is sufficient for the equilibrium 
point e =y 0  of system (10) to be CWAS( 1 2,c cp p ). Since this happens for all 



0c > , the equilibrium point ex  of BAM (1) is GCWAS( 1 2,p p ), meaning that 

BAM (1) is CWAS( 1 2,p p ). This conclusion can be drawn for all BAMs 

described by (1) with k k∈A A , k k∈W W , k k∈f F , 1,2k = , which 
completes the proof.  

It is interesting to notice that the sufficient condition (8) stated by Theorem 1 can 
be equivalently written by using the augmented vector function 

nmp +
+ ℜ→ℜ: , 1 2( ) ( ) ( )t t t

ττ τ =  p p p , (15) 

and the matrix ( ) ( )nmxnm ++ℜ∈Θ  defined by 

1 2 1 1 2 2

2 21 1 1 2

ˆ ˆ
ˆ ˆ

Λ ΛΘ
Λ Λ

      = + =            
A O O W O A W
O A OW O W A

, (16) 

with matrices ˆ kW , kΛ , 1,2k = , given by (9). 

Corollary 1. BAM (1) is CWAS( 1 2,p p ) for arbitrary k k∈A A , k k∈W W , 
k k∈f F , 1,2k = , if the vector function ( )tp  (15) satisfies the differential 

inequality 

( ) ( ) +

•

ℜ∈∀Θ≥ ttptp , , (17) 

where matrix Θ  is given by (16).  

Corollary 1 suggests us to explore the role of matrix Θ  in ensuring the 
CWAS( 1 2,p p ) of BAM (1) with uncertainties. Let us first notice the special 
structure of the test matrix Θ  given by (16), which is essentially nonnegative (all 
its off-diagonal elements are nonnegative). This remark motivates us to present 
some preparatory results. 

Lemma 1. Let [ ] qxq
ij ℜ∈Ψ=Ψ  be an essentially nonnegative matrix and let us 

denote by ( )iυ Ψ , 1,i q= , its eigenvalues. Then, Ψ  has a real eigenvalue (simple 
or multiple), denoted by max( )υ Ψ , which fulfills the dominance condition 

maxRe[ ( )] ( )iυ υ≤Ψ Ψ  for all 1,i q= . Moreover, max( )iiψ υ≤ Ψ , 1,i q= . 

Proof: It results from ([8], Lemma 2.1) and from ([16], Corollary 8.1.20).  

Lemma 2: If both matrices qxqℜ∈ΞΨ,  are essentially nonnegative matrices 
with ≤Ψ Ξ , then max max( ) ( )υ υ≤Ψ Ξ . 



Proof: Consider 0s >  such that 0ii sψ + ≥ , 1,i q= . Thus, the matrices 
s s+ ≤ +I IΨ Ξ  are nonnegative and we use ([16], Theorem 8.1.18).  

Lemma 3: If [ ] qxq
ij ℜ∈Ψ=Ψ  is an essentially nonnegative matrix, then, for any 

ℜ∈r , with max( ) rυ <Ψ , there exists a positive vector 0, >ℜ∈ γγ n , such that 
rγ γ<Ψ . 

Proof: Construct the nonnegative matrix s +I Ψ  with 0iis ψ+ ≥ , 1,i q= . For any 
ℜ∈r  satisfying max( ) rυ <Ψ , there exists ( ) 0rε ε= >  such that 

max( )s s rυ ε+ + ≤ +I EΨ , where [ ] qxq
ijeE ℜ∈= , with 1ije = , , 1,i j q= . Thus, 

for the Perron eigenvector 0, >ℜ∈ γγ q , of the positive matrix s ε+ + >I E 0Ψ  
we can write  

max( ) ( ) ( ) ( )s s s s rε υ ε+ < + + = + + ≤ +I γ I Ε γ I Ε γ γΨ Ψ Ψ . 

Note that when Ψ  is irreducible, the existence of its Perron-Frobenius 
eigenvector 0, >ℜ∈ γγ q , ensures the equality max( )υγ γ=Ψ Ψ .  

We are now able to establish the following result. 

Theorem 2. If matrix Θ  defined by (16) is Hurwitz stable, then there exist two 
vector functions ( )k tp , 1,2k = , satisfying the conditions from Definition 1 so that 

BAM (1) is CWAS( 1 2,p p ) for all k k∈A A , k k∈W W , k k∈f F , 1,2k = . 

Proof: Indeed, if Θ  is Hurwitz stable, then the vector function 

( )
0

( ) e (0) e ( )
tt tt dξ ξ ξΘ Θ −= + ∫p p v , 0t > , 

(defined with (0) >p 0  and adequate ( ) 0ξ ≥v , 0ξ ≥ , such that 
( )

0
lim e ( )

t t

t
dξ ξ ξΘ −

→∞
=∫ v 0 ), satisfies the differential inequality (17) and ( )t >p 0 , 

+ℜ∈∀t , lim ( )
t

t
→∞

=p 0 . The two functions ensuring CWAS( 1 2,p p ) result from 

the appropriate partitioning of  p, in accordance to (15).  

Remark 3. Since matrix Θ  defined by (16) is essentially nonnegative, the 
requirement “Θ  Hurwitz stable” from the hypothesis of Theorem 2 is equivalent 
to “ Θ−  nonsingular M-matrix” [18].   



3.2 CWEAS of BAMs with Uncertainties 

Theorem 3. BAM (1) is CWEAS( 1 2, ,σ α α ) for all k k∈A A , k k∈W W , 
k k∈f F , 1,2k = , if the following algebraic inequalities hold 

1 1 1 2 2 2

2 2 2 1 1 1

ˆ ,
ˆ .

σ
σ
α α α
α α α

≥ +
≥ +

A W
A W

Λ
Λ

 (18) 

Proof: It is a direct consequence of Theorem 1 when the time-dependence of 
( )k tp , 1,2k = , is given by (7).  

Corollary 2. BAM (1) is CWEAS( 1 2, ,σ α α ) for all k k∈A A , k k∈W W , 
k k∈f F , 1,2k = , if the augmented vector [ ] nm+ℜ∈=

τττααα 21  satisfies the 
following algebraic inequality 

σα α≥Θ , (19) 

where Θ  is given by (16). ■ 

Similarly to Theorem 2, the following result is available for CWEAS. 

Theorem 4. If matrix Θ  defined by (16) is Hurwitz stable, then there exist two 
positive vectors 0, 11 >ℜ∈ αα m , 0, 22 >ℜ∈ αα n , and a scalar ( ,0)σ ∈ −∞ , 

so that BAM (1) is CWEAS( 1 2, ,σ α α ) for all k k∈A A , k k∈W W , k k∈f F , 

1,2k = . 

Proof: If matrix Θ  is Hurwitz stable, then Lemma 3 ensures the existence of 
ℜ∈σ , max( ) 0υ σ< <Θ  and 0, >ℜ∈ + αα nm , satisfying inequality (19). The 

two positive vectors ensuring CWEAS( 1 2, ,σ α α ) result from the appropriate 
partitioning of α . ■ 

Remark 4. If BAM (1) is CWEAS( 1 2, ,σ α α ) for all k k∈A A , k k∈W W , 
k k∈f F , 1,2k = , then, for the unique equilibrium point 1 2

e e e
ττ τ =  x x x  of each 

concrete neural network belonging to this family, we can write 

( ) ( )
0000

00

,,||,;||||||

,,,0

0 tttexxttxxx

xt

ttr
A

e

A

e

n

≥ℜ∈∀≤−⇒≤−
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+
−

∞∞

+

εε

ε
, (20) 

where the vector norm Α
∞  is defined by Α Α∞ ∞=x x , nmx +ℜ∈∀ , with 

{ }1 1 1 2 2 2
1 2 1 2diag 1/ ,1/ , , 1/ ,1/ ,1/ , , 1/m nα α α α α αΑ = K K . (21) 



This shows that for each concrete neural network the definition of exponential 
stability of ex  (e.g. [14], pp.107) with respect to the norm Α

∞  is fulfilled in the 
particular case ( )δ ε ε= , 0ε∀ > . Similarly, the definition of global exponential 
stability of ex  (e.g. [14], pp.108) is satisfied for the particular case 1M = , 

( ) ( )
0000

00

,||||||,;||

,,

0 ttxxMexxttx

xt
A

e
ttr
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e

n

≥∀−≤−

ℜ∈∀ℜ∈∀

∞

−

∞

+

 (22) 

Remark 5. In terms of the matrix norms induced by the vector norms, the 
sufficient condition for BAM (1) to be CWEAS( 1 2, ,σ α α ) for all k k∈A A , 

k k∈W W , k k∈f F , 1,2k = , can be formulated as 

( ) ( )1 0rµ µΑ Θ ΑΘΑ
∞ ∞

−= ≤ < , (23) 

where matrix Α  is given by (21) and ( )
0

( ) lim 1
ς

µ ς ς
↓

= + −M I M  defines a 

measure for any matrix nxnM ℜ∈ , associated with the induced matrix norm  
(e.g. [17], pp. 30). This is a direct consequence of Corollary 2. ■ 

4 Particular Cases 

The generality of our results on CWAS / CWEAS of BAM with uncertainties 
includes some particular cases, which deserve a special interest and allow 
meaningful comparisons with the works of other authors. 

4.1 CWAS / CWEAS of BAMs with Activation-function 
Uncertainties 

This case is obtained when k k k= =A A A , k k k= =W W W , 1,2k = , in (3) and the 
uncertainties refer only to the class of activation functions defined by (5). The 
CWAS/CWEAS approach relies on the replacement of the test matrix 

( ) ( )nmxnm ++ℜ∈Θ , built according to (16), by the simplified test matrix 
( ) ( )nmxnm ++ℜ∈Ω  defined as: 



1 2 1

2 1 2

1 2 2

1 1 2

| |
| |

| | ,
| |

ΛΩ
Λ

Λ
Λ

     = + =          
 =   

A O O W O
O A W O O

A W
W A

 (24) 

with matrices kΛ , 1,2k = , given by (9). 

Theorem 5. If matrix Ω  defined by (24) is Hurwitz stable, then 

(a) BAM (1) is CWAS( 1 2,p p ) for all k k∈f F , 1,2k = , if ( )tp  given by (15) 
fulfills the differential inequality 

( ) ( )t tΩ≥p p& ; +ℜ∈∀t ; (25) 

(b) BAM (1) is CWEAS( 1 2, ,σ α α ) for all k k∈f F , 1,2k = , if the scalar σ  and 

the vector [ ] nm+ℜ∈=
τττααα 21  fulfill the algebraic inequality  

σα α≥Ω .  (26) 

Remark 6. The conditions 1 0ia < , 1,i m= , 2 0ja < , 1,j n= , are necessary for 
matrix Ω  defined by (24) to be Hurwitz stable. Such conditions are formulated as 
working hypotheses in most papers dealing with BAMs.  

4.2 CWAS / CWEAS of BAMs with Parameter Uncertainties 

This case is obtained when the activation functions 1
if , 1,i m= , and 2

jf , 1,j n= , 
are fixed, satisfying (2), and the uncertainties refer only to the classes of matrices 

kA , kW , 1,2k = , defined by (4). The CWAS/CWEAS approach relies on the 
test matrix Θ  defined by (16), constructed with { }1 1 1 1

1 2diag , , , mL L LΛ = K  and 

{ }2 2 2 2
1 2diag , , , nL L LΛ = K , where 1 2, 0i jL L >  are the Lipschitz constants 

corresponding to the activation functions, as shown by (2). 

Theorems 2 and 4 provide sufficient conditions for BAM (1) to be CWAS / 
CWEAS for all k k∈A A , k k∈W W , 1,2k = . 

4.3 CWAS / CWEAS of BAMs without Uncertainties 

This case is obtained from cases A and B discussed above, when k k k= =A A A , 
k k k= =W W W , 1,2k = , in (3), and the activation functions 1

if , 1,i m= , and 2
jf , 

1,j n= , are fixed, satisfying (2). The CWAS/CWEAS approach relies on the test 



matrix Ω  defined by (24), with { }1 1 1 1
1 2diag , , , mL L LΛ = K  and 

{ }2 2 2 2
1 2diag , , , nL L LΛ = K , where 1 2, 0i jL L >  are the Lipschitz constants from (2). 

Thus, Theorem 5 provides a sufficient condition for the componentwise stability 
of BAM (1), namely “Ω  is Hurwitz stable”, or, equivalently, “-Ω  is an M-
matrix” This result can be compared with others reported in literature for BAMs. 
For instance, starting from the same condition on Ω  and applying Theorem 3.1 in 
[2] when delayed states do not occur, only the global asymptotic stability of the 
BAM is guaranteed. A similar comment may be formulated with respect to 
Theorem 1 in [3] that, for a BAM without delay, ensures only the global 
exponential stability. 

Those results in [1] dealing with BAMs without delay deserve a special attention. 
Corollaries 2.2 and 2.4 from [1] rely on the hypothesis of diagonal dominance for 
matrix Ω  (applied on columns and, respectively, on rows), which means a 
stronger test condition than the Hurwitz stability of matrix Ω . Under these 
hypotheses, the global exponential stability of a BAM is guaranteed by Corollary 
2.2 in the sense of Hölder norm 1 and by Corollary 2.4 in the sense of Hölder 
norm ∞ . The latter result represents a particularization of our CWEAS framework 
obtained for 1 2

i jα α α= = , 1,i m= , 1,j n= , in (20) and (21). 

Conclusions 

This paper provides easy-to-apply algebraic criteria for exploring the 
componentwise (exponential) asymptotic stability of BAM neural networks with 
parameter and activation-function uncertainties. These criteria are formulated in 
terms of Hurwitz stability of a test matrix adequately built from the information 
available about the uncertainties. Besides the generality of these novel robustness 
results (Theorems 2 and 4), they allow deriving some relevant particular cases for 
the analysis of CWAS / CWEAS. Comparisons between the mentioned particular 
cases and other works reveal that, for frequently encountered systems (i.e. with 
nondecreasing activation functions), our test condition is less restrictive and, 
concomitantly, ensures stronger stability properties. 

References 

[1] S. Mohamad, “Global exponential stability in continuous-time and discrete-
time delayed bidirectional neural networks”, Physica D, vol. 159, pp. 233-
251, 2001 

[2] J. Zhang and Y. Yang, “Global stability analysis of bidirectional 
associative memory neural networks with time delay”, Int. J. Circ. Theor. 
Appl., vol. 29, pp. 185-196, 2001 

[3] J. Cao and L. Wang, “Exponential stability and periodic oscillatory 
solution in BAM networks with delays”, IEEE Trans. Neural Networks, 
vol. 13, no. 2, pp. 457-463, 2002 



[4] X. Liao, J. Yu and G. Chen, “Novel stability criteria for bidirectional 
associative memory neural networks with time delays”, Int. J. Circ. Theor. 
Appl., vol. 30, pp. 519-546, 2002 

[5] M. Voicu, “Componentwise asymptotic stability of linear constant 
dynamical systems”, IEEE Trans. on Aut. Control, vol. 29, no. 10, pp. 937-
939, 1984 

[6] A. Hmamed, ”Componentwise stability of continuous-time delay linear 
systems”, Automatica, vol. 32, no. 4, pp. 651-653, 1996 

[7] A. Hmamed, “Componentwise stability of 1-D and 2-D linear discrete 
systems”, Automatica, vol. 33, no. 9, pp. 1759-1762, 1997 

[8] O. Pastravanu and M. Voicu, “Interval matrix systems - Flow invariance 
and componentwise asymptotic stability”, Diff. Int. Eqs., vol. 15, no. 11, 
pp. 1377–1394, 2002 

[9] O. Pastravanu and M. Voicu, “Dynamics of a class of uncertain nonlinear 
systems under flow-invariance constraints”, Int. Journ. of Math. and Math. 
Scie., vol. 2003, no. 5, pp. 263-294, 2003 

[10] T. Chu, C. Zhang and Z. Wang, “Qualitative analysis of competitive-
cooperative cellular neural networks with delay”, in Proc. 15th IFAC World 
Congress, Barcelona, Spain, CD-ROM, 2002 

[11] T. Chu, Z. Wang and L. Wang, “Exponential convergence estimates for 
neural networks with multiple delays”, IEEE Trans. Circuits Syst. I, vol. 
49, no. 12, pp. 1829-1832, 2002 

[12] T. Chu, Z. Wang and Z. Wang, “A decomposition approach to analysis of 
competitive-cooperative neural networks with delay”, Physics Letters A, 
no. 312, pp. 339-347, 2003 

[13] M. H. Matcovschi and O. Pastravanu, “Refined qualitative analysis for a 
class of neural networks”, in Proc. 7th European Control Conf. ECC 2003, 
Cambridge, U.K., CD-ROM, 2003 

[14] A. Michel and K. Wang, Qualitative Theory of Dynamical Systems. Marcel 
Dekker, Inc., New York-Bassel-Hong Kong, 1995 

[15] H. N. Pavel, Differential Equations: Flow Invariance and Applications; 
Research Notes in Mathematics, No. 113, Pitman, Boston, 1984 

[16] R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge University 
Press, Cambridge, U.K., 1985 

[17] C. A. Desoer and M. Vidyasagar, Feedback Systems: Input-Output 
Properties, New York Academic, 1975 

[18] A. Berman, M. Neumann and R. J. Stern, Nonnegative Matrices in 
Dynamic Systems. John Willey & Sons Inc., New York, 1989 


