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Abstract: Cellular automata (CA) represent lately a widely used model for modelling the 
dynamic phenomena. Generally, they are used in a rather empirical manner. This paper 
proposes the adaptation of the informational energy concept for CA and its use as a 
predictor for the evolution of CA. 

Keywords: cellular automata, randomness, prediction, informational energy, experimental 
mathematics 

1 Introduction 

In a larger context [1] I have studied the possibility of using CA as noise 
generators. The starting point was the project  'Looking for the lost noise'  [2]. 

Our proposal is to use, as a generator of pseudo-random sequences, an uniform 
CA with 256 cells that can have two states, over which a global loop is closed. We 
add several new things to the classical use of a CA, in order to improve the 
‘random’ evolution. 

The random evolution is manifesting itself into a chaotic process, very sensitive to 
the initial state of a simple device working according to a strange rule. 

The first problem is that CA are ‘implicitly’ considered as having a random 
evolution. Randomness is not rigorously defined for CA. More generally, the 
notion of evolution of CA either is not clearly defined (that is, formally, or, at 
least, functionally). 

In order to make the monitoring, we have devised a new methodology. We have 
functionally devised the notions of evolution, randomness and cyclic character in 
CA. As regards randomness, we have adapted G. Chaitin’s definition for binary 
strings. 



2 Theoretical Concepts 

2.1 Cellular Automata 

An ‘elementary’ cellular automaton consists of a sequence of sites carrying values 
0 or 1 arranged on a line. The configurations of the system are thus sequences of 0 
and 1. In general, the sites of a cellular automaton may be arranged on any regular 
lattice, and each site may take on any discrete set of values. 

They evolve in a series of time steps. At each step, the value of each site is 
updated according to a specific rule. The rule depends on the value of a site, and 
the values of, say, its two nearest neighbours. The value at each site evolves 
deterministically with time according to a set of definite rules involving the values 
of its nearest r neighbours. Different rules (lookup tables) generate different types 
of dynamics of CA, when the rules are iterated in time ([3], [4], [5], [6]). 

2.2 Randomness and Prediction 

G. Chaitin established in a large set of papers ([7]–[11]) a complete theory about 
randomness, connected with the capacity of programs for computing finite binary 
sequences. In short, he defines a string as being random if his shorter 
representation is the string itself. In other words, a string of bits is random as long 
as it does not repeat itself. When it starts repeating itself, it can be represented by 
an algorithm, and becomes predictable. 

We adopt here the same functional point of view for CA: when it starts repeating 
itself it becomes predictable. Automaton’s evolution is random until it starts 
cycling. 

We decide to stop the automaton in the moment it starts cycling, and to consider 
its evolution as complete. 

2.3 Experimental Mathematics 

Experimental Mathematic is a paradigm appearing in association "with the 
exploratory use of a computer" [12], especially "when one attempts to analyze 
experimentally algorithms" [13]. 

In our case, we have used the computer for simulating CA. The space of the 
solutions is of the 2256 dimension. 



2.4 The Main Challenge 

The main challenge is the one S. Wolfram formulated in [14]: ‘But what should be 
done is to find a characterization of those properties whose behaviour can be 
found by efficient methods, and those for which computational irreducibility 
makes explicit simulation the only possible approach, and precludes a simple 
description.’ 

2.5 The Project 

The project presented here aims to explore the possibility of using the CA as 
random number generators. Simulation was made with linear CA, with 256 cells. 
We did not use genetic algorithms for obtaining better chromosomes from the 
older ones. 

3 The Project Presentation 

The starting point was the project 'Looking for the lost noise' by Gh. Stefan [2]. 
Let us see an abstract of this paper, which can be considered the starting point of 
our paper. 

The proposal is to use a CA as pseudo-noise generator, to which a global loop was 
added (fig. 1). 



 
Figure 1 

One of the simplest programmable CA, with a global loop closed through summation function 

Our hope is that the ‘feed forward’ of the attached loop improves the random 
behaviour of the system. 

The transition function over a loop being very simple, the random behaviour 
depends only on the initial state of the CA. In the design process the main step is 
to find a ‘noisy’ initial state. 

Conclusions: the only way to present the machine behaviour is to make it work as 
a simulator. The formal method of using is the experimental mathematics. 

S. Wolfram [15] was the first to use CA as noise pseudo-generators. He used the 
linear and uniform CA, with two states cells. 



4 The Development of the Project 

4.1 Chromosomes 

We use a definition of randomness inspired by G. Chaitin: an automaton is 
random as long as its evolution cannot be predicted. From the moment when its 
evolution can be predicted, it is no longer random. An automaton is random until 
it starts cycling. So the problem is rephrased as follows: no matter the value, we 
stop an automaton when it becomes cyclic. 

Practically, one way or another, we must: 

• have an evidence of the states of the automaton, in the order of their 
appearance, and 

• test a new state of the automaton (the current status, the last one resulted from 
the calculus process) if it appears from the first time or not. 

If we find it in the ‘history’ of the automaton, it represents the end of the first 
cycle of the automaton and the generation of new states stops. If not, the new 
status is to be archived and the iterations continue. 

We keep the whole automaton ‘history’ in a matrix, whose successive rows 
memorize the automaton’s states in the order of their apparition. We will name 
this matrix ‘the evolution matrix’. 

In order to synthesize the results, we have to monitor the chromosomes in two 
different ways: 

• the first one, we monitor for each chromosome the evolution as an internal 
mechanism of the cellular automaton 

• the second one, we archive the results of each chromosome, individually, 
together with its initial configuration and the performance 

And, of course, not to repeat the tests for the same chromosome. 

As regards chromosomes, there are two problems: 

• the generation of the initial states 

• the concrete work with a CA. 

We have systematically generated distinct chromosomes. 

For actually working with a cellular automaton (monitoring the evolution of the 
automaton), we arrived at the following diagram: 

1. An initial state is generated 



2. The initial state is memorized in the evolution matrix, in line 1 of the matrix; 
a counter number_cycles_of_life is initialized with 1. 

3. A calculating function is applied to a new state of the automaton; we name the 
new state of the automaton chromosome_current; the counter 
number_cycles_of_life is increased with 1. 

4. The sequential chromosome_current is compared with the values from the 
evolution matrix, from position 1 to position number_cycles_of_life-1 the 
sequential chromosome_current is compared to the values in the evolution 
matrix, from position 1 to position number_cycles_of_life-1 

5. If an equality does not appear, the chromosome_current is memorized in the 
evolution matrix; and we came back to step 3 

6. If an equality appears (the value already exists; that means that the 
chromosome_current represents the closure of the first cycle), the experiment 
stops, but (number_cycles_of_life -1) represents the performance of the 
chromosome; we archive the chromosome 

The archiving of the results is made in a database. 

4.2 The Connection between the Automaton’s Initial Structure 
and Performance 

In all the discussions about the CA the local structure is mentioned. By local 
structure we understand the spatial distribution of values ‘0’/’1’ (the CA 
configuration). Associated to the notion of local structure there appears that of 
density: the number of values ‘1’ in the initial configuration of CA. Nevertheless, 
there was no systematic exploration of the combination of these two factors. 

We generated 500.000 CA with similar densities, between 124 and 133. The 
results are those in table 1. By performance we understand the number of tacts 
until the automaton becomes cyclic. We have generated the data and counted the 
results by groups. 

Performance Number of cases 
3-54 454. 828 

55-106 0 
107-158 10 
159-210 0 
211-262 42. 325 
263-314 2. 825 
315-366 0 
367-418 0 
419-470 0 
471-518 12 

Table 1 
Statistics for the automata evolutions 



The great variation of the performances of the chromosomes that have similar 
initial densities leads us to the necessity of a differentiating criterion between 
algorithms with the same initial density. A possibility of global characterizing of 
the automaton would implicitly represent a prediction instrument too. 

5 Comportamental Factorization 

We try to solve this problem: how can we realize a differentiation between the 
cellular automata with the same density. 

We arrive at the specificity of cellular automata: the modification of the cell value 
by reaction to the neighbourhood. Thus, it appeared the idea of the classification 
of automata by factorization according to the initial value of the cells. In this way 
we have a possibility of differentiation of cellular automata with the same initial 
density. 

Now, these results led us to the idea mentioned above: classification of automata 
by the factorization according to the value of the cells. Let us remember the 
calculation of the new value of a cell: 

C(i,n) = C(i-1,n-1) + C(i,n-1)* 2  + C(i+1,n-1)*22 

where we have noted C(j,k) the value of the j cell at a moment k. The value C(i,n) 
is the value of the cell from the calculus table, on a line corresponding to the 
density of the automaton. 

Practically, we obtain the notations: 

0 0 0    ⇒    0    noted v0 

1 0 0    ⇒    1   noted  v1 

0 1 0    ⇒    2    noted v2 

1 1 0    ⇒    3    noted v3 

0 0 1    ⇒    4    noted v4 

1 0 1    ⇒    5    noted v5 

0 1 1    ⇒    6    noted v6 

1 1 1    ⇒    7    noted v7 

which we shall use below. 



6 The Informational Energy in Cellular Automata 

We studied the problem of the structure according to the point of view of  
informational „disorder”: we calculated the global informational energy of a 
cellular automaton, making an adaptation of the classical Onicescu formula. 

First, let us remember the definition of the informational energy ([Onicescu ‘79]). 

The global information of the system S with the states s1, s2, …, sn having the 
following weigths p1, p2, …, pn  can be expressed by its informational energy 
calculated with the formula: 
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Let’s go back, now, to the discussion from the preceding paragraph. In the 
classical formula (1) s1, s2, …, sn, represent the states of the system. In the case of 
the cellular automaton, the state of the system is its interior configuration at a 
certain moment. We are in the situation to make an adaptation of the concept. The 
form in which we use the concept of informational energy is the following: 

E = ( v0
2  +  v1

2  +  v2
2  + v3

2 + v4
2 + v5

2  +  v6
2 + v7

2  )/ 2562              (2) 

where the notations v0, v1, …,v7 represent the factorization of cells according to 
the local states. 

6.1 Correlations between Performance and Energy 

We arrive at the connection between the automaton’s performance and the 
informational energy (calculated with formula 2). 

We browsed again the database which contains the chromosomes. For each of 
them we calculated for each cell the classification v0 … v7. We counted the result 
in a file. Then, we calculated the corellation between the chromosome’s 
performance and the initial structure: using the v0 … v7 counter, ve calculated the 
informational energy using formula 2. The results are in table 2. 

 
Density m/e Corelation 
124 0.0261134 
125 0.0754734 
126 0.0474427 
127 0.3759557  
128 0.5101165 



129 0.4001813 
130 0.8669366 
131 0.1601014   
132 0.8857184 
133 0.0557577 

Table 2 
The conection between performance (m) and informational energy (e). 

Conclusions and directions for further research 

Let us first see which are the totally new results brought about by this paper. On a 
conceptual level: 

• A functional definition of evolution, randomness and cyclicity were given for 
CA. Until now, the notions of evolution and cyclicity were not clearly 
defined. 

• There are no mathematical concepts for the calculations connected to the 
parallel phenomena. The informational energy introduced here is the first 
classic mathematical concept adapted to parrallel phenomena. 

• Until now, discussions were moreover ‘intuitive’, based on a small number of 
experiments and on a graphical interpretation (visualization) of the results. 
We have refocused the discussions, from the domain of ‘intuition’, to that of 
figures. 

On a practical level, we have, too, some immediate directions for further research: 

• Regarding the global energy itself it remains to be studied the measure in 
which it can become a fine predictor for the characterisation of the evolution 
of automata, by doing again the calculations with partial regressions. 

• The numerical results are dispersed. But this aspect is typical for phenomena 
with nonlinear dynamics.Remember that on some portions we have a 
remarkable correlation. This leads us tpo the idea of modeling the behaviour 
of cellular automata using neuronal nets. 
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